Mr Stephenson's H-Precalculus Assignments for Quarter 4, 2009-2010 (V. 6/12, 07:20)

Mr Stephenson's H-Precalculus Assignments for Quarter 4, 2009-2010 (V. 6/12, 07:20)

<p> Mr Stephenson's H-preCalculus Assignments for Quarter 4, 2009-2010 (v. 6/12, 07:20) This document’s URL is http://sks23cu.net/MT/FY10/Assignments/HpreCalc/assignQ4HpreCalc.htm L := Lesson, C := C.Lab., Q := Quiz, T := Test, E := Exam, PE := Practice Exercises, CW := Classwork. EVERY ASSIGNMENT INCLUDES READING THE COVERED SECTIONS IN THE TEXT. Textbook: Blitzer, Precalculus, 2nd Ed., Prentice Hall, Upper Saddle River, NJ, 2004</p><p>Day Date Activity Description Makeups E3 & Q & A 1 M4/5 Solutions Applications, Writing, Critical Thinking L4.6.3 PE: p.507: (45-49 odds), 51-54 2 T4/6 L4.6.4 [Examples 4-5] PE: p.507: 55-58, 75-77 Solving Right Triangles [Examples 1-4] 3 W4/7 L4.8.1 8am grades PE: p.534: (1-11, 29-37) odd, 51-53, 60 [n = 15] Bearings [Examples 5-6]; Handout: House Plot Plan 4 R4/8 L4.8.2 PE: p.534: 13-16, (39-45 odd), 54 [n = 9] Simple Harmonic Motion [Examples 7-8] 5 F4/9 L4.8.3 PE: p.534: (17-27, 47-49) odds, 55-57 [n = 11] The Law of Sines [Examples 1-2]; Handout: Sine & Cosine Laws 6 M4/12 L6.1.1 PE: p.607: 1-15 odds, 53, 54, 56, 57 [n = 12] 7 T4/13 Review 8 W4/14 Q Quiz 4-1 The Ambiguous Case (SSA) [Examples 3-5] 9 R4/15 L6.1.2 PE: p.608: 17-31 odds, 58 [n = 8] Triangle Area & Applications of Law of Sines [Examples 6-7] 10 F4/16 L6.1.3 Rprt Cards PE: p.608: 33-51 odds, 59, 63-65 [n = 14] M4/19 - No School Spring Vacation F4/23 H The Law of Cosines [Examples 1-2]; Handout: Sine & Cosine Laws 11 M4/26 L6.2.1 PE: p.616: 1-21 odds [n = 11] Law of Cosines Applications and Heron’s Formula [Examples 3-4] 12 T4/27 L6.2.2 PE: p.617: 25-43 odds [n = 10] 13 W4/28 ER L6.2.3 PE: p.618: 45-54 [n = 10] 14 R4/29 Review 15 F4/30 T Test 4-1 Verifying Trigonometric Identities [Examples 1-4] 16 M5/3 L5.1.1 PE: p.553: 1-23 odds [n = 12] 17 T5/4 Review for AP Calc entrance exam tomorrow: logs, etc. Verifying Trigonometric Identities [Examples 5-7] 18 W5/5 L5.1.2 PE: p.553: 25-47 odds [n = 12] 19 R5/6 L5.1.3 PE: p.554: 49-59 odds, 61-64, 75 [n = 11] Sum and Difference Formulas [Examples 1-3] Handouts: A & B 20 F5/7 L5.2.1 PE: p.563: 1-19 odds [n = 10] 21 M5/10 Test 4-2 Same problems as Test 4-1 but different order, letters, & numbers. Sum and Difference Formulas [Examples 4-7] 22 T5/11 L5.2.2 PE: p.563: 21-39 odds [n = 10] 23 W5/12 Q L5.2.3 PE: p.563: 41-59 odds [n = 10] Mr Stephenson's H-preCalculus Assignments for Quarter 4, 2009-2010 (v. 6/12, 19:23)</p><p>Day Date Activity Description Sum and Difference Formulas 24 R5/13 L5.2.4 Sr. Prom PE: p.564: 61-67 odds, 69-74 [n = 10] 25 F5/14 L5.2.5 PE: p.565: 75, 82-90 [n = 10] ProgRprt 26 M5/17 Review Consider: p.595: 1-22, 31-33, (34-37 parts a-c only); p.597: 1-2,5-11 MCAS-Math SrE p5 & p7 27 T5/18 SrE Review MCAS-Math Consider: p.681: 1-21; p.684: 1-3 28 W5/19 SrE Review SrE p1 & p3 ER p1, p3-p6 29 R5/20 SrE Exam 4 SrE p4 & p6 30 F5/21 SrE Exam 4 SrE p2 & p5 & Makeups M5/24 Non- Double-Angle Formulas [Examples 1-2] 31 Seniors: L5.3.1 13,25,15 PE: p.573: 1-21 odds [n = 11] 32 T5/25 Review Juniors at GearUp’s Junior Workshop Power-Reducing & Half-Angle Formulas [Examples 3-5] 33 W5/26 L5.3.2 PE: p.573: 23-41 odds [n = 10] 34 R5/27 L5.3.3 [Examples 6-7]; PE: p.574: 43-63 odds [n = 11] 35 F5/28 L5.3.4 PE: p.574: 65-71 odds, 72-77 [n = 10] M5/31 H No School Memorial Day Trigonometric Equations [Examples 1-4] 36 T6/1 L5.5.1 PE: p.592: 1-21 odds [n = 11] W6/2 L5.3.5 Double- and Half-Angle Formulas MCAS-Sci p4b -> 616 CW: p.573: 78-84, 92-94 [n = 10]; TURN IN AT END OF CLASS 37 1-3 in Adv, 4- p6b -> 644 7 Graduation Mr. S. 10:00-1:40 (p3-p6b): Graduation Practice at Tsongas 6pm R6/3 Trigonometric Equations [Examples 5-8] 38 MCAS-Sci L5.5.2 1-3 in Adv, 4- PE: p.592: 23-43 odds [n = 11] 7 39 F6/4 L5.5.3 PE: p.592: 45-65 odds [n = 11] 40 M6/7 ER L5.5.4 PE: p.592: 67-87 odds [n = 11] 1-3, ½ 4, 5-6 41 T6/8 Review 42 W6/9 E Test 4-2 E: p4 & p7 07:55-08:15: Advisory 43 R6/10 E Test 4-2 E: p3 & p6 08:20-09:50: First Testing Period 44 F6/11 E Test 4-2 E: p2 & p5 09:55-11:25: Second Testing Period 45 M6/14 E Test 4-2 E: p1 & Makeups 11:25: Dismissal How would you draw counting board abacus lines and how many pebbles 46 T6/15 grades by 8 would you need to represent 9,834? 9,834,000,000,000,000? Lpebbles 47 W6/16 On your abacus, how many pebbles would you need to calculate 9,83449833 894? How long would it take you?</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us