The Trepan Or Ring Core Method, Centre-Hole Method, Sach's Method, Blind Hole Methods, Deep Hole Technique
THE TREPAN OR RING CORE METHOD, CENTRE-HOLE METHOD, SACH'S METHOD, BLIND HOLE METHODS, DEEP HOLE TECHNIQUE E. Procter" and E. M. BeaneyS "Procter & Ches~er(Mearuremenrs) Ltd., Theurre Street, Wawick CV34 4DP KEGB, Berkeley Nucleur Labs. Berkeley, Glor. GLl3 9PB, UK I\ ABSTRACT Mechanical methods can be used to measure practically all types of residual stresses, from near surface to depths in excess of 0.25 metre. They have been used for much longer and have thus seen more development than othel Inechocis and, ss a iur~sequence, their limitations and applications are more clearly defined. Their major disadvantage is that, by their nature, they are destructive although the amount of structural damage may be insignificant in many cases. The essence of the techniques is that changing the geometry of a structure changes its residual stress pattern. This change in stcess causes strain changes, which can be measured using strain gauges or some other deformation measuring device. In principle, if the change in geometry is known and the strain measurement is sufficiently comprehensive and accurate, then residual stresses can always be calculated. However, due to the complerity of this calculation in its general form, all the mechanical techniques rely on making well defined changes in geometry for which the relationship between measured strain and residual stress are known or can easily be obtained. The techniques fall into two categories, namely those which measure surface or near-surface stresses, and those designed to give sub-surface or through-thickness stress. The chapter considers the following techniques: Sectioning for surface and sub-surface measurement, including Sach's and Blind Hole methods.
[Show full text]