Mr Stephenson's H-Precalculus Assignments for Quarter 4, 2009-2010 (V. 6/12, 07:20)

Total Page:16

File Type:pdf, Size:1020Kb

Mr Stephenson's H-Precalculus Assignments for Quarter 4, 2009-2010 (V. 6/12, 07:20)

Mr Stephenson's H-preCalculus Assignments for Quarter 4, 2009-2010 (v. 6/12, 07:20) This document’s URL is http://sks23cu.net/MT/FY10/Assignments/HpreCalc/assignQ4HpreCalc.htm L := Lesson, C := C.Lab., Q := Quiz, T := Test, E := Exam, PE := Practice Exercises, CW := Classwork. EVERY ASSIGNMENT INCLUDES READING THE COVERED SECTIONS IN THE TEXT. Textbook: Blitzer, Precalculus, 2nd Ed., Prentice Hall, Upper Saddle River, NJ, 2004

Day Date Activity Description Makeups E3 & Q & A 1 M4/5 Solutions Applications, Writing, Critical Thinking L4.6.3 PE: p.507: (45-49 odds), 51-54 2 T4/6 L4.6.4 [Examples 4-5] PE: p.507: 55-58, 75-77 Solving Right Triangles [Examples 1-4] 3 W4/7 L4.8.1 8am grades PE: p.534: (1-11, 29-37) odd, 51-53, 60 [n = 15] Bearings [Examples 5-6]; Handout: House Plot Plan 4 R4/8 L4.8.2 PE: p.534: 13-16, (39-45 odd), 54 [n = 9] Simple Harmonic Motion [Examples 7-8] 5 F4/9 L4.8.3 PE: p.534: (17-27, 47-49) odds, 55-57 [n = 11] The Law of Sines [Examples 1-2]; Handout: Sine & Cosine Laws 6 M4/12 L6.1.1 PE: p.607: 1-15 odds, 53, 54, 56, 57 [n = 12] 7 T4/13 Review 8 W4/14 Q Quiz 4-1 The Ambiguous Case (SSA) [Examples 3-5] 9 R4/15 L6.1.2 PE: p.608: 17-31 odds, 58 [n = 8] Triangle Area & Applications of Law of Sines [Examples 6-7] 10 F4/16 L6.1.3 Rprt Cards PE: p.608: 33-51 odds, 59, 63-65 [n = 14] M4/19 - No School Spring Vacation F4/23 H The Law of Cosines [Examples 1-2]; Handout: Sine & Cosine Laws 11 M4/26 L6.2.1 PE: p.616: 1-21 odds [n = 11] Law of Cosines Applications and Heron’s Formula [Examples 3-4] 12 T4/27 L6.2.2 PE: p.617: 25-43 odds [n = 10] 13 W4/28 ER L6.2.3 PE: p.618: 45-54 [n = 10] 14 R4/29 Review 15 F4/30 T Test 4-1 Verifying Trigonometric Identities [Examples 1-4] 16 M5/3 L5.1.1 PE: p.553: 1-23 odds [n = 12] 17 T5/4 Review for AP Calc entrance exam tomorrow: logs, etc. Verifying Trigonometric Identities [Examples 5-7] 18 W5/5 L5.1.2 PE: p.553: 25-47 odds [n = 12] 19 R5/6 L5.1.3 PE: p.554: 49-59 odds, 61-64, 75 [n = 11] Sum and Difference Formulas [Examples 1-3] Handouts: A & B 20 F5/7 L5.2.1 PE: p.563: 1-19 odds [n = 10] 21 M5/10 Test 4-2 Same problems as Test 4-1 but different order, letters, & numbers. Sum and Difference Formulas [Examples 4-7] 22 T5/11 L5.2.2 PE: p.563: 21-39 odds [n = 10] 23 W5/12 Q L5.2.3 PE: p.563: 41-59 odds [n = 10] Mr Stephenson's H-preCalculus Assignments for Quarter 4, 2009-2010 (v. 6/12, 19:23)

Day Date Activity Description Sum and Difference Formulas 24 R5/13 L5.2.4 Sr. Prom PE: p.564: 61-67 odds, 69-74 [n = 10] 25 F5/14 L5.2.5 PE: p.565: 75, 82-90 [n = 10] ProgRprt 26 M5/17 Review Consider: p.595: 1-22, 31-33, (34-37 parts a-c only); p.597: 1-2,5-11 MCAS-Math SrE p5 & p7 27 T5/18 SrE Review MCAS-Math Consider: p.681: 1-21; p.684: 1-3 28 W5/19 SrE Review SrE p1 & p3 ER p1, p3-p6 29 R5/20 SrE Exam 4 SrE p4 & p6 30 F5/21 SrE Exam 4 SrE p2 & p5 & Makeups M5/24 Non- Double-Angle Formulas [Examples 1-2] 31 Seniors: L5.3.1 13,25,15 PE: p.573: 1-21 odds [n = 11] 32 T5/25 Review Juniors at GearUp’s Junior Workshop Power-Reducing & Half-Angle Formulas [Examples 3-5] 33 W5/26 L5.3.2 PE: p.573: 23-41 odds [n = 10] 34 R5/27 L5.3.3 [Examples 6-7]; PE: p.574: 43-63 odds [n = 11] 35 F5/28 L5.3.4 PE: p.574: 65-71 odds, 72-77 [n = 10] M5/31 H No School Memorial Day Trigonometric Equations [Examples 1-4] 36 T6/1 L5.5.1 PE: p.592: 1-21 odds [n = 11] W6/2 L5.3.5 Double- and Half-Angle Formulas MCAS-Sci p4b -> 616 CW: p.573: 78-84, 92-94 [n = 10]; TURN IN AT END OF CLASS 37 1-3 in Adv, 4- p6b -> 644 7 Graduation Mr. S. 10:00-1:40 (p3-p6b): Graduation Practice at Tsongas 6pm R6/3 Trigonometric Equations [Examples 5-8] 38 MCAS-Sci L5.5.2 1-3 in Adv, 4- PE: p.592: 23-43 odds [n = 11] 7 39 F6/4 L5.5.3 PE: p.592: 45-65 odds [n = 11] 40 M6/7 ER L5.5.4 PE: p.592: 67-87 odds [n = 11] 1-3, ½ 4, 5-6 41 T6/8 Review 42 W6/9 E Test 4-2 E: p4 & p7 07:55-08:15: Advisory 43 R6/10 E Test 4-2 E: p3 & p6 08:20-09:50: First Testing Period 44 F6/11 E Test 4-2 E: p2 & p5 09:55-11:25: Second Testing Period 45 M6/14 E Test 4-2 E: p1 & Makeups 11:25: Dismissal How would you draw counting board abacus lines and how many pebbles 46 T6/15 grades by 8 would you need to represent 9,834? 9,834,000,000,000,000? Lpebbles 47 W6/16 On your abacus, how many pebbles would you need to calculate 9,83449833 894? How long would it take you?

Recommended publications