Garlic, the Spice of Life-(Part –I) Kishu Tripathi Surya College of Pharmacy, Lucknow

Total Page:16

File Type:pdf, Size:1020Kb

Garlic, the Spice of Life-(Part –I) Kishu Tripathi Surya College of Pharmacy, Lucknow Asian J. Research Chem. 2(1): Jan.-March, 2009 , ISSN 0974-4169 www.ajrconline.org REVIEW ARTICLE A Review –Garlic, the Spice of Life-(Part –I) Kishu Tripathi Surya College of Pharmacy, Lucknow ABSTRACT Garlic [Allium sativum] is among the oldest of all cultivated plants. It has been used as a medicinal agent for thousands of years. It is a remarkable plant, which has multiple beneficial effects such as antimicrobial, antithrombotic, hypolipidemic, antiarthritic, hypoglycemic and antitumor activity etc KEY WORDS Garlic,Allium INTRODUCTION: Garlic has played an important dietary and medicinal role Preparations of garlic are available as tablets, capsules, throughout the history of mankind. Garlic is a nature’s boon to syrup, tinctures and oil. In ointment form, garlic has been mankind. For over 5000 years garlic has been consumed both used externally for treatment of ring worm; boiled with as food and used for medicine by ancient scholars. Garlic, vinegar and sugar for treatment of asthma; made into an Allium sativum L. is a member of the Alliaceae family, has infusion for treatment of epilepsy; pounded with honey for been widely recognized as a valuable spice and a popular use against rheumatism; and mixed with milk for use as a remedy for various ailments and physiological disorders. The vermifuge. Garlic is commonly used in Europe and Asia for name garlic may have originated from the Celtic word 'all' medicinal benefits in healing wounds, etc.In Germany, sale meaning pungent. As one of the earliest cultivated plants, of garlic preparations competes with sales of leading garlic is mentioned in the Bible and in the literature of Ancient drugs.Garlic produces a variety of volatile sulfur-based Israel (The Talmud), Egypt (Codex Ebers) and India (Vedas compounds which are effective as insect repellents and and Purans, Charak Sanghita).Chinese strongly believe that insecticides. Diallyl disulfide is one of such compounds garlic prolongs longevity and is useful in treating most human which has a strong odor and acts as a powerful diseases, including infections, cancer and heart diseases. In insecticide.Commercial preparations of garlic are certified historical writings of India and in literature like Vedas and as insecticide against mites, nematodes and mosquito larvae Purans, garlic is reported to have medicinal as well as nutritive affecting a variety of crops. value in food items. Clinical indications of garlic include It has been used as a medicinal agent for thousands of years. hemorrhoids, rheumatism, dermatitis, abdominal pain, It is a remarkable plant, which has multiple beneficial cough,loss of appetite and loss of weight. effects such as antimicrobial, antithrombotic, hypolipidemic, antiarthritic, hypoglycemic and antitumor The medicinal qualities of garlic were described by Pliny the activity. Allicin has antibacterial and antioxidant activity. It Elder, Aristophanes, and Galen. may possibly increase blood levels of catylase and glutathione peroxidase activity. Ajoene decreases the Hippocrates, the Father of Medicine, observed that garlic was activity of factors needed for lipid synthesis by reducing the excellent for curing tumors and is an effective diuretic. thiol group in coenzyme A and HMG CoA reductase and Aristotle attributed garlic as a cure for rabies, and the Prophet also by oxidizing NADPH. Ajoene has antiplatelet activity Mohammad recommended it for treating scorpion stings. In and interferes with thromboxane synthesis and decreases Historia Naturalis by Pliny, garlic was recommended for platelet aggregation1. gastro-intestinal disorders as well as dog and snake bites. Desired medicinal results of garlic are obtained when bulbs So where do we stand today on this issue of garlic? Is garlic are chewed and swallowed or mixed with food and eaten. always good for health? How safe is it? Is it necessary to isolate the antioxidant compounds for its medicinal use in a more effective way? Received on 19.01.2009 Modified on 30.01.2009 Accepted on 14.03.2009 © AJRC All right reserved Asian J. Research Chem. 2(1): Jan.-March, 2009;Page 08-13 8 Asian J. Research Chem. 2(1): Jan.-March, 2009 , CHEMISTRY water are diallyltrisulfide, diallyl disulfide and allyl methyl Intact garlic cloves contain only a few medicinally active. The trisulfide. Incubation of allicin or allyl methane thiosulfinate main chemical constituent of intact garlic is the amino acid in low polarity solvents (or without solvent) primarily alliin, an alkyl derivative of cysteine alkyl sulfoxide, which produces 1, 3-vinyldithiin (2-vinyl-4H-, 3-dithiin) (51% of may varies from 0.2 to 2.0% fresh weight. The efficacy of total), 1,2-vinyldithiin (3-vinyl-4H-1,2-dithiin) (19% of chemical constituents of garlic chiefly depends on the mode of total) and lesser amounts of ajoene (E,Z-4,5,9-trithiododeca- preparation of its extract. Crushing, chewing or cutting (or 1,6,11-trien 9-oxide) (12% of total) and sulfides (18% of exposing dehydrated, pulverized garlic to water) of garlic total).Incubation of pure allicin in methanol yields 8% cloves release the vacular enzyme allinase that rapidly lyses diallyl trisulfide and about equal amounts (20-25% of total) the cytosolic cysteine sulfoxide to form sulfenic acid (R- of ajoene and the vinyldithiins. Steam distillation of garlic SOH). Which immediately condenses to form allicin: the bulbs yields a garlic oil that consists of diallyl (57% of oil), compound which produces the odor of freshcut garlic? Garlic allyl methyl (37% of oil), and dimethyl (mono to hexa contains at least 100 sulfur-containing compounds basic to sulfides; 6% of oil of total). The essential oil content of medicinal uses. Allicin represents 70-80 % of the total fresh garlic bulbs is between 0.09 to 0.352. thiosulfinates formed (Fig. 1). Other thiosulfinates formed include allyl-ss(o)-methyl (6-16% of total), methyl-ss(o)-allyl BIOLOGICAL EFFECTS (3-9% of total), trans-1-propenyl (0.2-0.4% of total), trans-1- The biological activity of an extract of garlic depends on the propenyl-ss (o)-methyl+methyl-ss(o)-trans-1-propenyl (0.1- mode of its preparation. The extract prepared at room 2.5% of total) and methyl-ss(o)methyl (2% of total) temperature contains mainly allicin, which has a powerful thiosulfinates. The formation of allicin (allyl 2-propene antibacterial property and a strong smell. Besides allicin, thiosulfinate or diallyl thiosulfinate) is complete in 0.2 to 0.5 small amounts of several other thiosulfinates and complex min at room temperature. Formation of the methyl sulphinyl components, including the antithrombotic ajoenes, thiosulfinate takes 1.5 to 5.0 min. All possible combinations of are also present. The enzyme allinase responsible for 2-propene, 1-propene and methane sulfenic acids result in converting alliin to allicin is inactivated by heat. The water thiosulfinates extract of heat-treated garlic mainly contains alliin, which is odour-free. Garlic powder is a simply dehydrated, pulverized garlic clove. The allinase activity of garlic powder is identical to that of fresh garlic. It may be emphasized here that dehydration temperature should not exceed 60 ºC, above which allinase is inactivated. When distilled in steam, garlic yields an oily mass consisting of diallyl, methyl allyl, dimethyl, all originating from the thiosulfinates.Garlic oil has been shown to possess biological properties such as antitumor and antioxidant effects.Another widely studied garlic preparation is aged garlic extract (AGE). When garlic is subjected to cold aging process, organosulphur compounds, such as s-allyl cysteine, s-allyl mercaptocysteine, and several sulphur-containing amino acids, are produced. S-allyl cysteine and s-allyl mercaptocysteine have been shown to be anticarcinogenic and provides protection against liver damage. Garlic is one of the most investigated medicinal plants. During 1960 to 2007, more than three thousand research papers have been published on the chemistry and biological effects of garlic and garlic preparations. These studies mainly focus on the cardiovascular, anti-microbial and anti- cancer effects of garlic and, to a lesser extent, on the therapeutic indications for the treatment of hypoglycemia, The thiosulfinates released from crushed garlic are reactive heavy metal poisoning and liver dysfunction and molecules and undergo a number of transformations, hyperthyroidism. depending on the temperature, pH and solvent conditions. Allyl-s- thiosulfinates (allicin) are the least stable of the eight Sickle cell anemia thiosulfinates. The half-life of allicin (concentration of 0.1- Sickle cell anaemia is a life threatening hereditary disease, 0.4mg/ml) at room temperature is 10 days in 1mM citric acid in which oxidative stress plays a prominent role. AGE with (pH 3), 4 days in water, 48 h in methanol or chloroform, 24 h its high antioxidant activity, has therapeutic effects on the in ethanol, 24 h in hexane and 3 h in ether. The principal disease. In a 4 week study 5 patients with sickle cell transformation products after incubation of thiosulfinate in anaemia ingested AGE at 5 ml a day. The results showed 9 Asian J. Research Chem. 2(1): Jan.-March, 2009 , antioxidant protection of the red blood cells and a significant activity after acute and chronic garlic powder intake. reduction in the sickle cell markers3,4. Chutani and Bordia (1981) designed one study to show that both raw and fried garlic significantly enhance FA. Frying Potential effect of aged garlic extract (AGE) as an anti-oxidant removes the strong acrid smell of garlic, but preserves it in sickle RBC. Previously, AGE has been shown to useful effects on FA. The rise in FA has been observed significantly improve erythrocyte deformability through within 6 hours of garlic administration, which showed that stabilization of erythrocyte membranes in non-sickle RBC. garlic has a rapid onset of action and the effect is well These phenomenons were attributed to the anti-oxidant maintained as long as garlic is being taken.
Recommended publications
  • Food Compounds Activating Thermosensitive TRP Channels in Asian Herbal and Medicinal Foods
    J Nutr Sci Vitaminol, 61, S86–S88, 2015 Food Compounds Activating Thermosensitive TRP Channels in Asian Herbal and Medicinal Foods Tatsuo WATANABE and Yuko TERADA School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan Summary There are several thermosensitive transient receptor potential (TRP) ion chan- nels including capsaicin receptor, TRPV1. Food components activating TRPV1 inhibit body fat deposition through sympathetic nerve stimulation. TRPA1 is another pungency sensor for pungent compounds and is mainly coexpressed with TRPV1 in sensory nerve endings. Therefore, TRPA1 activation is expected to have an anti-obesity effect similar to TRPV1 activation. We have searched for agonists for TRPV1 and TRPA1 in vitro from Asian spices by the use of TRPV1- and TRPA1-expressing cells. Further, we performed food component addition tests to high-fat and high-sucrose diets in mice. We found capsiate, capsiconiate, capsainol from hot and sweet peppers, several piperine analogs from black pepper, gingeriols and shogaols from ginger, and sanshools and hydroxysanshools from sansho (Japanese pep- per) to be TRPV1 agonists. We also identified several sulfides from garlic and durian, hydroxy fatty acids from royal jelly, miogadial and miogatrial from mioga (Zingiber mioga), piper- ine analogs from black pepper, and acetoxychavicol acetate (ACA) from galangal (Alpinia galanga) as TRPA1 agonists. Piperine addition to diets diminished visceral fats and increased the uncoupling protein 1 (UCP1) in interscapular brown adipose tissue (IBAT), and black pepper extract showed stronger effects than piperine. Cinnamaldehyde and ACA as TRPA1 agonists inhibited fat deposition and increased UCP1. We found that several agonists of TRPV1 and TRPA1 and some agonists of TRPV1 and TRPA1 inhibit visceral fat deposition in mice.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • Trpa1) Activity by Cdk5
    MODULATION OF TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL, SUBFAMILY A, MEMBER 1 (TRPA1) ACTIVITY BY CDK5 A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Michael A. Sulak December 2011 Dissertation written by Michael A. Sulak B.S., Cleveland State University, 2002 Ph.D., Kent State University, 2011 Approved by _________________, Chair, Doctoral Dissertation Committee Dr. Derek S. Damron _________________, Member, Doctoral Dissertation Committee Dr. Robert V. Dorman _________________, Member, Doctoral Dissertation Committee Dr. Ernest J. Freeman _________________, Member, Doctoral Dissertation Committee Dr. Ian N. Bratz _________________, Graduate Faculty Representative Dr. Bansidhar Datta Accepted by _________________, Director, School of Biomedical Sciences Dr. Robert V. Dorman _________________, Dean, College of Arts and Sciences Dr. John R. D. Stalvey ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................... iv LIST OF TABLES ............................................................................................... vi DEDICATION ...................................................................................................... vii ACKNOWLEDGEMENTS .................................................................................. viii CHAPTER 1: Introduction .................................................................................. 1 Hypothesis and Project Rationale
    [Show full text]
  • Clinical Study Aged Garlic Extract Improves Adiponectin Levels in Subjects with Metabolic Syndrome: a Double-Blind, Placebo-Controlled, Randomized, Crossover Study
    Hindawi Publishing Corporation Mediators of Inflammation Volume 2013, Article ID 285795, 6 pages http://dx.doi.org/10.1155/2013/285795 Clinical Study Aged Garlic Extract Improves Adiponectin Levels in Subjects with Metabolic Syndrome: A Double-Blind, Placebo-Controlled, Randomized, Crossover Study Diego Gómez-Arbeláez,1,2 Vicente Lahera,3 Pilar Oubiña,3 Maria Valero-Muñoz,3 Natalia de las Heras,3 Yudy Rodríguez,2 Ronald Gerardo García,2 Paul Anthony Camacho,1 and Patricio López-Jaramillo1,2 1 Direccion´ de Investigaciones, Fundacion´ Oftalmologica´ de Santander (FOSCAL), Torre Milton Salazar, Primer Piso, Calle155ANo.23-09,ElBosque,Floridablanca,Santander,Colombia 2 Instituto de Investigaciones, Escuela de Medicina, Universidad de Santander (UDES), Bucaramanga, Colombia 3 Departamento de Fisiolog´ıa,FacultaddeMedicina,UniversidadComplutensedeMadrid,Spain Correspondence should be addressed to Patricio Lopez-Jaramillo;´ [email protected] Received 10 January 2013; Accepted 31 January 2013 Academic Editor: Giuseppe Valacchi Copyright © 2013 Diego Gomez-Arbel´ aez´ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background.Garlic(Allium sativum) has been shown to have important benefits in individuals at high cardiovascular risk. The aim of the present study was to evaluate the effects of the administration of aged garlic extract (AGE) on the risk factors that constitute the cluster of metabolic syndrome (MS). Methods and Design. Double-blind, crossover, randomized, placebo-controlled clinical trial to assess the effect of 1.2 g/day of AGE (Kyolic), for 24 weeks of treatment (12 weeks of AGE and 12 weeks of placebo), on subjects with MS.
    [Show full text]
  • Garlic and Gaseous Mediators
    TIPS 1521 No. of Pages 11 Review Garlic and Gaseous Mediators Peter Rose,1,2,* Philip Keith Moore,3 and Yi-Zhun Zhu2 Garlic (Allium sativum) and allied plant species are rich sources of sulfur Highlights compounds. Major roles for garlic and its sulfur constituents include the Garlic has been used for centuries to regulation of vascular homeostasis and the control of metabolic systems linked treat human diseases. to nutrient metabolism. Recent studies have indicated that some of these sulfur Sulfur compounds present in the compounds, such as diallyl trisulfide (DATS), alter the levels of gaseous sig- edible parts of garlic can alter the levels of gaseous signalling molecules like nalling molecules including nitric oxide (NO), hydrogen sulfide (H2S), and per- NO, CO, and H2S in mammalian cells haps carbon monoxide (CO) in mammalian tissues. These gases are important and tissues. in cellular processes associated with the cardiovascular system, inflammation, Some of garlic’s sulfur compounds and neurological functions. Importantly, these studies build on the known have been found to act as natural biological effects of garlic and associated sulfur constituents. This review H2S donor molecules. highlights our current understanding of the health benefits attributed to edible plants like garlic. Garlic and Its Many Roles Garlic (Allium sativum) has been used in the treatment and prevention of a wide variety of ailments for centuries [1]. The best known of these are the use of garlic as a ‘blood-thinning’ agent in China and India [2], as a treatment for asthma, for bacterial infections such as leprosy, and for heart disorders by the Egyptians [3].
    [Show full text]
  • Role of Hydrogen Sulfide Donors in Cancer Development and Progression
    Int. J. Biol. Sci. 2021, Vol. 17 73 Ivyspring International Publisher International Journal of Biological Sciences 2021; 17(1): 73-88. doi: 10.7150/ijbs.47850 Review Role of hydrogen sulfide donors in cancer development and progression Ebenezeri Erasto Ngowi1,3,4, Attia Afzal1,5, Muhammad Sarfraz1,4,5, Saadullah Khattak1,6, Shams Uz Zaman1,6, Nazeer Hussain Khan1,6, Tao Li1, Qi-Ying Jiang1, Xin Zhang7, Shao-Feng Duan1,7,, Xin-Ying Ji1,8,, Dong-Dong Wu1,2, 1. Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China 2. School of Stomatology, Henan University, Kaifeng, Henan 475004, China 3. Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania 4. Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China 5. Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan 6. School of Life Sciences, Henan University, Kaifeng, Henan 475004, China 7. Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China 8. Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China Corresponding authors: [email protected] (D.-D. W.); [email protected] (S.-F. D.); [email protected] (X.-Y. J.); +86 371 23880525 (D.-D. W.), +86 371 23880680 (S.-F. D.), +86 371 23880585 (X.-Y. J.). © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
    [Show full text]
  • Subject Index
    Subject Index Boldface denotes illustration or figure N-acetyl-S-allylcysteine (also called in oil-macerated garlic supplements, 239 allyl mercapturic acid) platelet aggregation effect of, 270, 272 in urine following consumption of stability toward heat, 191 garlic, 81 stereochemistry of addition reactions at C=C bond, 190 carbophilic, 196, 197, 205, 223 at sulfoxide sulfur, 190, 191 thiophilic, 205 A. keratitis (Acanthamoeba keratitis), garlic ajoene (AllS(O)CH2CH=CHSSAll) and, 253 antibiotic activity, 246, 399–401 alembic, 62, 64 B. subtilis, 399 S-alk(en)ylcysteine sulfoxides, 141, 142 E. coli, 399 in alliums, amounts and kinds, 396–398 H. pylori, 249, 399 biosynthesis, 168–171 K. pneumoniae, 399 in Brassica oleracea, 170 M. phlei, 400 derivatization of, 144 M. smegmatis, 400 γ-glutamyl derivatives of, 165-171 P. aeruginosa, 399 in Leucocoryne, 172 S. aureus, 400 in mushrooms, 172 anticancer activity in Petiveria alliacea, 172 basal cell carcinoma treatment, 258, in Scorodocarpus borneensis (wood 259, 260 garlic), 172 leukemia treatment, 262 in Tulbaghia violacea (society garlic), 172 mechanism of, 262 allelopathy, 26, 299, 300 antifungal activity, 248, 319, 400, 401 allicin (AllS(O)SAll) antithrombotic activity, 190, 270, 272 ajoene from, 172 antiviral activity, 253, 254 allergy to, 288 cholesterol lowering and, 269 analysis of, discovery of, 190 by DART, 158, 159 formation from allicin, 70, 172, 191, 192 by LC-MS, from garlic and ramp, monomethyl and dimethyl analogs, 193 145–147 name, derivation of, 190 by SFC, from garlic, 165 434 Subject Index 435 antibiotic activity of, 69, 72, 244, 318, thioacrolein from, 155 319, 399–401 3-vinyl-4H-1,2-dithiin and 2-vinyl- E.
    [Show full text]
  • Deodorization of Garlic Breath Volatiles by Food and Food Components
    Deodorization of Garlic Breath Volatiles by Food and Food Components. Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Ryan Munch, B.S. Graduate Program in Food Science & Technology The Ohio State University 2013 Thesis Committee: Dr. Sheryl Barringer, Advisor Dr. John H. Litchfield Dr. Luis Rodriguez-Saona Copyright by Ryan Munch 2013 Abstract The ability of foods and beverages to reduce allyl methyl disulfide, diallyl disulfide, allyl mercaptan, and allyl methyl sulfide on human breath after consumption of raw garlic was examined. The treatments were consumed immediately following raw garlic consumption for breath measurements, or were blended with garlic prior to headspace measurements. Measurements were done using selected ion flow tube mass spectrometry (SIFT-MS). Chlorophyllin treatment performed similarly to the control. Successful treatments may be due to enzymatic, polyphenolic, or acid deodorization. If occurring, enzymatic deodorization involved oxidation of polyphenolic compounds by enzymes, with the oxidized polyphenols causing deodorization. This may have been shown in raw apple, parsley, spinach, and mint treatments. Polyphenolic deodorization involved deodorization by polyphenolic compounds without enzymatic activity. This might have occurred for microwaved apple, green tea, and lemon juice treatments. Acid deodorization involves the inactivation of alliinase at a pH below 3.6, which causes garlic volatiles concentrations to be lowered. This deodorization mechanism is possible in soft drink and lemon juice breath treatments, and in pH-adjusted headspace measurements. Whey protein volatile concentrations were similar to the control’s with lack of enzymes, polyphenolic compounds, and acidic pH as the possible cause.
    [Show full text]
  • Third Supplement, FCC 11 Index / All-Trans-Lycopene / I-1
    Third Supplement, FCC 11 Index / All-trans-Lycopene / I-1 Index Titles of monographs are shown in the boldface type. A 2-Acetylpyridine, 20 Alcohol, 80%, 1524 3-Acetylpyridine, 21 Alcohol, 90%, 1524 Abbreviations, 6, 1726, 1776, 1826 2-Acetylpyrrole, 21 Alcohol, Absolute, 1524 Absolute Alcohol (Reagent), 5, 1725, 2-Acetyl Thiazole, 18 Alcohol, Aldehyde-Free, 1524 1775, 1825 Acetyl Valeryl, 562 Alcohol C-6, 579 Acacia, 556 Acetyl Value, 1400 Alcohol C-8, 863 ªAccuracyº, Defined, 1538 Achilleic Acid, 24 Alcohol C-9, 854 Acesulfame K, 9 Acid (Reagent), 5, 1725, 1775, 1825 Alcohol C-10, 362 Acesulfame Potassium, 9 Acid-Hydrolyzed Milk Protein, 22 Alcohol C-11, 1231 Acetal, 10 Acid-Hydrolyzed Proteins, 22 Alcohol C-12, 681 Acetaldehyde, 10 Acid Calcium Phosphate, 219, 1838 Alcohol C-16, 569 Acetaldehyde Diethyl Acetal, 10 Acid Hydrolysates of Proteins, 22 Alcohol Content of Ethyl Oxyhydrate Acetaldehyde Test Paper, 1535 Acidic Sodium Aluminum Phosphate, Flavor Chemicals (Other than Acetals (Essential Oils and Flavors), 1065 Essential Oils), 1437 1395 Acidified Sodium Chlorite Alcohol, Diluted, 1524 Acetanisole, 11 Solutions, 23 Alcoholic Potassium Hydroxide TS, Acetate C-10, 361 Acidity Determination by Iodometric 1524 Acetate Identification Test, 1321 Method, 1437 Alcoholometric Table, 1644 Aceteugenol, 464 Acid Magnesium Phosphate, 730 Aldehyde C-6, 571 Acetic Acid Furfurylester, 504 Acid Number (Rosins and Related Aldehyde C-7, 561 Acetic Acid, Glacial, 12 Substances), 1418 Aldehyde C-8, 857 Acetic Acid TS, Diluted, 1524 Acid Phosphatase
    [Show full text]
  • Garlic Polyphenols: a Diet Based Therapy
    Research Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.15.002721 Garlic Polyphenols: A Diet Based Therapy Muhammad Hanif Mughal* Homeopathic Clinic, Islamabad, Pakistan *Corresponding author: Muhammad Hanif Mughal, Homeopathic Clinic, Islamabad, Pakistan ARTICLE INFO abstract Received: February 13, 2019 Garlic has been used as medicinal herb due to their therapeutic activities. These Published: March 06, 2019 Citation: Muhammad Hanif Mughal. reviewactivities article are linked summarized with presence the chemo-preventive of bioactive compounds role of garlic such asalong diallyl with trisulfide their bioactive (DATS), Garlic Polyphenols: A Diet Based Ther- compoundsallicin, diallyl against sulfide different (DAS), Allyl human mercaptan cancers (AM), including and diallyl colon, disulfide liver, breast, (DADS). pancreatic The current and gastric cancer, pancreatic cancer. They also have been working as to restrain the different 2019. BJSTR. MS.ID.002721. cancer stages such as initial, promotion and progression stages. Garlic polyphenols lower apy. Biomed J Sci & Tech Res 15(4)- the blood glucose level through various pathways such as prevention from the damage Abbreviations: DATS: Diallyl Tri- - suppress the activities of glucosidase enzymes. Further, they also suppress the lipid per- oxidation,of β-cells, lowernitric oxidethe insulin synthetase resistance, activity, enhance epidermal the growthinsulin sensitivityfactor (EGF) and receptor, secretion, protein and sulfide; DAS : Diallyl Sulfide; AM : Al kinase c, enzyme activity, survival signaling (IKK, NIK and AKT), NF-kB activity, and cell lyl Mercaptan; DADS: Diallyl Disulfide;- cycle regulation. In addition, more researchers by the researchers open the new horizons EGF: Epidermal Growth Factor; AGE: Aged Garlic Extract; HGE : Heated Gar lic Extract; RGE: Raw Garlic Extract inKeywords: the field of medicine.
    [Show full text]
  • Influence of Garlic Or Its Main Active Component Diallyl Disulfide on Iron
    Available online at www.sciencedirect.com Nutrition Research 30 (2010) 85–95 www.nrjournal.com Influence of garlic or its main active component diallyl disulfide on iron bioavailability and toxicity Afef Nahdia,b, Imen Hammamia, Carole Brasse-Lagnelb, Nathalie Pilardb, ⁎ Mohamed Hedi Hamdaouic, Carole Beaumontb, , Michèle El Maya aUnité de recherche n° 01/UR/08-07, Laboratoire d'histologie-embryologie et biologie cellulaire, Faculté de Médecine de Tunis, 1007 Tunis, Tunisie bINSERM U773, Université Paris Diderot Paris 7, UFR de médecine site Bichat, 75018, Paris, France cUnité de Recherche sur l'Anémie Nutritionnelle et la Biodisponibilité des Oligoéléments, Ecole Supérieure des Sciences et Techniques de la Santé de Tunis, BP 176 Bab-Souika, Tunisie Received 6 November 2009; revised 15 January 2010; accepted 15 January 2010 Abstract Garlic is regularly consumed and is known to have diverse biologic activities, particularly due to its antioxidant properties. In this study, we hypothesized that crude garlic can prevent iron-mediated oxidative stress in a rat model of nutritional iron overload, and we used an in vitro model to confirm the results. For the in vivo studies, rats received a basal diet supplemented with or without carbonyl iron (3%) and were fed distilled water or garlic solution (1g/kg body weight) by gavage for 3 weeks. The presence of both garlic and iron led to a 2-fold increase in plasma iron and a 50% increase in liver iron as compared with iron alone. However, garlic did not offer any protection against iron-induced oxidative stress. Duodenal divalent metal transporter-1 mRNA expression was fully repressed by iron and by the combined treatments but was also reduced by garlic alone.
    [Show full text]
  • Allicin and Related Compounds: Biosynthesis, Synthesis and Pharmacological Activity † Udc 547-305.2 : 635.262
    FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 9, No 1, 2011, pp. 9 - 20 DOI: 10.2298/FUPCT1101009I Review ALLICIN AND RELATED COMPOUNDS: BIOSYNTHESIS, SYNTHESIS AND PHARMACOLOGICAL ACTIVITY † UDC 547-305.2 : 635.262 Dušica P. Ilić , Vesna D. Nikolić, Ljubiša B. Nikolić, Mihajlo Z. Stanković, Ljiljana P. Stanojević, Milorad D. Cakić Faculty of Technology, Bulevar oslobođenja 124, 16000 Leskovac, Univesity of Nis, Serbia Abstract. In this review, the biosynthesis of allicin (allyl thiosulfinate) by enzymatic transformation of alliin and various methods of its synthesis with detailed investigation of mechanisms and kinetics are summarized. A convenient method is also described for determination of allicin stability and the utility of the inclusion complexes of this pharmacologically active agent with β-cyclodextrins in increasing its stability. Allicin is the initial precursor for the production of ajoene ((E)- and (Z)-4,5,9-trithiadodeca- 1,6,11-triene 9-oxides) and vinyldithiin (2-vinyl-4H-1,3-dithiin, and 3-vinyl-4H-1,2- dithiin), which are more stable and show various pharmacological effects. The mechanisms of allicin transformations to these compounds are given in detail. Finally, the data on the pharmacological effects of allicin and its transformation products, ajoene and vinyldithiin, are presented. Key words: allicin, ajoene, vinyldithiins, biosynthesis, synthesis, pharmacological activity 1. ALLICIN (ALLYL THIOSULFINATE) 1.1. Biosynthesis of allicin Under the influence of alliinase, allicin is produced by enzymatic transformation of alliin [(+)-(S)-allyl-L-cysteine-sulfoxide]. Alliin and alliinase are found in separate parts of garlic clove [1], therefore this chain reaction is initiated only after crushing the cells.
    [Show full text]