Semiring Unions of a Ring and a Half-Body

Total Page:16

File Type:pdf, Size:1020Kb

Semiring Unions of a Ring and a Half-Body ISSN 1066-369X, Russian Mathematics (Iz. VUZ), 2008, Vol. 52, No. 12, pp. 65–68. c Allerton Press, Inc., 2008. Original Russian Text c M.A. Lukin, 2008, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, No. 12, pp. 76–80. Semiring Unions of a Ring and a Half-Body M. A. Lukin1* 1Vyatka State University of Humanities, ul. Krasnoarmeiskaya 26, Kirov, 610002 Russia Received May 03, 2007; in final form, October 09, 2008 Abstract—We describe the structure of semirings which are unions of a ring and a half-body. DOI: 10.3103/S1066369X08120104 Key words and phrases: ring, semiring, half-body, semiring disjoint union. Brief communication In the theory of semirings the following classes of semirings play an important role: (associative) rings, distributive lattices with zero, and half-bodies with zero. A natural problem is the investigation of semirings reducible to these three types. In [1] (proposition 12.15) one describes semirings which are subdirect products of a certain ring and a certain bounded distributive lattice. In paper [2] one studies Abelian regular positive semirings S, whose structure essentially depends on a distributive lattice of idempotents L(S) and a half-body of invertible elements U(S). This paper follows [3], it is dedicated to the investigation of semirings which represent the union of their two subsemirings, one of which is isomorphic to a ring, and other one is isomorphic to a half-body withzero.Wegiveadefinition of the semiring disjoint union S = R∪˙ U of a ring R and a half-body U and adduce several examples. The case of the semiring union is reduced to the semiring disjoint union. Further we study the structure of the ring R and the half-body U which enter in S = R∪˙ U; based on them, we construct semirings R∪˙ U themselves. Finally, we solve the question about the uniqueness of S = R∪˙ U for given R and U. 1. Preliminary information. A semiring is an algebraic structure S;+, · , 0 such that S;+, 0 is a commutative monoid, S; · is a semigroup, and in S the identities a(b + c)=ab + ac, (a + b)c = ac + bc,anda0=0a =0are fulfilled [1]. A division semiring different from a ring is said to be a half-body with zero.Excluding0 from a half- body S, we obtain the structure S;+, ·;wecallitahalf-body. A half-body U is said to be reducible, if the implication a + c = b + c ⇒ a = b is fulfilled in it. Let S be a certain semiring with unit 1. We denote by r(S) the set of all elements of S which have the opposite one, we do by U(S) the set of all invertible elements of the semiring S.Evidently,r(S) isaring with respect to operations in S. Definition. We call a semiring S with a unit the semiring disjoint union of a ring R and a half-body U; we denote it by R∪˙ U, if it is the union of its nonintersecting subsets r(S) and U(S),wherer(S) is a ring R, U(S) is a half-body U. Example 1.1. Let P be a field and let T be its certain subhalf-body (without zero), let Mn(P ) stand for the ring of all quadratic matrices of the nth order over the field P . The union of the set R of matrices with zero coordinates on the main diagonal and above it and the set U of matrices with zero coordinates above the main diagonal and coordinates from T on the main diagonal with matrix operations Mn(P ) is the semiring disjoint union R∪˙ U. *E-mail: [email protected]. 65.
Recommended publications
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • Abstract Algebra: Monoids, Groups, Rings
    Notes on Abstract Algebra John Perry University of Southern Mississippi [email protected] http://www.math.usm.edu/perry/ Copyright 2009 John Perry www.math.usm.edu/perry/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States You are free: to Share—to copy, distribute and transmit the work • to Remix—to adapt the work Under• the following conditions: Attribution—You must attribute the work in the manner specified by the author or licen- • sor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial—You may not use this work for commercial purposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the • resulting work only under the same or similar license to this one. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copy- • right holder. Other Rights—In no way are any of the following rights affected by the license: • Your fair dealing or fair use rights; ◦ Apart from the remix rights granted under this license, the author’s moral rights; ◦ Rights other persons may have either in the work itself or in how the work is used, ◦ such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of • this work. The best way to do this is with a link to this web page: http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode Table of Contents Reference sheet for notation...........................................................iv A few acknowledgements..............................................................vi Preface ...............................................................................vii Overview ...........................................................................vii Three interesting problems ............................................................1 Part .
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
    CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e.
    [Show full text]
  • 1 Semifields
    1 Semifields Definition 1 A semifield P = (P; ⊕; ·): 1. (P; ·) is an abelian (multiplicative) group. 2. ⊕ is an auxiliary addition: commutative, associative, multiplication dis- tributes over ⊕. Exercise 1 Show that semi-field P is torsion-free as a multiplicative group. Why doesn't your argument prove a similar result about fields? Exercise 2 Show that if a semi-field contains a neutral element 0 for additive operation and 0 is multiplicatively absorbing 0a = a0 = 0 then this semi-field consists of one element Exercise 3 Give two examples of non injective homomorphisms of semi-fields Exercise 4 Explain why a concept of kernel is undefined for homorphisms of semi-fields. A semi-field T ropmin as a set coincides with Z. By definition a · b = a + b, T rop a ⊕ b = min(a; b). Similarly we define T ropmax. ∼ Exercise 5 Show that T ropmin = T ropmax Let Z[u1; : : : ; un]≥0 be the set of nonzero polynomials in u1; : : : ; un with non- negative coefficients. A free semi-field P(u1; : : : ; un) is by definition a set of equivalence classes of P expression Q , where P; Q 2 Z[u1; : : : ; un]≥0. P P 0 ∼ Q Q0 if there is P 00;Q00; a; a0 such that P 00 = aP = a0P 0;Q00 = aQ = a0Q0. 1 0 Exercise 6 Show that for any semi-field P and a collection v1; : : : ; vn there is a homomorphism 0 : P(u1; : : : ; un) ! P ; (ui) = vi Let k be a ring. Then k[P] is the group algebra of the multiplicative group of the semi-field P.
    [Show full text]
  • B.A.,Sem-II,Mathematics(Algebra) Subring As in Group, We Have
    B.A.,Sem-II,Mathematics(Algebra) Subring As in Group, we have studied about a subgroup. In similar way, we shall study about a subring. Definition 1 Subring Let R be a ring. A non-empty subset S of the set R will be a subring of Ring R if 1. S is closed under the addition composition 2. S is closed under the multiplication composition and S itself is a ring with respect to these two operations. Note 1 We see that if R is a ring then R will also be an abelian group with respect to addition composition because it satisfies all the postulates to be an abelian group.For this go through the definitions of an abelian group and ring. It is also clear here that if S is a subring of a ring R,then S is a subgroup of the additive group of R. Note 2 If R is any ring , then f0g and R itself are always subring of R. These are known as improper subring of R.Other subrings, if any,of R are called proper subrings of R. Theorem The necessary and sufficient conditions for a non-empty subset S of a ring R to be a subring of R are 1. a 2 S; b 2 S ) a − b 2 S 2. a 2 S; b 2 S ) ab 2 S a b Example 1 Show that the set of matrices is a subring of the ring of 2×2 matrices with 0 c integral elements. SolutionNote that here ring is a set of all matrices of the type 2 × 2 with integral elements.
    [Show full text]
  • 24 Rings: Definition and Basic Results
    Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 24 Rings: Definition and Basic Results In this section, we introduce another type of algebraic structure, called ring. A group is an algebraic structure that requires one binary operation. A ring is an algebraic structure that requires two binary operations that satisfy some conditions listed in the following definition. Definition 24.1 A ring is a nonempty set R with two binary operations (usually written as ad- dition and multiplication) such that for all a; b; c 2 R; (1) R is closed under addition: a+b 2 R: (2) Addition is associative: (a+b)+c = a + (b + c). (3) Addition is commutative: a + b = b + a: (4) R contains an additive identity element, called zero and usually denoted by 0 or 0R: a + 0 = 0 + a = a: (5) Every element of R has an additive inverse: a + (¡a) = (¡a) + a = 0: (6) R is closed under multiplication: ab 2 R: (7) Multiplication is associative: (ab)c = a(bc): (8) Multiplication distributes over addition: a(b + c) = ab + ac and (a + b)c = ac + bc: If ab = ba for all a; b 2 R then we call R a commutative ring. In other words, a ring is a commutative group with the operation + and an additional operation, multiplication, which is associative and is distributive with respect to +. Remark 24.1 Note that we don’t require a ring to be commutative with respect to multiplica- tion, or to have multiplicative identity, or to have multiplicative inverses. A ring may have these properties, but is not required to.
    [Show full text]
  • Monoid Rings and Strongly Two-Generated Ideals
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2014 MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS Brittney M. Salt California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Algebra Commons, and the Other Mathematics Commons Recommended Citation Salt, Brittney M., "MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS" (2014). Electronic Theses, Projects, and Dissertations. 31. https://scholarworks.lib.csusb.edu/etd/31 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Monoid Rings and Strongly Two-Generated Ideals A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Brittney Salt June, 2014 Monoid Rings and Strongly Two-Generated Ideals A Thesis Presented to the Faculty of California State University, San Bernardino by Brittney Salt June, 2014 Approved by: J. Paul Vicknair, Committee Chair Date Zahid Hasan, Committee Member Jim Okon, Committee Member Peter Williams, Chair, Charles Stanton Department of Mathematics Graduate Coordinator, Department of Mathematics iii Abstract This paper determines whether monoid rings with the two-generator property have the strong two-generator property. Dedekind domains have both the two-generator and strong two-generator properties. How common is this? Two cases are considered here: the zero-dimensional case and the one-dimensional case for monoid rings.
    [Show full text]
  • Definition and Examples of Rings 50
    LECTURE 14 Definition and Examples of Rings Definition 14.1. A ring is a nonempty set R equipped with two operations ⊕ and ⊗ (more typically denoted as addition and multiplication) that satisfy the following conditions. For all a; b; c 2 R: (1) If a 2 R and b 2 R, then a ⊕ b 2 R. (2) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (3) a ⊕ b = b ⊕ a (4) There is an element 0R in R such that a ⊕ 0R = a ; 8 a 2 R: (5) For each a 2 R, the equation a ⊕ x = 0R has a solution in R. (6) If a 2 R, and b 2 R, then ab 2 R. (7) a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c. (8) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (b ⊗ c) Definition 14.2. A commutative ring is a ring R such that (14.1) a ⊗ b = b ⊗ a ; 8 a; b 2 R: Definition 14.3. A ring with identity is a ring R that contains an element 1R such that (14.2) a ⊗ 1R = 1R ⊗ a = a ; 8 a 2 R: Let us continue with our discussion of examples of rings. Example 1. Z, Q, R, and C are all commutative rings with identity. Example 2. Let I denote an interval on the real line and let R denote the set of continuous functions f : I ! R. R can be given the structure of a commutative ring with identity by setting [f ⊕ g](x) = f(x) + g(x) [f ⊗ g](x) = f(x)g(x) 0R ≡ function with constant value 0 1R ≡ function with constant value 1 and then verifying that properties (1)-(10) hold.
    [Show full text]
  • Introduction to Groups, Rings and Fields
    Introduction to Groups, Rings and Fields HT and TT 2011 H. A. Priestley 0. Familiar algebraic systems: review and a look ahead. GRF is an ALGEBRA course, and specifically a course about algebraic structures. This introduc- tory section revisits ideas met in the early part of Analysis I and in Linear Algebra I, to set the scene and provide motivation. 0.1 Familiar number systems Consider the traditional number systems N = 0, 1, 2,... the natural numbers { } Z = m n m, n N the integers { − | ∈ } Q = m/n m, n Z, n = 0 the rational numbers { | ∈ } R the real numbers C the complex numbers for which we have N Z Q R C. ⊂ ⊂ ⊂ ⊂ These come equipped with the familiar arithmetic operations of sum and product. The real numbers: Analysis I built on the real numbers. Right at the start of that course you were given a set of assumptions about R, falling under three headings: (1) Algebraic properties (laws of arithmetic), (2) order properties, (3) Completeness Axiom; summarised as saying the real numbers form a complete ordered field. (1) The algebraic properties of R You were told in Analysis I: Addition: for each pair of real numbers a and b there exists a unique real number a + b such that + is a commutative and associative operation; • there exists in R a zero, 0, for addition: a +0=0+ a = a for all a R; • ∈ for each a R there exists an additive inverse a R such that a+( a)=( a)+a = 0. • ∈ − ∈ − − Multiplication: for each pair of real numbers a and b there exists a unique real number a b such that · is a commutative and associative operation; • · there exists in R an identity, 1, for multiplication: a 1 = 1 a = a for all a R; • · · ∈ for each a R with a = 0 there exists an additive inverse a−1 R such that a a−1 = • a−1 a = 1.∈ ∈ · · Addition and multiplication together: forall a,b,c R, we have the distributive law a (b + c)= a b + a c.
    [Show full text]
  • What Are Rings of Integer-Valued Polynomials? Michael Steward, June 2015 These Notes Are Largely Drawn from Cahen and Chabert’S Integer-Valued Polynomials
    What are Rings of Integer-Valued Polynomials? Michael Steward, June 2015 These notes are largely drawn from Cahen and Chabert’s Integer-Valued Polynomials. 1 Introduction x(x − 1) Every integer is either even or odd, so we know that the polynomial f(x) = is integer- 2 valued on the integers, even though its coefficients are not in Z. Similarly, since every binomial k x x(x − 1):::(x − n + 1) coefficient is an integer, the polynomial = must also be integer- n n n! valued. These polynomials were used for polynomial interpolation as far back as the 17th century. Integer-valued polynomials did not become the subject of research on their own account until Polya´ and Ostrowski considered the integer-valued polynomials on an algebraic number field K, that is the set Int(O) = ff(x) 2 K[x] j f(O) ⊆ Og, where O is the ring of algebraic integers of K. Then in 1936, Thoralf Skolem was the first author to consider Int(Z) as a ring. Since then integer- valued polynomial rings have been the subject of much study in commutative algebra. In this note we will consider various properties of integer-valued polynomial rings, focusing particuarly on Int(Z). We will see how integer-valued polynomial rings intersect with topics throughout algebra, and we will prove a few of the results along the way. 2 Notation Throughout this note, unless otherwise speicifed, let D be an integral domain with quotient field K, and let Int(D) be the set of integer-valued polynomials on D, that is Int(D) = ff(x) 2 K[x] j f(D) ⊆ Dg.
    [Show full text]
  • 1.1 Rings and Ideals
    1.1 Rings and Ideals A ring A is a set with + , such that • (1) (A, +) is an abelian group; (2) (A, ) is a semigroup; • (3) distributes over + on both sides. • 22 In this course all rings A are commutative, that is, (4) ( x,y A) x y = y x ∀ ∈ • • and have an identity element 1 (easily seen to be unique) (5) ( 1 A)( x A) 1 x = x 1 = x . ∃ ∈ ∀ ∈ • • 23 If 1=0 then A = 0 (easy to see), { } called the zero ring. Multiplication will be denoted by juxtaposition, and simple facts used without comment, such as ( x,y A) ∀ ∈ x 0 = 0 , ( x)y = x( y) = (xy) , − − − ( x)( y) = xy . − − 24 Call a subset S of a ring A a subring if (i) 1 S ; ∈ (ii) ( x,y S) x+y, xy, x S . ∀ ∈ − ∈ Condition (ii) is easily seen to be equivalent to (ii)′ ( x,y S) x y, xy S . ∀ ∈ − ∈ 25 Note: In other contexts authors replace the condition 1 S by S = (which is ∈ 6 ∅ not equivalent!). Examples: (1) Z is the only subring of Z . (2) Z is a subring of Q , which is a subring of R , which is a subring of C . 26 (3) Z[i] = a + bi a, b Z (i = √ 1) , { | ∈ } − the ring of Gaussian integers is a subring of C . (4) Z = 0, 1,...,n 1 n { − } with addition and multiplication mod n . (Alternatively Zn may be defined to be the quotient ring Z/nZ , defined below). 27 (5) R any ring, x an indeterminate. Put R[[x]] = a +a x+a x2 +..
    [Show full text]