Seasonal Migration to High Latitudes Results in Major Reproductive Benefits in an Insect

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Migration to High Latitudes Results in Major Reproductive Benefits in an Insect Seasonal migration to high latitudes results in major reproductive benefits in an insect Jason W. Chapmana,b,1, James R. Bella, Laura E. Burginc, Donald R. Reynoldsa,d, Lars B. Petterssone, Jane K. Hillf, Michael B. Bonsallg, and Jeremy A. Thomasg,h aDepartment of AgroEcology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom; bEnvironment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom; cAtmospheric Dispersion Research and Response Group, Met Office, Exeter, Devon EX1 3PB, United Kingdom; dNatural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, United Kingdom; eBiodiversity Unit, Department of Biology, Lund University, SE-223 62 Lund, Sweden; fDepartment of Biology, University of York, York YO10 5DD, United Kingdom; gDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; and hCentre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom Edited by David L. Denlinger, Ohio State University, Columbus, OH, and approved July 23, 2012 (received for review April 30, 2012) Little is known of the population dynamics of long-range insect gamma (the silver Y). This abundant moth is a major pest of migrants, and it has been suggested that the annual journeys of a range of crops, including beet, potato, maize, brassica, and billions of nonhardy insects to exploit temperate zones during legumes, that breeds continuously with five or more generations summer represent a sink from which future generations seldom per year (26). Spring migrants use fast-moving airstreams, 200– return (the “Pied Piper” effect). We combine data from entomo- 1,000 m above ground, to travel ∼300 km northward per night logical radars and ground-based light traps to show that annual to colonize temporary summer-breeding grounds in northern migrations are highly adaptive in the noctuid moth Autographa Europe (22–25), from their winter-breeding grounds in North gamma (silver Y), a major agricultural pest. We estimate that Africa and the Middle East (27–30). This species cannot survive 10–240 million immigrants reach the United Kingdom each spring, the winter in the United Kingdom or similar latitudes in north- but that summer breeding results in a fourfold increase in the ern Europe (31), and all of the evidence indicates that only small abundance of the subsequent generation of adults, all of which remnant populations can survive through the hot and dry sum- emigrate southward in the fall. Trajectory simulations show that mers of its wintering areas (27–30) (Results). There is evidence 80% of emigrants will reach regions suitable for winter breeding that at least some of the progeny of summer breeders embark on in the Mediterranean Basin, for which our population dynamics southward-directed migrations in the fall (22–25), but there is no model predicts a winter carrying capacity only 20% of that of evidence as yet that these migrants regularly reach the winter- northern Europe during the summer. We conclude not only that breeding areas or what proportion of the summer population poleward insect migrations in spring result in major population engages in return migration. Thus, there are two competing hy- increases, but also that the persistence of such species is depen- potheses that could explain the annual recolonization of the dent on summer breeding in high-latitude regions, which requires high-latitude regions by immigrants. The first hypothesis postu- a fundamental change in our understanding of insect migration. lates an absence of returns to winter-breeding regions and that continuous breeding by remnant populations that survive the windborne migration | source-sink dynamics summer in low-latitude refugia is responsible for resupplying the high-latitude regions anew each year (the Pied Piper hypothesis). igration arises when the reproductive benefits accrued from The second hypothesis states that population growth at each end Mmoving exceed those of remaining in the current habitat (1). of the migration route resupplies the opposite breeding area in Numerous insect species, comprising members of several insect each year (the “return migration” hypothesis). orders, migrate poleward from lower-latitude winter habitats each To distinguish between these hypotheses, we used a national spring to exploit temporary resources where they can reproduce network of light traps (32) to quantify intra- and interannual during the summer but are unable to survive over winter (2–9). variation in A. gamma populations at ground level during 1976– Compared with our knowledge of the energetic costs, mortality 2009 and specially developed vertical-looking entomological risks, and reproductive benefits of bird migration (10–16), the radars (9) to quantify the intensity of high-altitude migrations adaptive benefits and population dynamics consequences of insect into and out of the United Kingdom in 2000–2009 (Fig. 1). The migration are poorly understood (6–9). For most migratory insects, radars show that A. gamma moths undergo a period of intense their low-latitude winter habitats are considered to be the major northward migration in spring (May and June), followed by breeding grounds. In fact, some authors have previously suggested greatly reduced randomly orientated flights during midsummer that seasonal poleward shifts to exploit temperate ecosystems (July), and another period of intense southward migration in the represent a population sink from which progeny seldom returned: fall (August and September) (Fig. 2, Fig. S1, and Table S1). We a phenomenon known as the “Pied Piper” effect (17, 18). This therefore restricted analyses of migration intensities to radar notion made little evolutionary sense, however, and has been data collected during the spring and fall journeys. contested (7, 8, 19); moreover, return flights have been observed in many species (5, 7–9, 20–25). However, it is unclear whether high- Results and Discussion latitude breeding results in net reproductive benefits to migrating Summer A. gamma populations in the United Kingdom showed species or whether significant proportions of the progeny produced a pronounced pattern of annual abundance: during 2000–2009, over the summer successfully make it back to regions where they can breed again, and there is no information on population sizes and migration intensities between zones. These are vital issues Author contributions: J.W.C., D.R.R., J.K.H., and J.A.T. designed research; J.W.C. and J.A.T. because billions of insects immigrate annually to, or within, the performed research; J.W.C., J.R.B., L.E.B., L.B.P., and M.B.B. analyzed data; and J.W.C., D.R.R., temperate zone, providing major ecosystem services as well as, in J.K.H., M.B.B., and J.A.T. wrote the paper. some cases, causing serious crop damage and spreading diseases of The authors declare no conflict of interest. humans and their livestock (9). This article is a PNAS Direct Submission. Here we combine analyses of long-term field data, migration 1To whom correspondence should be addressed. E-mail: [email protected]. trajectory simulations, and population dynamic modeling to This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. study these questions in the Palaearctic noctuid moth Autographa 1073/pnas.1207255109/-/DCSupplemental. 14924–14929 | PNAS | September 11, 2012 | vol. 109 | no. 37 www.pnas.org/cgi/doi/10.1073/pnas.1207255109 Downloaded by guest on September 30, 2021 Fig. 1. Seasonal changes in Autographa gamma populations and migrations. (A) Annual variation in the mean nightly flux per square kilometer of high- altitude spring immigrants to the United Kingdom recorded at two radar stations in 2000–2009 com- pared with measurements by 25 light traps of the adult spring populations established at ground level. Mass invasions (open circles) occurred in 2000, 2003, and 2006 (y = 33.78 + 0.00664x, n = 10, F = 19.11, P = 0.002, r2 = 70.5%). (B–D) seasonal changes in the United Kingdom (n = 10 y): (B) mean number recorded at ground level by light traps in spring and fall (Student’s paired t = −5.6, P = 0.000); (C) mean nightly flux per square kilometer of high-altitude spring immigrants and fall emigrants measured by radar (t = −2.53, P =0.032);(D) mean annual pop- ulation increases (t =1.81,P =0.104).(E) Total num- ber of emigrants that migrated southward measured by radar against the estimated total UK A. gamma population each fall (dashed line = 1:1, y =2.231+ 0.714x, n =10,F =23.39,P =0.001,r2 =74.5%). three mass invasion years (2000, 2003, and 2006) had high im- winter in the United Kingdom (or at similar latitudes across − migrant migration fluxes in spring—775,000 ± 15,000 moths km 2 Europe), we conclude that the entire population emigrates an- (mean ± 1 SE), corresponding to an estimated 225–240 million nually toward its winter-breeding grounds. adult A. gamma immigrating into the whole United Kingdom— For the apparent reproductive benefits of high-latitude whereas the other 7 y received roughly one-ninth that number: breeding (fourfold population increase) to be realized, moths are − 88,000 ± 12,000 moths km 2, corresponding to ∼10–40 million dependent upon successful return migrations in the fall. To immigrants (Table S2). This variation correlates closely with light- evaluate these migrations, we used a version of the atmospheric trap monitoring of the size of the population founded at ground dispersion model “Numerical Atmospheric-dispersion Modeling level by these immigrants each spring (Fig. 1A and Table S3). Environment” (NAME) (Methods) that combines the effect of In 2000–2009, each moth arriving in the spring (first genera- wind currents with A. gamma flight behavior [e.g., selection of tion) produced 4.3 ± 0.7 adults in the next (second) UK gener- favorable airstreams and beneficial flight headings (22–25)] to ation (Fig. 1 B and D), with similar (mean = 4.8) seasonal simulate migration pathways of emigrants leaving the United increases occurring over all of the 34 consecutive years for which Kingdom on 30 nights when mass return migrations were detec- we possess light-trap data (Fig.
Recommended publications
  • Molecular Basis of Pheromonogenesis Regulation in Moths
    Chapter 8 Molecular Basis of Pheromonogenesis Regulation in Moths J. Joe Hull and Adrien Fónagy Abstract Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specifc, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecifc males as olfactory cues regarding female reproduc- tive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although signifcant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased avail- ability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of phero- mone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal trans- duction cascade that utilizes an infux of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specifc to each species. In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and con- clude by highlighting recent developments in the literature that disrupt/exploit this critical pathway. J. J. Hull (*) USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA e-mail: [email protected] A.
    [Show full text]
  • Lepidoptera Learning Objective
    QUARANTINE SIGNIFICANT LEPIDOPTERA OF CONCERN TO THE SOUTHERN UNITED STATES STEVEN PASSOA USDA/APHIS/PPQ 2007 1 LEPIDOPTERA GOALS . Learn techniques of specimen preparation and submission for CAPS Lepidoptera . Develop a list of Lepidoptera of regulatory concern to the southern USA . Learn to SCREEN samples for these species in the stage most likely to be seen by diagnostic labs using the MAJOR characters. Some species are only defined by a combination of features. In those cases, using the associated key and references listed is more accurate. Give examples from the major superfamilies . Distributions and hosts mentioned are the most likely pathways 2 DEVELOP A LIST . Criteria originally modified from biocontrol of weeds list in July 1991 memo, then modified by NEPSC committee . Now widely used in APHIS as mini-PRA . Survey methodology and taxonomic recognition added to economic criteria . Results are either threats (no pathway), CAPS targets (need to survey), or a dead survey (not practical to consider) 3 WHY LABS HATE TO IDENTIFY LEPIDOPTERA . Secret society of critical characters . Constant name changes . Characters hard to see, covered with scales, or both 4 EGGS . Two types . Do not kill important finds and sent urgent . Plan to rear them in a quarantine facility . Spodoptera and Lymantria (and others) cover the eggs with scales from the female’s body 5 LARVAE . Associate leaf miners with the mine and host . Mouthparts are the “genitalia” of the larval world . Fill vials so there is no air bubble when shipping . “Burp” rubber stoppers and parafilm screw top vials . Can kill and ship in vinegar . Put loose parts in small vials 6 PUPAE .
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • The Anti-Lebanon Ridge As the Edge of the Distribution Range for Euro
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Kravchenko, V. D.; Friedman, A.-L.-L.; Müller, G. C. The Anti-Lebanon ridge as the edge of the distribution range for Euro-Siberian and Irano- Turanian faunistic elements in the Mediterranean biome: A case study (Lepidoptera: Noctuidae) SHILAP Revista de Lepidopterología, vol. 45, núm. 180, diciembre, 2017, pp. 639-650 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45553890016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 45 (180) diciembre 2017: 639-650 eISSN: 2340-4078 ISSN: 0300-5267 The Anti-Lebanon ridge as the edge of the distribution range for Euro-Siberian and Irano-Turanian faunistic elements in the Mediterranean biome: A case study (Lepidoptera: Noctuidae) V. D. Kravchenko, A.-L.-L. Friedman & G. C. Müller Abstract The Lebanon and Anti-Lebanon ridges are located in the middle of a narrow “Mediterranean ecozone” corridor stretching along the Levantine coast. Both ridges are high enough to feature a complete range of altitude zones, which includes an alpine tragacanth belt (> 2000 m a.s.l.). The southernmost part of the Anti-Lebanon ridge is situated in the northernmost part of Israel. Among the 548 Israeli Noctuidae species, 106 species (21%) occur only in this small mountainous area. Among them, 17 are endemic and the populations of the remaining 89 species are at the edge of their distribution range.
    [Show full text]
  • Cerambycid Beetle Species with Similar Pheromones Are Segregated by Phenology and Minor Pheromone Components
    J Chem Ecol (2015) 41:431–440 DOI 10.1007/s10886-015-0571-0 Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components Robert F. Mitchell1,4 & Peter F. Reagel 1,5 & Joseph C. H. Wong1 & Linnea R. Meier1 & Weliton Dias Silva3 & Judith Mongold-Diers1 & Jocelyn G. Millar2 & Lawrence M. Hanks1 Received: 1 December 2014 /Revised: 11 February 2015 /Accepted: 27 February 2015 /Published online: 16 April 2015 # Springer Science+Business Media New York 2015 Abstract Recent research has shown that volatile sex and periods of adults, and/or by minor pheromone components that aggregation-sex pheromones of many species of cerambycid act as synergists for conspecifics and antagonists for beetles are highly conserved, with sympatric and synchronic heterospecifics. species that are closely related (i.e., congeners), and even more distantly related (different subfamilies), using the Keywords Reproductive isolation . Sex pheromone . same or similar pheromones. Here, we investigated mecha- Aggregation pheromone . Cerambycidae . Longhorned nisms by which cross attraction is averted among seven beetle . Anelaphus pumilus . Cyrtophorus verrucosus . cerambycid species that are native to eastern North America Euderces pini . Neoclytus caprea . Phymatodes aereus . and active as adults in spring: Anelaphus pumilus (Newman), Phymatodes amoenus . Phymatodes varius Cyrtophorus verrucosus (Olivier), Euderces pini (Olivier), Neoclytus caprea (Say), and the congeners Phymatodes aereus (Newman), P. amoenus (Say), and P.
    [Show full text]
  • A Contribution to the Knowledge of the Lepidoptera Fauna of Albania. 1
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 1995 Band/Volume: 26 Autor(en)/Author(s): Beshkov Stoyan V., Misja Kastriot Artikel/Article: A Contribution to the knowledge of the Lepidoptera fauna of Albania. 1. Some materials from the collection of K. Misja in the Natural History Museum Tirana and some results of the collecting trip of Beshkov during 1992 (Lepidoptera, Macrolepidoptera) 345-363 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at _________Atalanta (June 1995) 26(1/2): 345-363, Wurzburg, ISSN 0171-0079 _________ A Contribution to the knowledge of the Lepidoptera fauna of Albania. 1. Some materials from the collection of K. M is ja in the Natural History Museum Tirana and some results of the collecting trip of B e s h k o v during 1992 (Lepidoptera, Macrolepidoptera) by S toyan B e s h k o v & K a s t r io t M isja received 10.11.1994 Abstract: The present work is the result of a critical study on the collection of Lepidoptera of Prof. Dr. Kastriot Misja in the Natural History Museum Tirana, and forms part of the results of Stoyan B eshkov 's collecting trip in June 1992 in Northern and Southern Albania. The occurrence of each of the mentioned species is given for Albania, following all the literature known by the authors. Illustrations of the male or female genitalia for some previously wrong­ ly determined or published species are given. The number of the new genera for Albania is 11, the number of the new species for Albania is 23, and the number of the new subspecies for the country is 2.
    [Show full text]
  • 257 Part 319—Foreign Quarantine Notices
    Animal and Plant Health Inspection Service, USDA Pt. 319 PART 319—FOREIGN QUARANTINE 319.15a Administrative instructions and in- terpretation relating to entry into Guam NOTICES of bagasse and related sugarcane prod- ucts. Subpart—Requests To Amend The Regulations Subpart—Citrus Canker and Other Citrus Diseases 319.5 Requirements for submitting requests to change the regulations in 7 CFR part 319.19 Notice of quarantine. 319. Subpart—Corn Diseases Subpart—Foreign Cotton and Covers QUARANTINE QUARANTINE 319.24 Notice of quarantine. Sec. 319.24a Administrative instructions relating 319.8 Notice of quarantine. to entry of corn into Guam. 319.8a Administrative instructions relating to the entry of cotton and covers into REGULATIONS GOVERNING ENTRY OF INDIAN Guam. CORN OR MAIZE 319.24–1 Applications for permits for impor- REGULATIONS; GENERAL tation of corn. 319.8–1 Definitions. 319.24–2 Issuance of permits. 319.24–3 Marking as condition of entry. CONDITIONS OF IMPORTATION AND ENTRY OF 319.24–4 Notice of arrival of corn by per- COTTON AND COVERS mittee. 319.8–2 Permit procedure. 319.24–5 Condition of entry. 319.8–3 Refusal and cancellation of permits. 319.8–4 Notice of arrival. Subpart—Citrus Fruit 319.8–5 Marking of containers. 319.28 Notice of quarantine. 319.8–6 Cottonseed cake and cottonseed meal. 319.8–7 Processed lint, linters, and waste. Subpart—Nursery Stock, Plants, Roots, 319.8–8 Lint, linters, and waste. Bulbs, Seeds, and Other Plant Products 319.8–9 Hull fiber and gin trash. 319.37 Prohibitions and restrictions on im- 319.8–10 Covers.
    [Show full text]
  • Hyacinthaceae): Pollination of D
    SAJB-00783; No of Pages 4 Available online at www.sciencedirect.com South African Journal of Botany 81 (2012) 15–18 www.elsevier.com/locate/sajb Short Communication First record of pollination in the Afro-Eurasian Dipcadi Medik. (Hyacinthaceae): pollination of D. brevifoliumi by the owlet moth Syngrapha circumflexa (Noctuidae) ⁎ J.C. Manning a,b, , P. Goldblatt c, E. Parker d, R. Kaiser a a Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, Cape Town b Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa c B.A. Krukoff Curator of African Botany, Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166, USA d Elandsberg Nature Reserve, Bo-Hermon, South Africa Received 4 January 2012; received in revised form 19 March 2012; accepted 20 March 2012 Abstract Flowers of Dipcadi brevifolium (Hyacinthaceae) exhibit the characteristics associated with phalaenophily, or pollination by settling moths, notably a dull-coloured, shortly tubular perianth with included anthers, and nocturnal scent. Flowers are self-incompatible and produce an unusual, sour/acrid floral scent dominated by isobutyric acid, 2-methylbutyric acid and jasmine. The moth Syngrapha circumflexa (Noctuidae) was recorded as a pollinator, representing the first pollination record for the species and for the genus. © 2012 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Dipcadi; Hyacinthaceae; Moth pollination; Pollination biology; Scent chemistry; Syngrapha 1. Introduction southern Africa but extending into central Asia, Madagascar and India (Speta, 1998). All have characteristic, dull-coloured, tubular Hyacinthaceae are a large and florally diverse family of±900 flowers with included anthers, and several of the southern African spp.
    [Show full text]
  • The Plusiinae of Israel (Lepidoptera: Noctuidae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Kravchenko, V. D.; Fibiger, M.; Ronkay, L.; Orlova, O. B.; Mooser, J.; Li, C.; Muller, G. C. The Plusiinae of Israel (Lepidoptera: Noctuidae) SHILAP Revista de Lepidopterología, vol. 33, núm. 132, december, 2005, pp. 449-459 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45513209 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 449-459 The Plusiinae of Israel 15/12/05 19:00 Página 449 SHILAP Revta. lepid., 33 (132), 2005: 449-459 SRLPEF ISSN:0300-5267 The Plusiinae of Israel (Lepidoptera: Noctuidae) V. D. Kravchenko, M. Fibiger, L. Ronkay, O. B. Orlova, J. Mooser, C. Li & G. C. Muller Abstract The distribution, flight period and abundance of the 16 Israeli Plusiinae are summarized. Three species Eu- chalcia aureolineata, Euchalcia augusta and Macdunnoughia confusa are new records for the country. Three species previously recorded have not been found during this survey: Euchalcia aureolineata, Euchalcia emichi and Abrosto- la clarissa. The distribution pattern, phenology, ecology and the association of these species with the main phytoge- ographical zones of Israel are described. Most of the species are ubiquitous in different kind of open Mediterranean biotopes, three species prefer forests habitats, and four Euchalcia species were restricted to steppe areas along the Rift Valley.
    [Show full text]
  • Noctuoid Moths (Lepidoptera: Erebidae, Nolidae, Noctuidae) of North-East Kazakhstan (Pavlodar Region)
    Ukrainian Journal of Ecology Ukrainian Journal of Ecology, 2017, 7(2), 142–164, doi: 10.15421/2017_32 ORIGINAL ARTICLE UDC 595.786 Noctuoid moths (Lepidoptera: Erebidae, Nolidae, Noctuidae) of North-East Kazakhstan (Pavlodar Region) S.V. Titov1, A.V. Volynkin2,3, V.V. Dubatolov4, M. Černila5, S.M. Reznichenko6 & V.S. Bychkov7 1 The Research Centre for Environmental 'Monitoring', S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 2 Altai State University, Lenina pr. 61, Barnaul, RF-656049, Russia. E-mail: [email protected] 3 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, RF-634050, Tomsk, Russia 4 Institute of Systematics and Ecology of Animals, SB RAS, Frunze str. 11, RF-630091, Novosibirsk, Russia E-mail: [email protected] 5 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] 6 Shcherbakty branch of the Republican methodical center of phytosanitary diagnostics and forecasts, Sovetov 44, KZ-141000, Sharbakty, Shcherbakty distr., Pavlodar Region. E-mail: [email protected] 7 Institute of Archaeology named after A. Kh. Margulan, 44 Avenue Dostyk, st. Shevchenko 28, KZ-050010, Almaty, Kazakhstan. E-mail: [email protected] Submitted: 02.04.2017. Accepted: 23.05.2017 The paper contains data on the fauna of the Lepidoptera families Erebidae, Nolidae and Noctuidae of Pavlodar Region (North-East Kazakhstan). The check list includes 480 species (100 species of Erebidae, 8 species of Nolidae and 372 species of Noctuidae), 393 species are reported for the region for the first time. The map of collecting localities and pictures of the main landscapes of the region are presented.
    [Show full text]
  • The Mothematics of Female Pheromone Signaling: Strategies for Aging Virgins
    vol. 185, no. 3 the american naturalist march 2015 The Mothematics of Female Pheromone Signaling: Strategies for Aging Virgins Kate D. L. Umbers,1,2,* Matthew R. E. Symonds,3 and Hanna Kokko1,4 1. Centre of Excellence in Biological Interactions, Division of Ecology, Evolution, and Genetics, Research School of Biology, Australian National University, Canberra 0200, Australia; 2. School of Biological Sciences, University of Wollongong, Wollongong 2252, Australia; Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6008, Australia; and Department of Biological Sciences, Macquarie University, North Ryde 2109, Australia; 3. Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia; 4. Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, Berlin 14193, Germany Submitted February 24, 2014; Accepted October 3, 2014; Electronically published February 2, 2015 Online enhancement: appendix. of mate searching (Barnes 1982; Kasumovic and Andrade abstract: Although females rarely experience strong mate limita- 2004; Kasumovic et al. 2007; Ambrogi et al. 2008), and tion, delays or lifelong problems of mate acquisition are detrimental to female fitness. In systems where males search for females via females are more likely than males to encounter more pheromone plumes, it is often difficult to assess whether female mates than required for optimal fitness (Kokko and Wong signaling is costly. Direct costs include the energetics of pheromone 2007). Encountering too many mates can be costly rather production and attention from unwanted eavesdroppers, such as than merely superfluous (Arnqvist and Nilsson 2000; Ka- parasites, parasitoids, and predators. Suboptimal outcomes are also wagoe et al.
    [Show full text]
  • Contribution to the Noctuid Fauna of NE Iran: Noctuinae, Hadeninae and Plusiinae (Lepidoptera), with Additions to the Iranian Fauna
    Contribution to the noctuid fauna of NE Iran: Noctuinae, Hadeninae and Plusiinae (Lepidoptera), with additions to the Iranian fauna Mohammad Mahdi Rabieh, Ali Asghar Seraj & Mehdi Esfandiari Abstract. A faunistic study on the family Noctuidae was carried out in the Khorasan-e-Razavi province, Northeastern Iran in 2010 and 2011. A total of 64 species of the subfamilies Noctuinae, Hadeninae and Plusiinae belonging to 25 genera were collected. Among them three species and one subspecies are reported for the first time from Iran: Noctua fimbriata (Schreber, 1795), Euxoa sayvana Varga & Ronkay, 1998, Eicomorpha firyuza Ronkay, Varga & Hreblay, 1998 and Hadena compta armeriae (Guenée, 1852). For these species, illustrations of adults and their genitalia are given with notes on the bionomy and distribution. Also, 21 species and subspecies were recorded for the first time from Khorasan-e-Razavi province. A list of the collected species is presented. Samenvatting. Bijdrage tot de studie van de Noctuidae-fauna van Noordoost-Iran: Noctuinae, Hadeninae en Plusiinae (Lepidoptera), met nieuwe soorten voor de Iraanse fauna In de provincie Khorasan-e-Razavi, Noordoost-Iran, werd een faunistische studie van de Noctuidae uitgevoerd in 2010 en 2011. In het totaal werden 64 soorten uit de subfamilies Noctuinae, Hadeninae en Plusiinae verzameld, behorend tot 25 genera. Drie soorten en één ondersoort worden voor het eerst uit Iran vermeld: Noctua fimbriata (Schreber, 1795), Euxoa sayvana Varga & Ronkay, 1998, Eicomorpha firyuza Ronkay, Varga & Hreblay, 1998 en Hadena compta armeriae (Guenée, 1852). Van deze taxa worden de adulten en genitalia afgebeeld en informatie over de bionomie en verspreiding gegeven. Eenentwintig soorten en ondersoorten worden voor het eerst uit de provincie Khorasan-e-Razavi vermeld.
    [Show full text]