Trigonometry and Inverse Trigonometry
Total Page:16
File Type:pdf, Size:1020Kb
![Trigonometry and Inverse Trigonometry](http://data.docslib.org/img/8190a103cace01dbd5be3393ac63a7e9-1.webp)
Maths Extension – Trigonometry
Trigonometry Trigonometric Ratios Exact Values & Triangles Trigonometric Identities All Silver Tea Cups rule Trigonometric Graphs Sine & Cosine Rules Area of a Triangle Trigonometric Equations Sums and Differences of angles Double Angles Triple Angles Half Angles T – formula Subsidiary Angle formula General Solutions of Trigonometric Equations Radians Arcs, Sectors, Segments Trigonometric Limits Differentiation of Trigonometric Functions Integration of Trigonometric Functions Integration of sin2x and cos2x INVERSE TRIGNOMETRY Inverse Sin – Graph, Domain, Range, Properties Inverse Cos – Graph, Domain, Range, Properties Inverse Tan – Graph, Domain, Range, Properties Differentiation of Inverse Trigonometric Functions Integration of Inverse Trigonometric Functions
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 1 of 23 Maths Extension – Trigonometry
Trigonometric Ratios
θ hypotenuse hypotenuse e t t i n s e o c p a j p d o a θ adjacent opposite
opposite Sine sin = hypotenuse adjacent Cosine cos = hypotenuse opposite Tangent tan = adjacent 1 hypotenuse Cosecant cosec = = sin opposite 1 hypotenuse Secant sec = = cos adjacent 1 adjacent Cotangent cot = = tan opposite sin = cos90 cos = sin90 tan = cot90 cosec = sec90 sec = cosec90 cot = tan90
60 seconds = 1 minute 60’’ = 1’ 60 minutes = 1 degree 60’ = 1°
sin cos tan cot cos sin
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 2 of 23 Maths Extension – Trigonometry
Exact Values & Triangles
30° 2 1 3 2
45° 60° 1 1
0° 30° 60° 45° 90° 180° 1 3 1 sin 0 2 2 2 1 0 cos 3 1 1 1 2 2 2 0 –1 1 tan 0 3 3 1 –– 0 cos 2 ec –– 2 3 2 1 –– sec 2 1 3 2 2 –– –1 1 cot –– 3 3 1 0 ––
Trigonometric Identities sin 2 cos2 = 1 cos2 = 1 sin 2 sin 2 = 1 cos2
1 cot2 = cosec2 cot 2 = cosec2 – 1 1 = cosec2 – cot 2
tan2 1 = sec2 tan2 = sec2 1 1 = sec2 tan2
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 3 of 23 Maths Extension – Trigonometry
All Silver Tea Cups Rule
90° nd 2 Quadrant 1st Quadrant S A 180° 0 360 3rd Quadrant T C 4th Quadrant
270°
First Quadrant: All positive sin sin + cos cos + tan tan +
Second Quadrant: Sine positive sin180 sin + cos180 –cos – tan180 – tan –
Third Quadrant: Tangent positive sin180 –sin – cos180 –cos – tan180 tan +
Fourth Quadrant: Cosine positive sin360 –sin – cos360 cos + tan360 – tan –
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 4 of 23 Maths Extension – Trigonometry
Trigonometric Graphs
Sine & Cosine Rules Sine Rule: a b c sin A sin B sinC OR sin A sin B sinC a b c
A
b c
C B a
Cosine Rule: a 2 b 2 c 2 2bc cos A
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 5 of 23 Maths Extension – Trigonometry
A
b c
a Area of a Triangle 1 A 2 absinC C is the angle a & b are the two adjacent sides
C
b a
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 6 of 23 Maths Extension – Trigonometry
Trigonometric Equations Check the domain eg. 0 360 Check degrees (0 360) or radians (0 2 ) If double angle, go 2 revolutions If triple angle, go 3 revolutions, etc… If half angles, go half or one revolution (safe side)
Example 1 1 Solve sin θ = 2 for 0 360 sin 1 = 2 = 30°, 150°
Example 2 1 Solve cos 2θ = 2 for 0 360 cos2 1 = 2 2 = 60°, 300°, 420°, 660° = 30°, 150°, 210°, 330°
Example 3 Solve tan 2 = 1 for 0 360 tan 2 = 1 2 = 45°, 225° = 90°
Example 4 sin 2 cos 0 2sin cos cos = 0 cos 2sin 1 = 0
cos 1 = 0 sin = 2 = 90°, = 210°, 270° 330°
Example 5 3sin cos2 2 3sin 1 2sin 2 = –2 2sin 2 3sin 1 = 0
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 7 of 23 Maths Extension – Trigonometry
2sin 1sin 1 = 0
sin 1 = 2 sin = –1 = 210°, = 270° 330°
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 8 of 23 Maths Extension – Trigonometry
Sums and Differences of angles sin = sin cos cos sin sin = sin cos cos sin cos = cos cos sin sin cos = cos cos sin sin tan tan tan = 1 tan tan tan tan tan = 1 tan tan
Double Angles sin 2 = 2sin cos cos2 = cos2 sin 2 = 1 2sin 2 = 2cos2 1 tan 2 2tan = 2 1 2tan
2 1 sin = 2 1 cos2 2 1 cos = 2 1 cos2
Triple Angles sin3 = 3sin 4sin3 cos3 = 4cos3 3cos 3tan tan3 tan3 = 1 3tan2
Half Angles sin = 2sin 2 cos 2 cos 2 2 = cos 2 sin 2 2 = 1 2sin 2 2 = 2cos 2 1
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 9 of 23 Maths Extension – Trigonometry tan 2tan 2 = 2 1 2tan 2
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 10 of 23 Maths Extension – Trigonometry
Deriving the Triple Angles sin3 = sin2 _ = sin 2 cos cos2 sin Normal double angle_ = 2sin cos cos 1 2sin2 sin Expand double angle_ = 2sin cos2 sin 2sin3 Multiply_ = 2sin 1 sin 2 sin 2sin3 Change sin 2 cos2 1 = 2sin 2sin3 sin 2sin3 _ = 3sin 4sin3 Simplify_ cos3 = cos2 = cos2 cos sin 2 sin = 2cos2 1cos 2sin cos sin = 2cos3 cos 2sin 2 cos = 2cos3 cos 21 cos2 cos = 2cos2 cos 2cos 2cos3 = 4cos3 3cos tan3 = tan2 tan 2 tan = 1 tan 2 tan 2 tan tan 1tan 2 = 1 2 tan tan 1tan 2 2 tan tan tan 3 1tan 2 = 1tan 2 2 tan 2 1tan 2 3 = 3tan tan 1 3tan2
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 11 of 23 Maths Extension – Trigonometry
T – Formulae Let t = tan 2 2t sin = 2 1 t 1 t 2 cos = 1 t 2 2t tan = 2 1 t sin = 2sin 2 cos 2 Using half angles 2sin 2 cos 2 _ = 2 2 cos 2 sin 2 Divide by “1” sin 2 cos2 1 2sin 2 cos 2 2 cos 2 = 2 2 cos 2 sin 2 2 cos 2 Divide top and bottom by cos2 2tan 2 = 2 1 tan 2 2t = 2 1 t cos sin ’ cancel; cos becomes tan cos cos2 sin 2 tan sin = 2 2 = 2 2 cos cos 2 sin 2 = cos2 sin2 2 2 2t 1t 2 = 1t 2 2 2 1t 2 cos 2 sin 2 2 cos 2 = cos2 sin 2 2t 2 2 = 2 2 1 t cos 2
2 1 tan 2 = 2 1 tan 2 2 = 1 t 1 t 2
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 12 of 23 Maths Extension – Trigonometry
Subsidiary Angle Formula asin x bcos x = R(sin xcos x cos xsin x) = Rsin xcos x Rcos xsin x
a 2 2 2 = Rcos x a = R cos x b = Rsin x b2 = R2 sin 2 x a2 b2 sin 2 x cos2 x 1 = R2
b R a2 b2 tan a asin x bcos x = C Rsin(x ) asin x bcos x = C Rsin(x ) acos x bsin x = C Rcos(x ) acos x bsin x = C Rcos(x )
Example 1 Find x. 3sin x cos x 1
1 R = 2 2 tan = 3 1 3 = 4 = 30° = 2 2sin(x 30) = 1 sin(x 30) 1 = 2 x 30 x = 30°, 150° = 60°, 180°
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 13 of 23 Maths Extension – Trigonometry
General Solutions of Trigonometric Equations sin sin Then n (1)n cos cos Then 2n tan tan Then n
Radians c = 180° c 1° = 180
Arcs, Sectors, Segments Arc Length l = r l
r θ
Area of Sector 1 2 A = 2 r
θ r
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 14 of 23 Maths Extension – Trigonometry
Area of Segment 1 2 A = 2 r sin Segment
θ r
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 15 of 23 Maths Extension – Trigonometry
Trigonometric Limits sin x tan x lim = lim = limcos x = 1 x0 x x0 x x0
Differentiation of Trigonometric Functions d sin x dx = cos x d sin f (x) dx = f '(x)cos f (x) d sin(ax b) dx = acos(ax b) d cos x dx = sin x d cos f (x) dx = f '(x)sin f (x) d cos(ax b) dx = asin(ax b) d tan x dx = sec2 x d tan f (x) dx = f '(x)sec2 f (x) d tan(ax b) dx = asec2 (ax b) d sec x dx = sec x.tan x d cosecx dx = cot x.cosecx d 2 cot x = cosec x dx
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 16 of 23 Maths Extension – Trigonometry
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 17 of 23 Maths Extension – Trigonometry
Integration of Trigonometric Functions
1 cosax dx = sin ax c a
1 sin ax dx = cosax c a
1 sec2 ax dx = tan ax c a
1 x sin 1 c 2 2 dx = a x a
1 x x cos1 c sin 1 c 2 2 dx = __OR__ a x a a
1 1 x tan1 c 2 2 dx = a x a a
1 cosec2ax dx = cot ax c a
1 secax.tan ax dx = secax c a
1 cosecax.cot ax dx = cosecax c a
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 18 of 23 Maths Extension – Trigonometry
Integration of sin 2 x and cos 2x cos2x = 2cos2 x 1 cos2x 1 = 2cos2 x 1 cos2x 1 2 = cos2 x cos2 x 1 cos2x 1 dx = 2 dx 1 1 = 2 2 sin 2x x C 1 1 = 4 sin 2x 2 x C
2 1 sin 2x 1 x C cos x dx = 4 2 cos2x = 1 sin 2 x 2 2sin x 1 cos2x 2 = sin x 1 = 2 1 cos2x sin 2 x 1 1 cos2x dx = 2 dx 1 1 = 2 x 2 sin 2x C 1 1 = 2 x 4 sin 2x C
2 1 x 1 sin 2x C sin x dx = 2 4
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 19 of 23 Maths Extension – Trigonometry
INVERSE TRIGNOMETRY Inverse Sin – Graph, Domain, Range, Properties
y 1 x 1 2
x y -2 2 2 2
2
sin 1(x) sin 1 x
Inverse Cos – Graph, Domain, Range, Properties y 1 x 1
0 y 2
x 0 -1 1
cos1(x) cos1 x
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 20 of 23 Maths Extension – Trigonometry
Inverse Tan – Graph, Domain, Range, Properties y 2 All real x 2
x y 2 2
2 -2
tan1(x) tan1 x
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 21 of 23 Maths Extension – Trigonometry
Differentiation of Inverse Trigonometric Functions d 1 sin1 x = dx 1 x2 d 1 sin1 x a = dx a2 x2 d f '(x) sin1 f (x) dx = 1[ f (x)]2 d 1 cos1 x = dx 1 x2 d 1 cos1 x a = dx a2 x2 d f '(x) cos1 f (x) dx = 1[ f (x)]2
d 1 1 tan x = 2 dx 1 x
d 1 x a tan a = 2 2 dx a x d f '(x) tan1 f (x) dx = a [ f (x)]2
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 22 of 23 Maths Extension – Trigonometry
Integration of Inverse Trigonometric Functions
1 x sin 1 c 2 2 dx = a x a
1 x x cos1 c sin 1 c 2 2 dx = __OR__ a x a a
1 1 x tan1 c 2 2 dx = a x a a
Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 23 of 23