Halymeniaceae, Rhodophyta) in Bermuda, Western Atlantic Ocean, Including Five New Species and C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE SPIDERS of PORTUGAL: SOME ADDITIONS to the CURRENT CHECKLIST (ARANEAE) Gillian Telfer, Robert Bosmans, Antonio Melic & Francisco Rego
ARTÍCULO: THE SPIDERS OF PORTUGAL: SOME ADDITIONS TO THE CURRENT CHECKLIST (ARANEAE) Gillian Telfer, Robert Bosmans, Antonio Melic & Francisco Rego Abstract In the present paper 23 new additions to the current checklist for Portuguese spiders are listed, and localities given. Key words: Araneae, checklist, Portugal. Adiciones al catálogo de arañas de Portugal (Araneae) Resumen Se presentan 23 novedades para la Checklist de arañas de Portugal. ARTÍCULO: Palabras clave: Araneae, checklist, Portugal. The spiders of Portugal: some additions to the current checklist (Araneae) Introduction Gillian Telfer Centro de Ecologia Aplicada Since the works of Bacelar (e.g. 1927a, 1927b, 1928, 1933, 1935, 1936, 1940) and “Prof. Baeta Neves”, Instituto Machado (e.g. 1937, 1941, 1949) in the early 20th century, little attention has been Superior de Agronomia, Tapada paid to the arachnofauna of Portugal. Fortunately research in this Order has da Ajuda, Lisbon, Portugal, [email protected]; increased in the past decade or so, and at present the current number of species of spiders reported in Portugal stands at 660 (Alderweireldt & Bosmans, 2001; Robert Bosmans, Laboratorium voor Ecologie, Bosmans, 1993; Cardoso, unpublished; Ferrández, 1985, 1990). This number, Ledeganckstraat 35, however, is thought to be a severe underestimation of the true figure. It is hoped that 9000 Gent, Belgium the present increased collecting intensity will rectity this. Antonio Melic The spiders presented in this paper were obtained from collections made from Avenida Radio Juventud, 37, various shrubland and forest areas found within the Council of Mafra, in the 50012 Zaragoza, Spain. Estremadura province of north-western Portugal. The localities within the Council Francisco Rego boundaries are identified along with the date of capture and a brief description of Centro de Ecologia Aplicada the main vegetation type of the habitat. -
Acanthophora Dendroides Harvey (Rhodomelaceae), a New Record for the Atlantic and Pacific Oceans
15 3 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (3): 509–514 https://doi.org/10.15560/15.3.509 Acanthophora dendroides Harvey (Rhodomelaceae), a new record for the Atlantic and Pacific oceans Gabriela C. García-Soto, Juan M. Lopez-Bautista The University of Alabama, Department of Biological Sciences, Science and Engineering Complex, 1325 Hackberry Ln, Tuscaloosa, AL 35401, USA. Corresponding author: Gabriela García-Soto, [email protected] Abstract We record Acanthophora dendroides Harvey for the first time in the Atlantic Ocean. Two specimens from the Philip- pines were resolved as conspecific to the Atlantic A. dendroides in molecular analyses extending its geographic range to the Philippines. In light of new evidence provided by field-collected specimens ofAcanthophora spicifera (M.Vahl) Børgesen (generitype) from Florida and Venezuela, the flattened species A. pacifica(Setchell) Kraft, showed no affin- ity to Acanthophora sensu stricto, suggesting that the genus should be restricted to cylindrical species only. Key words Atlantic Ocean, Philippines, taxonomy. Academic editor: Luciane Fontana da Silva | Received 8 October 2018 | Accepted 21 January 2019 | Published 21 June 2019 Citation: García-Soto GC, Lopez-Bautista JM (2019) Acanthophora dendroides Harvey (Rhodomelaceae), a new record for the Atlantic and Pacific oceans. Check List 15 (3): 509–514. https://doi.org/10.15560/15.3.509 Introduction Kraft are restricted to the Pacific Ocean (Guiry and Guiry 2018), A. dendroides Harvey to the Indian Ocean The genus Acanthophora J.V. Lamouroux 1813 is a (Silva et al. 1996) and A. ramulosa Lindenb. ex. Kutz- member of the tribe Chondrieae and it is distinguished from other genera of the tribe by the presence of spirally ing appears to be confined to the Gulf of Guinea in West arranged acute spines (Gordon-Mills and Womersley Africa (Steentoft 1967). -
What Are Komatiites?
What are komatiites? John Stanley Komatiites are widespread rocks with a spinifex texture (spinifex is a grass, which the texture of komatiites resembles) that occur in ancient shields of 3.7 to 1.8 billion years (Ga) plus an example at Gorgona Island at 88Ma. The type locality is the Komati Formation in the Barberton greenstone belt of South Africa, ultrabasic intrusives and lava flows with up to 25-29% MgO and generally over 18% and an extrusion temperature of 1,600oC. Recent studies reinterpret Barberton komatiites as shallow intrusives derived from hydrous liquids (4-6% H2O), with lower liquidus temperatures (1370-1400°C). The main minerals are olivine (forsterite 90%+, fayalite 10%), pyroxene that is calcic and often chromic (augite), plagioclase feldspar (anorthite 85%, albite 15%), chromite and Fe/Cr mixed oxides. Minor minerals include pargasitic amphibole with >20% MgO, phlogopite mica, baddeleyite, ilmenite and pyrope garnet. First recognised in the 1960s, they compare with modern basalts, none of which have more than 9%MgO and none have a spinifex texture. They provide an insight into: The early volcanic history of the earth; The geochemical and thermal structure of the Archaean mantle; the formation of Fe, Ni and Cu sulphide ore deposits: and the source of diamonds. The nature of some extraterrestrial lava flows on the moon and Mars In the early Hadean, prior to ocean formation, at 4.56-3.80Ga, plate tectonics had not started as everything was molten and anything that solidified sank and converted to eclogite. Oceans formed by 4.40Ga. Evolution of the accreted proto-crust led to the formation of granite and by the late Archaean (about 2.5Ga) plate tectonics started. -
Ribosomal Dna Phylogeny of the Bangiophycidae (Rhodophyta) and the Origin of Secondary Plastids1
American Journal of Botany 88(8): 1390±1400. 2001. RIBOSOMAL DNA PHYLOGENY OF THE BANGIOPHYCIDAE (RHODOPHYTA) AND THE ORIGIN OF SECONDARY PLASTIDS1 KIRSTEN M. MUÈ LLER,2,6 MARIANA C. OLIVEIRA,3 ROBERT G. SHEATH,2 AND DEBASHISH BHATTACHARYA4,5 2Department of Botany and Dean's Of®ce, University of Guelph, Guelph, Ontario, Canada, N1G 2W1; 3Department of Botany, Institute of Biosciences, University of SaÄo Paulo, R. MataÄo, Travessa 14, N. 321, SaÄo Paulo, SP, Brazil, CEP 05508-900; and 4Department of Biological Sciences, University of Iowa, 239 Biology Building, Iowa City, Iowa 52242-3110 USA We sequenced the nuclear small subunit ribosomal DNA coding region from 20 members of the Bangiophycidae and from two members of the Florideophycidae to gain insights into red algal evolution. A combined alignment of nuclear and plastid small subunit rDNA and a data set of Rubisco protein sequences were also studied to complement the understanding of bangiophyte phylogeny and to address red algal secondary symbiosis. Our results are consistent with a monophyletic origin of the Florideophycidae, which form a sister-group to the Bangiales. Bangiales monophyly is strongly supported, although Porphyra is polyphyletic within Bangia. Ban- giophycidae orders such as the Porphyridiales are distributed over three independent red algal lineages. The Compsopogonales sensu stricto, consisting of two freshwater families, Compsopogonaceae and Boldiaceae, forms a well-supported monophyletic grouping. The single taxon within the Rhodochaetales, Rhodochaete parvula, is positioned within a cluster containing members of the Erythropelti- dales. Analyses of Rubisco sequences show that the plastids of the heterokonts are most closely related to members of the Cyanidiales and are not directly related to cryptophyte and haptophyte plastid genomes. -
Rhodophyta, Nemastomatales) from Its Type Locality Author(S): Craig W
Notes on the Marine Algae of the Bermudas. 12. A phylogenetic Assessment of Nemastoma gelatinosum M. Howe (Rhodophyta, Nemastomatales) from its Type Locality Author(s): Craig W. Schneider , Daniel C. McDevit , Gary W. Saunders & Christopher E. Lane Source: Cryptogamie, Algologie, 32(4):313-325. 2012. Published By: Association des Amis des Cryptogames DOI: http://dx.doi.org/10.7872/crya.v32.iss4.2011.313 URL: http://www.bioone.org/doi/full/10.7872/crya.v32.iss4.2011.313 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Cryptogamie, Algologie, 2011, 32 (4): 313-325 © 2011 Adac. Tous droits réservés Notes on the marine algae of the Bermudas. 12. A phylogenetic -
Refinements for the Amplification and Sequencing of Red Algal DNA Barcode and Redtol Phylogenetic Markers: a Summary of Current Primers, Profiles and Strategies
Review Algae 2013, 28(1): 31-43 http://dx.doi.org/10.4490/algae.2013.28.1.031 Open Access Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies Gary W. Saunders1,* and Tanya E. Moore1 1Centre for Environmental and Molecular Algal Research, Department of Biology, University of New Brunswick, Frederic- ton, NB E3B 5A3, Canada This review provides a comprehensive summary of the PCR primers and profiles currently in use in our laboratory for red algal DNA barcoding and phylogenetic research. While work focuses on florideophyte taxa, many of the markers have been applied successfully to the Bangiales, as well as other lineages previously assigned to the Bangiophyceae sensu lato. All of the primers currently in use with their respective amplification profiles and strategies are provided, which can include full fragment, overlapping fragments and what might best be called “informed overlapping fragments”, i.e., a fragment for a marker is amplified and sequenced for a taxon and those sequence data are then used to identify the best primers to amplify the remaining fragment(s) for that marker. We extend this strategy for the more variable markers with sequence from the external PCR primers used to “inform” the selection of internal sequencing primers. This summary will hopefully serve as a useful resource to systematists in the red algal community. Key Words: DNA barcode; Florideophyceae; molecular markers; phylogeny; polymerase chain reaction; primers; RedToL INTRODUCTION There can be little question that molecular techniques redtol/) (Vis et al. 2010). -
Minerals with a French Connection. the Canadian
Eur. J. Mineral. Book Review 2019, 31, 195–196 Review of F. Fontan and R.F. Martin (2017): Minerals with a French Connection. The Canadian Mineralogist Special Publication 13, joint publication of the Mineralogical Association of Canada (Quebec, Canada) and the Société française de Minéralogie et de Cristallographie (Paris, France). ISBN: 978-0-921294-59-7 and 978-2-903589-08-0, x + 577 p., € 72 (in Europe), US$ 125 (outside Canada), Can$ 125 (in Canada). Herwig PELCKMANS, Mineralogical Society of Antwerp (MKA) – [email protected] A good meal takes time, and so did this book. Nevertheless, when I remembered aerinite was first found in Spain. Apparently the mineral finallyhelditinmyhands,Iwasimpressed. Not only by its weight was poorly defined and thought to be a mixture, until new specimens (almost 5 pounds), but also by the 588 pages of glossy paper in full were found in situ in France. Since that neotype material was used to letter size that were nicely bound in a solid hard cover with a pleas- revalidate the species, aerinite “earned” its rightful place in this book. ant feel. Time to sit down, relax and give the book a close-up view. Adamite is the first in the list of minerals named after French citi- The table of contents in the beginning of the book immediately zens. Not because the authors think the first man on earth had French shows the major sections: connections, but because the mineral was named after Gilbert-Joseph Adam (1795–1881), an important French mineral collector. It is good Préface – Preface p. -
Red and Green Algal Monophyly and Extensive Gene
Please cite this article in press as: Chan et al., Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Reper- toire of Red Algal Genes, Current Biology (2011), doi:10.1016/j.cub.2011.01.037 Current Biology 21, 1–6, February 22, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.01.037 Report Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes Cheong Xin Chan,1,5 Eun Chan Yang,2,5 Titas Banerjee,1 sequences in our local database, in which we included the Hwan Su Yoon,2,* Patrick T. Martone,3 Jose´ M. Estevez,4 23,961 predicted proteins from C. tuberculosum (see Table and Debashish Bhattacharya1,* S1 available online). Of these hits, 9,822 proteins (72.1%, 1Department of Ecology, Evolution, and Natural Resources including many P. cruentum paralogs) were present in C. tuber- and Institute of Marine and Coastal Sciences, Rutgers culosum and/or other red algae, 6,392 (46.9%) were shared University, New Brunswick, NJ 08901, USA with C. merolae, and 1,609 were found only in red algae. A total 2Bigelow Laboratory for Ocean Sciences, West Boothbay of 1,409 proteins had hits only to red algae and one other Harbor, ME 04575, USA phylum. Using this repertoire, we adopted a simplified recip- 3Department of Botany, University of British Columbia, 6270 rocal BLAST best-hits approach to study the pattern of exclu- University Boulevard, Vancouver, BC V6T 1Z4, Canada sive gene sharing between red algae and other phyla (see 4Instituto de Fisiologı´a, Biologı´a Molecular y Neurociencias Experimental Procedures). -
Diversity and Evolution of Algae: Primary Endosymbiosis
CHAPTER TWO Diversity and Evolution of Algae: Primary Endosymbiosis Olivier De Clerck1, Kenny A. Bogaert, Frederik Leliaert Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 56 1.1. Early Evolution of Oxygenic Photosynthesis 56 1.2. Origin of Plastids: Primary Endosymbiosis 58 2. Red Algae 61 2.1. Red Algae Defined 61 2.2. Cyanidiophytes 63 2.3. Of Nori and Red Seaweed 64 3. Green Plants (Viridiplantae) 66 3.1. Green Plants Defined 66 3.2. Evolutionary History of Green Plants 67 3.3. Chlorophyta 68 3.4. Streptophyta and the Origin of Land Plants 72 4. Glaucophytes 74 5. Archaeplastida Genome Studies 75 Acknowledgements 76 References 76 Abstract Oxygenic photosynthesis, the chemical process whereby light energy powers the conversion of carbon dioxide into organic compounds and oxygen is released as a waste product, evolved in the anoxygenic ancestors of Cyanobacteria. Although there is still uncertainty about when precisely and how this came about, the gradual oxygenation of the Proterozoic oceans and atmosphere opened the path for aerobic organisms and ultimately eukaryotic cells to evolve. There is a general consensus that photosynthesis was acquired by eukaryotes through endosymbiosis, resulting in the enslavement of a cyanobacterium to become a plastid. Here, we give an update of the current understanding of the primary endosymbiotic event that gave rise to the Archaeplastida. In addition, we provide an overview of the diversity in the Rhodophyta, Glaucophyta and the Viridiplantae (excluding the Embryophyta) and highlight how genomic data are enabling us to understand the relationships and characteristics of algae emerging from this primary endosymbiotic event. -
Journal of Pharmacology and Toxicological Studies
e-ISSN: 2319-9873 p-ISSN: 2347-2324 Research & Reviews: Journal of Pharmacology and Toxicological Studies A Short Study on Phylogenetics Indu Sama* Department of plant Pathology and forest genetics, Bharat University, India Review Article ABSTRACT Received: 06/09/2016 Accepted : 09/09/2016 Published: 12/09/2016 In science, phylogenetics is the investigation of transformative *For Correspondence connections among gatherings of life forms (e.g. species,populations), which are found through atomic sequencing information and morphological information grids. The term phylogeneticsderives from the Greek Department of plant Pathology expressions phylé (φυλή) and phylon (φῦλον), meaning "tribe", "faction", and forest genetics, Bharat "race" and the descriptive structure, genetikós(γενετικός), of the word University, India genesis (γένεσις) "source", "source", "conception". Indeed, phylogenesis is the procedure, phylogeny is science on this procedure, and phylogenetics is E-mail: [email protected] phylogeny in view of examination of successions of organic macromolecules (DNA, RNA and proteins, in the first). The consequence of phylogenetic Keywords: Phylogenetics, studies is a speculation about the developmental history of taxonomic Devolopment, Computation gatherings: their phylogeny. INTRODUCTION Development is a procedure whereby populaces are modified over the long run and may part into particular branches, hybridize together, or end by elimination [1 -15]. The transformative expanding procedure may be portrayed as a phylogenetic tree, and the spot of each of the different living beings on the tree is in view of a speculation about the arrangement in which developmental spreading occasions happened. Inhistorical phonetics, comparative ideas are utilized regarding connections in the middle of dialects; and in literary feedback withstemmatics [15-25]. -
Notes on the Marine Algae of the Bermudas
University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 2007 Notes on the Marine Algae of the Bermudas. 8. Further Additions to the Flora, Including Griffithsia aestivana sp. nov. (Ceramiaceae, Rhodophyta) and an Update on the Alien Cystoseira compressa (Sargassaceae, Heterokontophyta) Craig W. Schneider Christopher E. Lane University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution C. W. Schneider & C. E. Lane. 2007. Notes on the marine algae of the Bermudas. 8. Further additions to the flora including Griffithsia aestivana sp. nov. (Ceramiaceae, Rhodophyta) and an update on the alien Cystoseira compressa (Sargassaceae, Heterokontophyta). Botanica Marina. 50:128-140. DOI 10.1515/BOT.2007.015 This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Article in press - uncorrected proof Botanica Marina 50 (2007): 128–140 ᮊ 2007 by Walter de Gruyter • Berlin • New York. DOI 10.1515/BOT.2007.015 Notes on the marine algae of the Bermudas. 8. Further additions to the flora, including Griffithsia aestivana sp. nov. (Ceramiaceae, Rhodophyta) and an update on the alien Cystoseira compressa (Sargassaceae, Heterokontophyta) Craig W. Schneider1,* and Christopher E. Lane2 muda have been re-collected and established as mem- bers of the flora. One, Cystoseria compressa (Esper) 1 Department of Biology, Trinity College, Hartford, Gerloff et Nizamuddin, an alien Mediterranean species CT 06106-3100, USA, that was introduced to the islands in the 1960s (Taylor e-mail: [email protected] 1961), has established a sizable population on the south 2 Department of Biochemistry and Molecular Biology, shore of Bermuda Island. -
Review Komatiites: from Earth's Geological Settings to Planetary
Running Head: Komatiites: geological settings to astrobiological contexts Review Komatiites: From Earth’s Geological Settings to Planetary and Astrobiological Contexts Delphine Nna-Mvondo1 and Jesus Martinez-Frias1 1 Planetary Geology Laboratory, Centro de Astrobiologia (CSIC/INTA), associated to NASA Astrobiology Institute, Ctra. De Ajalvir, km 4. 28850 Torrejon de Ardoz, Madrid, Spain. Correspondence: Laboratorio de Geología Planetaria, Centro de Astrobiología (CSIC/INTA), associated to NASA Astrobiology Institute, Instituto Nacional de Técnica Aeroespacial, Ctra. De Ajalvir, km 4. 28850 Torrejón de Ardoz, Madrid, Spain. Phone: +34 915206434 Fax: +34 915201074 E-mail: [email protected] 1 ABSTRACT Komatiites are fascinating volcanic rocks. They are among the most ancient lavas of the Earth following the 3.8 Ga pillow basalts at Isua and they represent some of the oldest ultramafic magmatic rocks preserved in the Earth’s crust at 3.5 Ga. This fact, linked to their particular features (high magnesium content, high melting temperatures, low dynamic viscosities, etc.), has attracted the community of geoscientists since their discovery in the early sixties, who have tried to determine their origin and understand their meaning in the context of terrestrial mantle evolution. In addition, it has been proposed that komatiites are not restricted to our planet, but they could be found in other extraterrestrial settings in our Solar System (particularly on Mars and Io). It is important to note that komatiites may be extremely significant in the study of the origins and evolution of Life on Earth. They not only preserve essential geochemical clues of the interaction between the pristine Earth rocks and atmosphere, but also may have been potential suitable sites for biological processes to develop.