On Some Species of Heteroptera Collected in the Madeiran Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. -
Hymenoptera) of Meghalaya with Special Reference to Encyrtidae, Mymaridae and Aphelinidae
Journal of Biological Control, 29(2): 49-61, 2015 Research Article Additions to the Chalcidoidea (Hymenoptera) of Meghalaya with special reference to Encyrtidae, Mymaridae and Aphelinidae A. RAMESHKUMAR*, J. POORANI and V. NAVEEN Division of Insect Systematics, ICAR-National Bureau of Agricultural Insect Resources, H. A. Farm post, Bellary road, Hebbal, Bangalore - 560024, Karnataka. *Corresponding author E-mail: [email protected] ABSTRACT: Encyrtidae, Mymaridae and Aphelinidae were surveyed from Ri-Bhoi, Jaintia hills, East Khasi hills, and West Khasi hills districts of Meghalaya in 2013. New distribution records of 55 genera and 61 species of encyrtids, mymarids aphelinids and eucharitids for Meghalaya state are documented. KEY WORDS: Encyrtidae, Mymaridae, Aphelinidae, distributional records, India, Meghalaya (Article chronicle: Received: 01-06-2015; Revised: 21-06-2015; Accepted: 23-06-2015) INTRODUCTION composite images were obtained from image stacks using Combine ZP. The images were arranged in plates in Adobe Studies on the Chalcidoidea fauna of Meghalaya are Photoshop Elements 11. very limited and the state has not been systematically sur- veyed for encyrtids, mymarids and aphelinids though they RESULTS AND DISCUSSION play an important role in natural and applied biological control. Hayat and his co-workers have contributed to the During the survey, 950 specimens of chalcidoids and known fauna of Meghalaya (Hayat, 1998; Hayat, 2006; Ka- other parasitoids were collected. Twenty two species repre- zmi and Hayat, 2012; Zeya and Hayat, 1995). We surveyed senting 16 genera of mymarids, 30 species representing 28 four districts of Meghalaya in 2013 for Chalcidoidea with genera of encyrtids, 10 genera and 8 species of aphelinids particular reference to Encyrtidae, Aphelinidae and My- and Orasema initiator Kerrich of eucharitid are reported maridae and documented several taxa new to the state. -
Biological Control of Insect Pests in the Tropics - M
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. III - Biological Control of Insect Pests In The Tropics - M. V. Sampaio, V. H. P. Bueno, L. C. P. Silveira and A. M. Auad BIOLOGICAL CONTROL OF INSECT PESTS IN THE TROPICS M. V. Sampaio Instituto de Ciências Agrária, Universidade Federal de Uberlândia, Brazil V. H. P. Bueno and L. C. P. Silveira Departamento de Entomologia, Universidade Federal de Lavras, Brazil A. M. Auad Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária, Brazil Keywords: Augmentative biological control, bacteria, classical biological control, conservation of natural enemies, fungi, insect, mite, natural enemy, nematode, predator, parasitoid, pathogen, virus. Contents 1. Introduction 2. Natural enemies of insects and mites 2.1. Entomophagous 2.1.1. Predators 2.1.2. Parasitoids 2.2. Entomopathogens 2.2.1. Fungi 2.2.2. Bacteria 2.2.3. Viruses 2.2.4. Nematodes 3. Categories of biological control 3.1. Natural Biological Control 3.2. Applied Biological Control 3.2.1. Classical Biological Control 3.2.2. Augmentative Biological Control 3.2.3. Conservation of Natural Enemies 4. Conclusions Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Biological control is a pest control method with low environmental impact and small contamination risk for humans, domestic animals and the environment. Several success cases of biological control can be found in the tropics around the world. The classical biological control has been applied with greater emphasis in Australia and Latin America, with many success cases of exotic natural enemies’ introduction for the control of exotic pests. Augmentative biocontrol is used in extensive areas in Latin America, especially in the cultures of sugar cane, coffee, and soybeans. -
Дисертація Таксономія, Екологія Та Біономія Наземних Напівтвердокрилих (Hemiptera, Heteroptera) Урбоценозів Мегаполісу
Міністерство освіти і науки України Харківський національний педагогічний університет імені Г.С. Сковороди Кваліфікаційна наукова праця на правах рукопису ФЕДЯЙ ІРИНА ОЛЕКСАНДРІВНА УДК 595.504.06+504.75:574 ДИСЕРТАЦІЯ ТАКСОНОМІЯ, ЕКОЛОГІЯ ТА БІОНОМІЯ НАЗЕМНИХ НАПІВТВЕРДОКРИЛИХ (HEMIPTERA, HETEROPTERA) УРБОЦЕНОЗІВ МЕГАПОЛІСУ спеціальність 091 Біологія Подається на здобуття наукового ступеня доктора філософії Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело _____________________ І.О. Федяй Науковий керівник: Маркіна Тетяна Юріївна, доктор біологічних наук, професор Харків – 2020 2 АНОТАЦІЯ Федяй І.О. Таксономія, екологія та біономія наземних напівтвердокрилих (Hemiptera, Heteroptera) урбоценозів мегаполісу – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня доктора філософії за спеціальністю 091 – «Біологія». Харківський національний педагогічний університет імені Г.С. Сковороди, Харків, 2020. Робота присвячена вивченню однієї з домінантних та своєрідних складових ентомофауни України, представникам підряду напівтвердокрилі (Heteroptera) в межах урбоценозів мегаполісу. За останні 30 років відомості щодо видового складу та екологічних особливостей багатьох видів клопів у природних екосистемах вкрай фрагментарні. Трансформовані екосистеми міст залишаються взагалі не вивченими, що зумовило актуальність проведення даного дослідження. У роботі застосовано методи комплексних екологічних, ентомологічних досліджень, -
Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1. -
(Hemiptera-Heteroptera: Notonectidae) of the ORIENTAL REGION
Pacific Insects 10(2): 353-442 20 August 1968 THE ENITHARES (Hemiptera-Heteroptera: Notonectidae) OF THE ORIENTAL REGION By I. Lansbury HOPE DEPARTMENT OF ENTOMOLOGY, UNIVERSITY MUSEUM, OXFORD Abstract: This paper redescribes most of the species recorded from the Oriental Region. Keys to both sexes are given. Fifteen species and 1 subspecies are described for the first time. Five species are placed in synonymy and three previously described species have proved unrecognisable. This paper embodies the results of a study of the Oriental species of the genus Enithares. The main purpose being to collate the scattered descriptions and information concerning this genus. The geographical scope is limited to those species occurring east of the 60° of longitude. African, Mascarene and American species are excluded. No phylogenetic speculation is implied in any part of this paper. Wherever possible types have been examined in order to fix the species. In a few cases where types are no longer extant or available for study, I have utilized 'compared' specimens or the concept of the last reviewer. Full details are given under the relevant species. Acknowledgments: Many people have assisted in the preparation of this paper. In particular, I am deeply indebted to Dr G. Byers of the University of Kansas for making available to me a copy of G.T. Brooks unpublished thesis on Enithares. To Miss S. Na kata and Dr P. D. Ashlock of the Bishop Museum, Honolulu for the very large collection of un-named material sent to me. A glance at the location of many of the types of new species will show how valuable their contribution has been. -
Adult Nepidae of Florida
Graduate Student Project – Insect Classification – ENY 6166 University of Florida - Kendra Pesko - December 8, 2004 Adult Nepidae of Florida The family Nepidae, common name “waterscorpions”, is an aquatic insect family in the order Hemiptera (suborder Heteroptera). Of 13 species and three genera known throughout the United States and Canada, only five species in one genus (Ranatra) occur in Florida. Ranatra species are found in aquatic vegetation and debris, and can be collected by sweeping an aquatic net through vegetation along the edges of lakes. They will cling to emergent vegetation such as cattails to hide during the day, and return to the water surface at night. Ranatra species also make night time flights in order to colonize new areas, and will often end up on car windshields, which they may mistake for open water. Nepidae are unique among water bugs in possessing a stridulatory mechanism which consists of serrations on their fore-coxal cavity that contact coarse ridges which appear to be sclerotized setae. Both nymphs and adults of Ranatra possess these structures. Checklist of Species of Florida Ranatra Fabricius (Hemiptera: Heteroptera: Nepidae) R. australis Hungerford R. buenoi Hungerford R.drakei Hungerford R. kirkaldyi Torre-Bueno R. nigra Herrich-Schaeffer Key to Species of Adult Florida Nepidae (adapted from Sites and Polhemus 1994) 1. Prothorax with mid-ventral hollow groove (fig. 6)…Ranatra buenoi Hungerford 1’. Prothorax without mid-ventral hollow groove, but may be ventrally flattened or have a paired ventro-lateral longitudinal depressed lines .........................................................2 2. Penultimate antennal segment with lateral projection absent or if present, < ½ length of terminal antennal segment (Figs. -
Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183 -
An Annotated Catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha)
Zootaxa 3845 (1): 001–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3845.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C77D93A3-6AB3-4887-8BBB-ADC9C584FFEC ZOOTAXA 3845 An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) HASSAN GHAHARI1 & FRÉDÉRIC CHÉROT2 1Department of Plant Protection, Shahre Rey Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected] 2DEMNA, DGO3, Service Public de Wallonie, Gembloux, Belgium, U. E. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Malipatil: 15 May 2014; published: 30 Jul. 2014 HASSAN GHAHARI & FRÉDÉRIC CHÉROT An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) (Zootaxa 3845) 101 pp.; 30 cm. 30 Jul. 2014 ISBN 978-1-77557-463-7 (paperback) ISBN 978-1-77557-464-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3845 (1) © 2014 Magnolia Press GHAHARI & CHÉROT Table of contents Abstract . -
Acacia Flat Mite (Brevipalpus Acadiae Ryke & Meyer, Tenuipalpidae, Acarina): Doringboomplatmyt
Creepie-crawlies and such comprising: Common Names of Insects 1963, indicated as CNI Butterfly List 1959, indicated as BL Some names the sources of which are unknown, and indicated as such Gewone Insekname SKOENLAPPERLYS INSLUITENDE BOSLUISE, MYTE, SAAMGESTEL DEUR DIE AALWURMS EN SPINNEKOPPE LANDBOUTAALKOMITEE Saamgestel deur die MET MEDEWERKING VAN NAVORSINGSINSTITUUT VIR DIE PLANTBESKERMING TAALDIENSBURO Departement van Landbou-tegniese Dienste VAN DIE met medewerking van die DEPARTEMENT VAN ONDERWYS, KUNS EN LANDBOUTAALKOMITEE WETENSKAP van die Taaldiensburo 1959 1963 BUTTERFLY LIST Common Names of Insects COMPILED BY THE INCLUDING TICKS, MITES, EELWORMS AGRICULTURAL TERMINOLOGY AND SPIDERS COMMITTEE Compiled by the IN COLLABORATION WiTH PLANT PROTECTION RESEARCH THE INSTITUTE LANGUAGE SERVICES BUREAU Department of Agricultural Technical Services OF THE in collaboration with the DEPARTMENT OF EDUCATION, ARTS AND AGRICULTURAL TERMINOLOGY SCIENCE COMMITTEE DIE STAATSDRUKKER + PRETORIA + THE of the Language Service Bureau GOVERNMENT PRINTER 1963 1959 Rekenaarmatig en leksikografies herverwerk deur PJ Taljaard e-mail enquiries: [email protected] EXPLANATORY NOTES 1 The list was alphabetised electronically. 2 On the target-language side, ie to the right of the :, synonyms are separated by a comma, e.g.: fission: klowing, splyting The sequence of the translated terms does NOT indicate any preference. Preferred terms are underlined. 3 Where catchwords of similar form are used as different parts of speech and confusion may therefore -
Insects of Micronesia Heteroptera: Miridae1
INSECTS OF MICRONESIA HETEROPTERA: MIRIDAE1 By JOSE C. M. CARVALHO MUSEU NACIONAL, RIo DE JANEIRO, BRAZIL INTRODUCTION This paper deals with the Miridae of Micronesia and is based on collections assembled from 1947 to 1953 by the Pacific Science Board of the National Research Council; by Kyushu University, Japan; by Bernice P. Bishop Museum; and by other organizations. The collectors are listed on pages 195 199 of volume 1 of this series. The specimens are principally deposited in the United States National Museum and Bishop Museum, as well as the Chicago Natural History Mu seum, the California Academy of Sciences, and the Museum of Comparative Zoology. Some paratypes are being sent to the British Museurp (Natural History). The following symbols are used in locality citations: United States National Museum (US), California Academy of Sciences (CAS), and Kyu shu University (KU). The only papers dealing exclusively with the Hemiptera and treating the Miridae of part of Micronesia are those of Usinger, 1946 (B. P. Bishop Mus., Bull. 189: 11-103), in which 31 species are recognized, and Usinger [1951, Hawaiian Ent. Soc., Proc. 14 (2) : 315-321; 1952, 14 (3): 519-524], in which four species are recorded from the Marshall Islands. A history of the Heteroptera recorded from Guam and other islands of the Marianas can be found in Usinger (1946). A detailed account of the Micro nesian Islands, including history, geography, faunas, bibliography, and so forth, is to be found in Gressitt (1954, Insects of Micronesia-Introduction, vol. 1). A table with the distribution of the Micronesian Miridae and the neighbor ing islands is here included to give a general zoogeographic picture of the fauna and its possible relationships with other Pacific islands. -
Common Backswimmer Notonecta Glauca (Linnaeus 1758) (Hemiptera: Notonectidae)1 Taryn B
EENY-738 Common Backswimmer Notonecta glauca (Linnaeus 1758) (Hemiptera: Notonectidae)1 Taryn B. Griffith and Jennifer L. Gillett-Kaufman2 Introduction Notonecta glauca, the common backswimmer (Figure 1), is an aquatic insect in the family Notonectidae. Insects in this family are commonly referred to as backswimmers or greater water boatman. Notonectids propel themselves through the water with their ventral side (belly) facing upwards, hence their common name of backswimmers (Figure 2). Notonectids can inflict wounds to humans with Figure 2. Notonecta sp. adult resting upside down underwater, which their proboscis (mouthpart), but this is very rare and often is typical of all Notonectids. is a result of rough handling. Credits: JRxpo. Flickr.com Distribution Although commonly collected in Europe (Soós et al. 2009), the common backswimmer can range from parts of northern Africa to western Siberia and northwestern China (Berchi 2013). Notonecta glauca is typically found in inland freshwater ponds, although they can be found in eutrophic (water excessively enriched in nutrients) freshwater bodies near the sea (Kjærstad et al. 2009). Many other Notonecta species occur in North America north of Mexico (Torre Bueno 1905). It is unclear if this species could become established if introduced to Florida, but its current distribu- tion includes several locations with similar climates and habitats. Figure 1. An adult Notonecta glauca (Linnaeus). Credits: David Nicholls 1. This document is EENY-738, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date August 2019. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.