Defective NDUFA9 As a Novel Cause of Neonatally Fatal

Total Page:16

File Type:pdf, Size:1020Kb

Defective NDUFA9 As a Novel Cause of Neonatally Fatal Downloaded from http://jmg.bmj.com/ on September 8, 2016 - Published by group.bmj.com New loci ORIGINAL ARTICLE Defective NDUFA9 as a novel cause of neonatally fatal complex I disease B J C van den Bosch,1,2 M Gerards,1,2 W Sluiter,3 A P A Stegmann,1 E L C Jongen,1 D M E I Hellebrekers,1 R Oegema,4 E H Lambrichs,1 H Prokisch,5,6 K Danhauser,5,6 K Schoonderwoerd,4 I F M de Coo,7 H J M Smeets1,2 < An additional table is ABSTRACT patterns. Mutations in nuclear mitochondrial genes published online only. To view Background Mitochondrial disorders are associated with include genes encoding assembly factors, complex this file please visit the journal abnormalities of the oxidative phosphorylation (OXPHOS) subunits of the OXPHOS system, and genes online (http://jmg.bmj.com/ content/49/1.toc). system and cause significant morbidity and mortality in involved in mitochondrial maintenance or metab- the population. The extensive clinical and genetic olism in general.4 Mutations in different genes can 1Department of Clinical Genetics, Unit Clinical heterogeneity of these disorders due to a broad variety lead to similar phenotypes, while mutations in the Genomics, Maastricht University of mutations in several hundreds of candidate genes, same gene can give rise to different phenotypes, Medical Centre, Maastricht, The encoded by either the mitochondrial DNA (mtDNA) or illustrating the clinical and genetic heterogeneity of Netherlands 2 nuclear DNA (nDNA), impedes a straightforward genetic these diseases. Nuclear genes are likely the major School for Oncology and diagnosis. A new disease gene is presented here, Developmental Biology, cause of mitochondrial disease, especially in Maastricht University Medical identified in a single Kurdish patient born from affected children, and, based on the mitochondrial Centre, Maastricht, The consanguineous parents with neonatally fatal Leigh proteome, potentially more than 1500 genes could Netherlands syndrome and complex I deficiency. be involved.5 Pathogenic mutations have been 3 Centre for Lysosomal and Methods and results Using homozygosity mapping and identified in w100 genes during the past years. Metabolic Diseases, Erasmus MC, Rotterdam, The subsequent positional candidate gene analysis, a total However, mutations are often limited to only one Netherlands region of 255.8 Mb containing 136 possible or a few patients and families. The genetic cause 4Department of Clinical mitochondrial genes was identified. A pathogenic still remains unknown in a large proportion of Genetics, Erasmus MC, mutation was found in the complex I subunit encoding patients with mitochondrial disease.6 Rotterdam, The Netherlands the NDUFA9 gene, changing a highly conserved arginine 5Institute of Human Genetics, Several approaches exist to identify gene defects at position 321 to proline. This is the first disease- in patients with mitochondrial disease, such as Technische Universita¨t e Mu¨nchen, Munich, Germany causing mutation ever reported for NDUFA9. Complex I conventional sequencing of candidate genes,5 7 6 e Institute of Human Genetics, activity was restored in fibroblasts of the patient by family based approaches,68 10 and next generation e Helmholtz Zentrum Mu¨nchen, lentiviral transduction with wild type but not mutant sequencing.11 13 Consanguinity or suspected relat- German Research Centre for Environmental Health, NDUFA9, confirming that the mutation causes the edness of the parents of OXPHOS patients makes Neuherberg, Germany complex I deficiency and related disease. homozygosity mapping followed by candidate gene 7Department of Neurology, Conclusions The data show that homozygosity mapping analysis a rapid and effective approach. Here we Erasmus MC, Rotterdam, The and candidate gene analysis remain an efficient way to report the first pathogenic mutation in NDUFA9 in Netherlands detect mutations even in small consanguineous a patient from consanguineous parents with fatal fi Correspondence to pedigrees with OXPHOS deficiency, especially when the Leigh syndrome and complex I de ciency using this Dr B J C van den Bosch, enzyme deficiency in fibroblasts allows appropriate approach. Subsequently, the pathogenicity of the Department of Genetics and Cell candidate gene selection and functional mutation was confirmed by complementation Biology, Maastricht University, complementation. studies in complex I deficient fibroblasts of the P.O. Box 616, 6200 MD Maastricht, The Netherlands; patient. The procedure from the initial single [email protected] nucleotide polymorphism (SNP) array analysis until the identification of the mutation took about BJCB and MG contributed 3 weeks, indicating that this type of approach is equally to this work. INTRODUCTION efficient in terms of success rate, time, and costs. Mitochondrial disorders are clinical phenotypes Received 30 August 2011 Accepted 18 October 2011 associated with abnormalities of the oxidative Published Online First phosphorylation (OXPHOS) system. OXPHOS SUBJECTS AND METHODS 23 November 2011 disorders are among the most common inherited Clinical findings metabolic disorders, with a prevalence of 1 in The patient was a boy born as the first and only 5000e8000, and cause significant morbidity and child from consanguineous Kurdish parents (second mortality in the population.1 They can present at cousins, region Kurdistan in Iraq) at 41 weeks of any age and in any tissue. A broad range of clinical gestation with a birth weight of 3.040 kg (À1 SD) features has been associated with defects in the and an occipitofrontal circumference (OFC) of mitochondrial DNA (mtDNA) and in nuclear genes 33.8 cm (À1 SD). No dysmorphic features were encoding essential proteins involved in the noted. A mildly depressed child was seen at birth OXPHOS system.23Because of this dual genetic with intact functioning of the cranial nerves and control, segregation of OXPHOS disorders can be a normal somatic motor and sensory system with complex with maternal, autosomal recessive, symmetric reflexes. After birth, the child deterio- autosomal dominant or X linked inheritance rated and suffered from a combined respiratory and 10 J Med Genet 2012;49:10e15. doi:10.1136/jmedgenet-2011-100466 Downloaded from http://jmg.bmj.com/ on September 8, 2016 - Published by group.bmj.com New loci Figure 1 Brain MRI leading to the diagnosis of Leigh syndrome. (A) Axial T2 weighted image shows high signal intensity in the basal ganglia and thalami bilaterally (open arrows). In the right thalamus, signs of striatal necrosis can be seen (closed arrow). The cerebral white matter is hyperintense. (B) Sagittal T2 weighted image, showing diffuse cerebral and cerebellar atrophy. metabolic acidosis with increased lactate values up to 10 mM Homozygosity mapping 12 h postpartum (hyperlactataemia >2.5 mM). A metabolic Homozygosity mapping was performed with the Affymetrix investigation in blood and urine revealed normal amino acid GeneChip Human Mapping 250 K NspI SNP array using values, a slightly decreased total carnitine value with a slightly peripheral blood DNA of the patient. The DNA was processed elevated alanine value and an increased lactate/pyruvate ratio and labelled according to the instructions of the manufacturer. (>20). In urine, lactic aciduria was present. Morphological Genotypes were generated by the Affymetrix GeneChip Geno- investigations in muscle, including electron microscopy, did not typing Analysis Software (GTYPE). For the identification of reveal any abnormalities. Mitochondrial oxygen consumption homozygous regions the online tool ‘HomozygosityMapper’ was decreased and an isolated complex I deficiency was present was used.15 Candidate regions were selected in which at least in muscle (biopsy taken from right quadriceps muscle) and 400 consecutive SNPs were homozygous in the patient. fibroblasts (respectively, 29% and 11% activity compared to control values). The boy developed profound hearing loss, Sequence analysis apnoeas associated with brainstem abnormalities, and retinitis Exons and flanking intronic regions of 40nt from the NDUFA9 pigmentosa. A brain MRI at day 6 showed diffuse loss of gene were PCR amplified using intronic primers (Biolegio, online supratentorial white matter and brain stem volume with T2 supplementary table 1). The other candidate gene associated with hyperintensities of the basal nuclei (thalamus and putamen) and complex I, NDUFB2, was not sequenced after the pathogenic a right-sided focal thalamic lesion compatible with striatal NDUAF9 mutation was identified. PCR products were directly ischaemia and focal necrosis, leading to a diagnosis of Leigh sequenced with the PRISM Ready Reaction Sequencing Kit syndrome (figure 1). Electroencephalograms (EEGs) taken at (Perkin-Elmer Life Sciences, Boston, MA, USA) on an ABI3730 1 day, 1 week, 2 and 3 weeks of age showed increased aberra- automatic sequencer (Applied Biosystems, Foster City, CA, USA). tions of the normal pattern with multifocal sharp waves and a discontinuous pattern. No overt epileptic seizures were seen. Blue native (BN)-polyacrylamide gel electrophoresis and His legs became increasingly hypertonic with choreadystonic western blotting movements from all limbs. At 3 weeks he needed ventilatory Mitoplasts from patient and control fibroblasts were isolated as support. He died 1 month after birth due to respiratory insuffi- previously described.16 Mitochondrial protein (15 mg) were ciency. Deletions and mutations in the mtDNA were excluded as analysed on polyacrylamide gradient gels (4e16%; Invitrogen, a cause of disease by, respectively,
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • An Investigation Into the Genetic Architecture of Multiple System Atrophy and Familial Parkinson's Disease
    An investigation into the genetic architecture of multiple system atrophy and familial Parkinson’s disease By Monica Federoff A thesis submitted to University College London for the degree of Doctor of Philosophy Laboratory of Neurogenetics, Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL) 2 I, Monica Federoff, confirm that the work presented in this thesis is my own. Information derived from other sources and collaborative work have been indicated appropriately. Signature: Date: 09/06/2016 3 Acknowledgements: When I first joined the Laboratory of Neurogenetics (LNG), NIA, NIH as a summer intern in 2008, I had minimal experience working in a laboratory and was both excited and anxious at the prospect of it. From my very first day, Dr. Andrew Singleton was incredibly welcoming and introduced me to my first mentor, Dr. Javier Simon- Sanchez. Within just ten weeks working in the lab, both Dr. Singleton and Dr. Simon- Sanchez taught me the fundamental skills in an encouraging and supportive environment. I quickly got to know others in the lab, some of whom are still here today, and I sincerely appreciate their help with my assimilation into the LNG. After returning for an additional summer and one year as an IRTA postbac, I was honored to pursue a PhD in such an intellectually stimulating and comfortable environment. I am so grateful that Dr. Singleton has been such a wonderful mentor, as he is not only a brilliant scientist, but also extremely personable and approachable. If I inquire about meeting with him, he always manages to make time in his busy schedule and provides excellent guidance and mentorship.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • THE FUNCTIONAL SIGNIFICANCE of MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in Partial Fulfillment
    THE FUNCTIONAL SIGNIFICANCE OF MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Drs. Margaret M. Sedensky & Philip G. Morgan Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedicated to my family, my teachers and all of my beloved ones for their love and support ii ACKNOWLEDGEMENTS My advanced academic journey began 5 years ago on the opposite side of the world. I traveled to the United States from Thailand in search of a better understanding of science so that one day I can return to my homeland and apply the knowledge and experience I have gained to improve the lives of those affected by sickness and disease yet unanswered by science. Ultimately, I hoped to make the academic transition into the scholarly community by proving myself through scientific research and understanding so that I can make a meaningful contribution to both the scientific and medical communities. The following dissertation would not have been possible without the help, support, and guidance of a lot of people both near and far. I wish to thank all who have aided me in one way or another on this long yet rewarding journey. My sincerest thanks and appreciation goes to my advisors Philip Morgan and Margaret Sedensky.
    [Show full text]
  • Dehydroepiandrosterone Induces Growth Arrest of Hepatoma Cells Via Alteration of Mitochondrial Gene Expression and Function
    969-977 10/10/08 10:56 Page 969 INTERNATIONAL JOURNAL OF ONCOLOGY 33: 969-977, 2008 969 Dehydroepiandrosterone induces growth arrest of hepatoma cells via alteration of mitochondrial gene expression and function HUNG-YAO HO1*, MEI-LING CHENG1,2,4*, HSIN-YU CHIU1, SHIUE-FEN WENG1 and DANIEL TSUN-YEE CHIU1,3,4 1Graduate Institute of Medical Biotechnology and Department of Medical Biotechnology and Laboratory Science, 2Center for Gerontological Research, 3Graduate Institute of Basic Medical Sciences, Chang Gung University; 4Department of Clinical Pathology, Chang Gung Memorial Hospital, Kwei-san, Tao-yuan, Taiwan Received April 24, 2008; Accepted June 30, 2008 DOI: 10.3892/ijo_00000084 Abstract. DHEA is known to have anti-proliferative effect. sulfate form, DHEA is the most abundant steroid in human The mechanism is not completely understood. We investigated circulation. Plasma concentration of DHEA increases during the mechanism underlying DHEA-induced growth arrest of adolescence; reaches its maximum at around 25 years of age; hepatoma cells. Growth inhibition was associated with and decreases afterwards to 10% of adolescent level by the increased G6PD activity, and insensitive to reversal by age of 80 (2). DHEA is a multifunctional hormone with such mevalonate. Thus, DHEA does not act via inhibition of G6PD beneficial effects as antiobesity (3,4), hypoglycemia (4-6); and HMGR. Instead, growth stagnation was accompanied by anti-atherosclerosis (7,8), as well as anti-aging and memory- reduced expression of nucleus-encoded mitochondrial genes; enhancing effect on brain (9). It has been reported that low morphological and functional alterations of mitochondria; DHEA levels correlated with increased risks of tumorigenesis and depletion of intracellular ATP.
    [Show full text]
  • Coupling Mitochondrial Respiratory Chain to Cell Death: an Essential Role of Mitochondrial Complex I in the Interferon-B and Retinoic Acid-Induced Cancer Cell Death
    Cell Death and Differentiation (2007) 14, 327–337 & 2007 Nature Publishing Group All rights reserved 1350-9047/07 $30.00 www.nature.com/cdd Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-b and retinoic acid-induced cancer cell death G Huang1, Y Chen1,HLu1 and X Cao*,1 Combination of retinoic acids (RAs) and interferons (IFNs) has synergistic apoptotic effects and is used in cancer treatment. However, the underlying mechanisms remain unknown. Here, we demonstrate that mitochondrial respiratory chain (MRC) plays an essential role in the IFN-b/RA-induced cancer cell death. We found that IFN-b/RA upregulates the expression of MRC complex subunits. Mitochondrial–nuclear translocation of these subunits was not observed, but overproduction of reactive oxygen species (ROS), which causes loss of mitochondrial function, was detected upon IFN-b/RA treatment. Knockdown of GRIM-19 (gene associated with retinoid-interferon-induced mortality-19) and NDUFS3 (NADH dehydrogenase (ubiquinone) Fe-S protein 3), two subunits of MRC complex I, by siRNA in two cancer cell lines conferred resistance to IFN-b/RA-induced apoptosis and reduced ROS production. In parallel, expression of late genes induced by IFN-b/RA that are directly involved in growth inhibition and cell death was also repressed in the knockdown cells. Our data suggest that the MRC regulates IFN-b/RA-induced cell death by modulating ROS production and late gene expression. Cell Death and Differentiation (2007) 14, 327–337.
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]
  • WO 2017/070647 Al 27 April 2017 (27.04.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/070647 Al 27 April 2017 (27.04.2017) P O P C T (51) International Patent Classification: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 31/455 (2006.01) C12N 15/86 (2006.01) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, A61K 31/465 (2006.01) A61P 27/02 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 31/19 (2006.01) A61P 27/06 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, A61K 48/00 (2006.01) A61K 45/06 (2006.01) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (21) International Application Number: ZW. PCT/US2016/058388 (84) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of regional protection available): ARIPO (BW, GH, 24 October 2016 (24.10.201 6) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (25) Filing Language: English TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (26) Publication Language: English DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (30) Priority Data: LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 62/245,467 23 October 2015 (23.
    [Show full text]
  • Electron Transport Chain Activity Is a Predictor and Target for Venetoclax Sensitivity in Multiple Myeloma
    ARTICLE https://doi.org/10.1038/s41467-020-15051-z OPEN Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma Richa Bajpai1,7, Aditi Sharma 1,7, Abhinav Achreja2,3, Claudia L. Edgar1, Changyong Wei1, Arusha A. Siddiqa1, Vikas A. Gupta1, Shannon M. Matulis1, Samuel K. McBrayer 4, Anjali Mittal3,5, Manali Rupji 6, Benjamin G. Barwick 1, Sagar Lonial1, Ajay K. Nooka 1, Lawrence H. Boise 1, Deepak Nagrath2,3,5 & ✉ Mala Shanmugam 1 1234567890():,; The BCL-2 antagonist venetoclax is highly effective in multiple myeloma (MM) patients exhibiting the 11;14 translocation, the mechanistic basis of which is unknown. In evaluating cellular energetics and metabolism of t(11;14) and non-t(11;14) MM, we determine that venetoclax-sensitive myeloma has reduced mitochondrial respiration. Consistent with this, low electron transport chain (ETC) Complex I and Complex II activities correlate with venetoclax sensitivity. Inhibition of Complex I, using IACS-010759, an orally bioavailable Complex I inhibitor in clinical trials, as well as succinate ubiquinone reductase (SQR) activity of Complex II, using thenoyltrifluoroacetone (TTFA) or introduction of SDHC R72C mutant, independently sensitize resistant MM to venetoclax. We demonstrate that ETC inhibition increases BCL-2 dependence and the ‘primed’ state via the ATF4-BIM/NOXA axis. Further, SQR activity correlates with venetoclax sensitivity in patient samples irrespective of t(11;14) status. Use of SQR activity in a functional-biomarker informed manner may better select for MM patients responsive to venetoclax therapy. 1 Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA.
    [Show full text]
  • Bayesian Hidden Markov Tree Models for Clustering Genes with Shared Evolutionary History
    Submitted to the Annals of Applied Statistics arXiv: arXiv:0000.0000 BAYESIAN HIDDEN MARKOV TREE MODELS FOR CLUSTERING GENES WITH SHARED EVOLUTIONARY HISTORY By Yang Liy,{,∗, Shaoyang Ningy,∗, Sarah E. Calvoz,x,{, Vamsi K. Moothak,z,x,{ and Jun S. Liuy Harvard Universityy, Broad Institutez, Harvard Medical Schoolx, Massachusetts General Hospital{, and Howard Hughes Medical Institutek Determination of functions for poorly characterized genes is cru- cial for understanding biological processes and studying human dis- eases. Functionally associated genes are often gained and lost together through evolution. Therefore identifying co-evolution of genes can predict functional gene-gene associations. We describe here the full statistical model and computational strategies underlying the orig- inal algorithm CLustering by Inferred Models of Evolution (CLIME 1.0) recently reported by us [Li et al., 2014]. CLIME 1.0 employs a mixture of tree-structured hidden Markov models for gene evolution process, and a Bayesian model-based clustering algorithm to detect gene modules with shared evolutionary histories (termed evolutionary conserved modules, or ECMs). A Dirichlet process prior was adopted for estimating the number of gene clusters and a Gibbs sampler was developed for posterior sampling. We further developed an extended version, CLIME 1.1, to incorporate the uncertainty on the evolution- ary tree structure. By simulation studies and benchmarks on real data sets, we show that CLIME 1.0 and CLIME 1.1 outperform traditional methods that use simple metrics (e.g., the Hamming distance or Pear- son correlation) to measure co-evolution between pairs of genes. 1. Introduction. The human genome encodes more than 20,000 protein- coding genes, of which a large fraction do not have annotated function to date [Galperin and Koonin, 2010].
    [Show full text]
  • CREB-Dependent Transcription in Astrocytes: Signalling Pathways, Gene Profiles and Neuroprotective Role in Brain Injury
    CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Tesis doctoral Luis Pardo Fernández Bellaterra, Septiembre 2015 Instituto de Neurociencias Departamento de Bioquímica i Biologia Molecular Unidad de Bioquímica y Biologia Molecular Facultad de Medicina CREB-dependent transcription in astrocytes: signalling pathways, gene profiles and neuroprotective role in brain injury. Memoria del trabajo experimental para optar al grado de doctor, correspondiente al Programa de Doctorado en Neurociencias del Instituto de Neurociencias de la Universidad Autónoma de Barcelona, llevado a cabo por Luis Pardo Fernández bajo la dirección de la Dra. Elena Galea Rodríguez de Velasco y la Dra. Roser Masgrau Juanola, en el Instituto de Neurociencias de la Universidad Autónoma de Barcelona. Doctorando Directoras de tesis Luis Pardo Fernández Dra. Elena Galea Dra. Roser Masgrau In memoriam María Dolores Álvarez Durán Abuela, eres la culpable de que haya decidido recorrer el camino de la ciencia. Que estas líneas ayuden a conservar tu recuerdo. A mis padres y hermanos, A Meri INDEX I Summary 1 II Introduction 3 1 Astrocytes: physiology and pathology 5 1.1 Anatomical organization 6 1.2 Origins and heterogeneity 6 1.3 Astrocyte functions 8 1.3.1 Developmental functions 8 1.3.2 Neurovascular functions 9 1.3.3 Metabolic support 11 1.3.4 Homeostatic functions 13 1.3.5 Antioxidant functions 15 1.3.6 Signalling functions 15 1.4 Astrocytes in brain pathology 20 1.5 Reactive astrogliosis 22 2 The transcription
    [Show full text]