Trigonometry and Inverse Trigonometry

Trigonometry and Inverse Trigonometry

<p> Maths Extension – Trigonometry</p><p>Trigonometry  Trigonometric Ratios  Exact Values & Triangles  Trigonometric Identities  All Silver Tea Cups rule  Trigonometric Graphs  Sine & Cosine Rules  Area of a Triangle  Trigonometric Equations  Sums and Differences of angles  Double Angles  Triple Angles  Half Angles  T – formula  Subsidiary Angle formula  General Solutions of Trigonometric Equations  Radians  Arcs, Sectors, Segments  Trigonometric Limits  Differentiation of Trigonometric Functions  Integration of Trigonometric Functions  Integration of sin2x and cos2x  INVERSE TRIGNOMETRY  Inverse Sin – Graph, Domain, Range, Properties  Inverse Cos – Graph, Domain, Range, Properties  Inverse Tan – Graph, Domain, Range, Properties  Differentiation of Inverse Trigonometric Functions  Integration of Inverse Trigonometric Functions</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 1 of 23 Maths Extension – Trigonometry</p><p>Trigonometric Ratios</p><p>θ hypotenuse hypotenuse e t t i n s e o c p a j p d o a θ adjacent opposite</p><p> opposite  Sine sin = hypotenuse adjacent  Cosine cos = hypotenuse opposite  Tangent tan = adjacent 1 hypotenuse Cosecant cosec = = sin opposite 1 hypotenuse Secant sec = = cos adjacent 1 adjacent Cotangent cot = = tan opposite sin = cos90   cos = sin90   tan = cot90   cosec = sec90   sec = cosec90   cot = tan90  </p><p>60 seconds = 1 minute 60’’ = 1’ 60 minutes = 1 degree 60’ = 1°</p><p> sin cos tan  cot  cos sin</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 2 of 23 Maths Extension – Trigonometry</p><p>Exact Values & Triangles</p><p>30° 2 1 3 2</p><p>45° 60° 1 1</p><p>0° 30° 60° 45° 90° 180° 1 3 1 sin 0 2 2 2 1 0 cos 3 1 1 1 2 2 2 0 –1 1 tan 0 3 3 1 –– 0 cos 2 ec –– 2 3 2 1 –– sec 2 1 3 2 2 –– –1 1 cot –– 3 3 1 0 ––</p><p>Trigonometric Identities sin 2   cos2  = 1 cos2  = 1 sin 2  sin 2  = 1 cos2 </p><p>1 cot2  = cosec2 cot 2  = cosec2 – 1 1 = cosec2 – cot 2 </p><p> tan2  1 = sec2  tan2  = sec2  1 1 = sec2   tan2 </p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 3 of 23 Maths Extension – Trigonometry</p><p>All Silver Tea Cups Rule</p><p>90° nd 2 Quadrant 1st Quadrant S A 180° 0 360 3rd Quadrant T C 4th Quadrant</p><p>270°</p><p>First Quadrant: All positive sin sin + cos cos + tan tan +</p><p>Second Quadrant: Sine positive sin180   sin + cos180   –cos – tan180   – tan –</p><p>Third Quadrant: Tangent positive sin180   –sin – cos180   –cos – tan180   tan +</p><p>Fourth Quadrant: Cosine positive sin360   –sin – cos360   cos + tan360   – tan –</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 4 of 23 Maths Extension – Trigonometry</p><p>Trigonometric Graphs</p><p>Sine & Cosine Rules Sine Rule: a b c sin A sin B sinC   OR   sin A sin B sinC a b c</p><p>A</p><p> b c</p><p>C B a</p><p>Cosine Rule: a 2  b 2  c 2  2bc cos A</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 5 of 23 Maths Extension – Trigonometry</p><p>A</p><p> b c</p><p> a Area of a Triangle 1 A  2 absinC  C is the angle  a & b are the two adjacent sides</p><p>C</p><p> b a</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 6 of 23 Maths Extension – Trigonometry</p><p>Trigonometric Equations  Check the domain eg. 0    360  Check degrees (0    360) or radians (0    2 )  If double angle, go 2 revolutions  If triple angle, go 3 revolutions, etc…  If half angles, go half or one revolution (safe side)</p><p>Example 1 1 Solve sin θ = 2 for 0    360 sin 1 = 2  = 30°, 150°</p><p>Example 2 1 Solve cos 2θ = 2 for 0    360 cos2 1 = 2 2 = 60°, 300°, 420°, 660°  = 30°, 150°, 210°, 330°</p><p>Example 3  Solve tan 2 = 1 for 0    360  tan 2 = 1  2 = 45°, 225°  = 90°</p><p>Example 4 sin 2  cos  0 2sin cos  cos = 0 cos 2sin 1 = 0</p><p> cos 1 = 0 sin =  2  = 90°,  = 210°, 270° 330°</p><p>Example 5 3sin  cos2  2 3sin  1 2sin 2   = –2 2sin 2   3sin 1 = 0</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 7 of 23 Maths Extension – Trigonometry</p><p>2sin 1sin 1 = 0</p><p> sin 1 =  2 sin = –1  = 210°,  = 270° 330°</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 8 of 23 Maths Extension – Trigonometry</p><p>Sums and Differences of angles sin    = sin cos   cos sin  sin    = sin cos   cos sin  cos    = cos cos   sin sin  cos    = cos cos   sin sin  tan  tan  tan    = 1 tan tan  tan  tan  tan    = 1 tan tan </p><p>Double Angles sin 2 = 2sin cos cos2 = cos2   sin 2  = 1 2sin 2  = 2cos2  1 tan 2 2tan = 2 1 2tan </p><p>2 1 sin  = 2 1 cos2  2 1 cos  = 2 1 cos2 </p><p>Triple Angles sin3 = 3sin  4sin3  cos3 = 4cos3   3cos 3tan  tan3  tan3 = 1 3tan2 </p><p>Half Angles sin   = 2sin 2 cos 2 cos 2  2  = cos 2  sin 2 2  = 1 2sin 2 2  = 2cos 2 1</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 9 of 23 Maths Extension – Trigonometry tan  2tan 2 = 2  1 2tan 2</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 10 of 23 Maths Extension – Trigonometry</p><p>Deriving the Triple Angles sin3 = sin2   _ = sin 2 cos  cos2 sin Normal double angle_ = 2sin cos cos  1 2sin2  sin Expand double angle_ = 2sin cos2   sin  2sin3  Multiply_ = 2sin 1 sin 2   sin  2sin3 Change sin 2   cos2   1 = 2sin  2sin3  sin  2sin3  _ = 3sin  4sin3  Simplify_ cos3 = cos2   = cos2 cos  sin 2 sin = 2cos2  1cos  2sin cos sin = 2cos3   cos  2sin 2  cos = 2cos3   cos  21 cos2  cos = 2cos2   cos  2cos  2cos3  = 4cos3   3cos tan3 = tan2   tan 2  tan = 1 tan 2 tan 2 tan   tan 1tan 2  = 1 2 tan  tan  1tan 2  2 tan  tan  tan 3  1tan 2  = 1tan 2  2 tan 2  1tan 2  3 = 3tan  tan  1 3tan2 </p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 11 of 23 Maths Extension – Trigonometry</p><p>T – Formulae  Let t = tan 2 2t sin = 2 1 t 1 t 2 cos = 1 t 2 2t tan = 2 1 t sin   = 2sin 2 cos 2 Using half angles   2sin 2 cos 2 _ = 2  2  cos 2  sin 2 Divide by “1” sin 2   cos2   1   2sin 2 cos 2 2  cos 2 = 2  2  cos 2  sin 2 2  cos 2 Divide top and bottom by cos2   2tan 2 = 2  1 tan 2 2t = 2 1 t cos sin ’ cancel; cos becomes tan cos cos2   sin 2  tan sin = 2 2 = 2  2  cos cos 2  sin 2 = cos2   sin2  2 2 2t 1t 2 = 1t 2 2 2   1t 2 cos 2  sin 2 2  cos 2 = cos2   sin 2  2t 2 2 = 2 2  1 t cos 2</p><p>2  1 tan 2 = 2  1 tan 2 2 = 1 t 1 t 2</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 12 of 23 Maths Extension – Trigonometry</p><p>Subsidiary Angle Formula asin x  bcos x = R(sin xcos x  cos xsin x) = Rsin xcos x  Rcos xsin x</p><p> a 2 2 2 = Rcos x  a = R cos x b = Rsin x b2 = R2 sin 2 x a2  b2 sin 2 x  cos2 x  1 = R2</p><p> b R  a2  b2 tan  a asin x  bcos x = C Rsin(x ) asin x  bcos x = C Rsin(x ) acos x  bsin x = C Rcos(x ) acos x  bsin x = C Rcos(x )</p><p>Example 1 Find x. 3sin x  cos x  1</p><p>1 R = 2 2 tan = 3 1 3 = 4  = 30° = 2 2sin(x  30) = 1 sin(x  30) 1 = 2 x  30 x = 30°, 150° = 60°, 180°</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 13 of 23 Maths Extension – Trigonometry</p><p>General Solutions of Trigonometric Equations sin  sin Then   n  (1)n cos  cos Then   2n  tan  tan Then   n </p><p>Radians  c = 180° c 1° =  180</p><p>Arcs, Sectors, Segments Arc Length l = r l</p><p> r θ</p><p>Area of Sector 1 2 A = 2 r </p><p>θ r</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 14 of 23 Maths Extension – Trigonometry</p><p>Area of Segment 1 2 A = 2 r   sin  Segment</p><p>θ r</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 15 of 23 Maths Extension – Trigonometry</p><p>Trigonometric Limits sin x tan x lim = lim = limcos x = 1 x0 x x0 x x0</p><p>Differentiation of Trigonometric Functions d sin x dx = cos x d sin f (x) dx = f '(x)cos f (x) d sin(ax  b) dx = acos(ax  b) d cos x dx =  sin x d cos f (x) dx =  f '(x)sin f (x) d cos(ax  b) dx =  asin(ax  b) d tan x dx = sec2 x d tan f (x) dx = f '(x)sec2 f (x) d tan(ax  b) dx = asec2 (ax  b) d sec x dx = sec x.tan x d cosecx dx =  cot x.cosecx d 2 cot x =  cosec x dx</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 16 of 23 Maths Extension – Trigonometry</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 17 of 23 Maths Extension – Trigonometry</p><p>Integration of Trigonometric Functions</p><p>1 cosax dx = sin ax  c  a</p><p>1 sin ax dx =  cosax  c  a</p><p>1 sec2 ax dx = tan ax  c  a</p><p>1  x  sin 1  c  2 2 dx =   a  x  a </p><p>1  x   x   cos1  c  sin 1  c  2 2 dx =   __OR__   a  x  a   a </p><p>1 1  x  tan1  c 2 2 dx =    a  x a  a </p><p>1 cosec2ax dx =  cot ax  c  a</p><p>1 secax.tan ax dx = secax  c  a</p><p>1 cosecax.cot ax dx =  cosecax  c  a</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 18 of 23 Maths Extension – Trigonometry</p><p>Integration of sin 2 x and cos 2x cos2x = 2cos2 x 1 cos2x 1 = 2cos2 x 1 cos2x 1 2 = cos2 x cos2 x 1 cos2x 1  dx = 2   dx 1 1 = 2 2 sin 2x  x C 1 1 = 4 sin 2x  2 x  C</p><p>2 1 sin 2x  1 x  C cos x dx = 4 2 cos2x = 1 sin 2 x 2 2sin x 1 cos2x 2 = sin x 1 = 2 1 cos2x sin 2 x 1 1 cos2x  dx = 2   dx 1 1 = 2 x  2 sin 2x C 1 1 = 2 x  4 sin 2x  C</p><p>2 1 x  1 sin 2x  C sin x dx = 2 4</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 19 of 23 Maths Extension – Trigonometry</p><p>INVERSE TRIGNOMETRY Inverse Sin – Graph, Domain, Range, Properties</p><p> y 1  x  1  2</p><p> x     y  -2 2 2 2</p><p>  2</p><p> sin 1(x)  sin 1 x</p><p>Inverse Cos – Graph, Domain, Range, Properties y 1  x  1 </p><p> 0  y   2</p><p> x 0 -1 1</p><p> cos1(x)    cos1 x</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 20 of 23 Maths Extension – Trigonometry</p><p>Inverse Tan – Graph, Domain, Range, Properties y 2  All real x 2</p><p> x     y  2 2</p><p>  2 -2</p><p> tan1(x)   tan1 x</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 21 of 23 Maths Extension – Trigonometry</p><p>Differentiation of Inverse Trigonometric Functions d 1 sin1 x = dx 1 x2 d 1 sin1 x  a  = dx a2  x2 d f '(x) sin1 f (x) dx = 1[ f (x)]2 d 1 cos1 x =  dx 1 x2 d 1 cos1 x   a  = dx a2  x2 d f '(x) cos1 f (x)  dx = 1[ f (x)]2</p><p> d 1 1 tan x = 2 dx 1 x</p><p> d 1 x a tan a  = 2 2 dx a  x d f '(x) tan1 f (x) dx = a  [ f (x)]2</p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 22 of 23 Maths Extension – Trigonometry</p><p>Integration of Inverse Trigonometric Functions</p><p>1  x  sin 1  c  2 2 dx =   a  x  a </p><p>1  x   x   cos1  c  sin 1  c  2 2 dx =   __OR__   a  x  a   a </p><p>1 1  x  tan1  c 2 2 dx =    a  x a  a </p><p>Addu High School/Department of Mathematics/Resources/Math-ebook_Trigonometry Page 23 of 23</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us