Geologic Activities in the 90S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions Gilles Didier, Michel Laurin
Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier, Michel Laurin To cite this version: Gilles Didier, Michel Laurin. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions. 2021. hal-03258099v2 HAL Id: hal-03258099 https://hal.archives-ouvertes.fr/hal-03258099v2 Preprint submitted on 20 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1 IMAG, Univ Montpellier, CNRS, Montpellier, France 2 CR2P (\Centre de Pal´eontologie { Paris"; UMR 7207), CNRS/MNHN/SU, Mus´eumNational d'Histoire Naturelle, Paris, France September 16, 2021 Abstract Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently. -
Sophisticated Stratigraphy – How We Got Here Andrew D
Sophisticated Stratigraphy – How we got here Andrew D. Miall University of Toronto Summary Stratigraphy is the key to the understanding of Earth history. “Sophisticated stratigraphy” is the science that is now being practiced. It refers to new tools, the application of advanced analytical techniques, and new forms of interpretation. Refinement of the geological time scale is an essential part of this work. and has been joined by new concepts of cyclostratigraphy and astrochronology. The modern stratigraphic record has been rendered comprehensible by developments in sedimentology and sequence stratigraphy, and has been fleshed out by the addition of much primary data obtained from the Deep-Sea Drilling Project and its successors. This paper summarizes the history of progress that was accelerated by the needs of petroleum exploration, beginning in the early 20th century. The history of modern stratigraphic methods The first stratigrapher was the canal engineer, William Smith, who enunciated the principle of the orderly succession of strata and their contained fossils, and produced the first comprehensive regional geological map, in 1815. It has taken 200 years and a revolution to bring all the necessary modern developments together to create the dynamic science of Fig. 1. sophisticated stratigraphy. Until the 1960s, stratigraphy was largely a descriptive science, concerned primarily with the documentation of the lithologic and biostratigraphic successions of sedimentary basins as a basis for locating and exploiting fossil fuel and mineral deposits. The distinguished petroleum geologist Levorsen (1954) initiated many new ideas. However, over the last fifty years a profound change in approach has taken place, initially under the rubric of Sedimentology, which took sedimentary geologists away from description and classification into a focus on processes (Fig. -
Geologic Studies of Union County, New Mexico
Bulletin 63 New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Geologic Studies of Union County, New Mexico by Brewster Baldwin and William R. Muehlberger SOCORRO 1959 NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY KENNETH W. FORD, President NEW MEXICO BUREAU OF MINES & MINERAL RESOURCES FRANK E. KOTTLOWSKI, Director GEORGE S. Austin, Deputy Director BOARD OF REGENTS Ex Officio Bruce King, Governor of New Mexico Leonard DeLayo, Superintendent of Public Instruction Appointed William G. Abbott, Secretary-Treasurer, 1961-1985, Hobbs Judy Floyd, President, 1977-1981, Las Cruces Owen Lopez, 1977-1983, Santa Fe Dave Rice, 1972-1983, Carlsbad Steve Torres, 1967-1985, Socorro BUREAU STAFF Full Time MARLA D. ADKINS, Assistant Editor LYNNE MCNEIL, Staff Secretary ORIN J. ANDERSON, Geologist NORMA J. MEEKS, Department Secretary RUBEN ARCHULETA, Technician I ARLEEN MONTOYA, Librarian/Typist WILLIAM E. ARNOLD, Scientific Illustrator SUE NESS, Receptionist ROBERT A. BIEBERMAN, Senior Petrol. Geologist ROBERT M. NORTH, Mineralogist LYNN A. BRANDVOLD, Chemist JOANNE C. OSBURN, Geologist CORALE BRIEBLEY, Chemical Microbiologist GLENN R. OSBURN, Volcanologist BRENDA R. BROADWELL, Assoc. Lab Geoscientist LINDA PADILLA, Staff Secretary FRANK CAMPBELL, Coal Geologist JOAN C. PENDLETON, Associate Editor RICHARD CHAMBERLIN, Economic Geologist JUDY PERALTA, Executive Secretary CHARLES E. CHAPIN, Senior Geologist BARBARA R. Popp, Lab. Biotechnologist JEANETTE CHAVEZ, Admin. Secretary I ROBERT QUICK, Driller's Helper/Driller RICHARD R. CHAVEZ, Assistant Head, Petroleum MARSHALL A. REITER, Senior Geophyicist RUBEN A. CRESPIN, Laboratory Technician II JACQUES R. RENAULT, Senior Geologist Lois M. DEVLIN, Director, Bus.-Pub. Office JAMES M. ROBERTSON, Mining Geologist KATHY C. EDEN, Editorial Technician GRETCHEN H. -
The Los Medaños Member of the Permian (Ochoan) Rustler Formation
The Los Medaños Member of the Permian (Ochoan) Rustler Formation by Dennis W. Powers, HC 12 Box 87, Anthony, TX 79821; and Robert M. Holt, Dept. of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Abstract We propose Los Medaños Member as the formal name for the lower part of the Upper Permian (Ochoan) Rustler Formation, below R31E the Culebra Dolomite Member, in the north- ern Delaware Basin. The stratotype is at the exhaust shaft of the Waste Isolation Pilot Exhaust Plant (WIPP) site in sec 20 T22S R31E, Eddy shaft T22S County, New Mexico. The name is derived from the nearby sand dune field (Los Meda- ños) and the quadrangle map of the same WIPP site name. Cores of the Los Medaños from WIPP studies correspond to the exhaust-shaft Los Medanos~ geology, though larger features revealed in T23S the shaft must be inferred. Geophysical log signatures permit regional correlations and interpretation of lithology. Outcrops of this Midland unit are poorly exposed and have been little Basin studied. Recent radiometric ages from cor- Hobbs relative units in the Texas panhandle sug- San Simon Study gest that the top of the Rustler is near the area Permian–Triassic boundary. Carlsbad The stratotype consists of 34.4 m of silici- WIPP Central Basin clastics, halitic mudstones, muddy halite, Nash Draw and sulfates (mainly anhydrite). Bedding, Platform invertebrate fossil remains, and bioturba- New Mexico Midland tion indicate a saline lagoon with connec- Texas tions to open marine water, in contrast to the Odessa shallow-water, desiccating evaporite cycles of the underlying Salado Formation. -
Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448028; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France June 11, 2021 Abstract Given a phylogenetic tree of extinct and extant taxa with fossils where the only temporal infor- mation stands in the fossil ages, we devise a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account the possibility that the taxa or the clade considered may diversify before going extinct, whilst previous methods just rely on the fossil recovery rate to estimate confidence intervals. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian, or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that a biological crisis occurred in the late Kungurian/early Roadian. -
Salt Caverns Studies
SALT CAVERN STUDIES - REGIONAL MAP OF SALT THICKNESS IN THE MIDLAND BASIN FINAL CONTRACT REPORT Prepared by Susan Hovorka for U.S. Department of Energy under contract number DE-AF22-96BC14978 Bureau of Economic Geology Noel Tyler, Director The University of Texas at Austin Austin, Texas 78713-8924 February 1997 CONTENTS Executive Summmy ....................... ..... ...................................................................... ...................... 1 Introduction ..................................................... .. .............................................................................. 1 Purpose .......................................................................................... ..................................... ............. 2 Methods ........................................................................................ .. ........... ...................................... 2 Structural Setting and Depositional Environments ......................................................................... 6 Salt Thickness ............................................................................................................................... 11 Depth to Top of Salt ...................................................................................................................... 14 Distribution of Salt in the Seven Rivers, Queen, and Grayburg Formations ................................ 16 Areas of Salt Thinning ................................................................................................................. -
A Re-Evaluation of the Enigmatic Dinosauriform Caseosaurus Crosbyensis from the Late Triassic of Texas, USA and Its Implications for Early Dinosaur Evolution
A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution MATTHEW G. BARON and MEGAN E. WILLIAMS Baron, M.G. and Williams, M.E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63 (1): 129–145. The holotype specimen of the Late Triassic dinosauriform Caseosaurus crosbyensis is redescribed and evaluated phylogenetically for the first time, providing new anatomical information and data on the earliest dinosaurs and their evolution within the dinosauromorph lineage. Historically, Caseosaurus crosbyensis has been considered to represent an early saurischian dinosaur, and often a herrerasaur. More recent work on Triassic dinosaurs has cast doubt over its supposed dinosaurian affinities and uncertainty about particular features in the holotype and only known specimen has led to the species being regarded as a dinosauriform of indeterminate position. Here, we present a new diagnosis for Caseosaurus crosbyensis and refer additional material to the taxon—a partial right ilium from Snyder Quarry. Our com- parisons and phylogenetic analyses suggest that Caseosaurus crosbyensis belongs in a clade with herrerasaurs and that this clade is the sister taxon of Dinosauria, rather than positioned within it. This result, along with other recent analyses of early dinosaurs, pulls apart what remains of the “traditional” group of dinosaurs collectively termed saurischians into a polyphyletic assemblage and implies that Dinosauria should be regarded as composed exclusively of Ornithoscelida (Ornithischia + Theropoda) and Sauropodomorpha. In addition, our analysis recovers the enigmatic European taxon Saltopus elginensis among herrerasaurs for the first time. -
Palynology of the Upper Chinle Formation in Northern New Mexico, U.S.A
Lindström et al. 1 1 Palynology of the upper Chinle Formation in northern New Mexico, U.S.A.: 2 implications for biostratigraphy and terrestrial ecosystem change during the Late 3 Triassic (Norian–Rhaetian) 4 a* b c d 5 Sofie Lindström , Randall B. Irmis , Jessica H. Whiteside , Nathan D. Smith , Sterling J. e f 6 Nesbitt , and Alan H. Turner 7 a 8 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen 9 K, DENMARK, [email protected] b 10 Natural History Museum of Utah and Department of Geology & Geophysics, University of 11 Utah, Salt Lake City, UT 84108-1214, USA c 12 Ocean and Earth Science, National Oceanography Centre Southampton, University of 13 Southampton, European Way, Southampton SO14 3ZH, UNITED KINGDOM d 14 Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 15 90007, USA e 16 Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, 17 Virginia 24601 USA f 18 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 19 11794-8081, USA 20 21 Abstract 22 A new densely sampled palynological record from the vertebrate-bearing upper Chinle 23 Formation at Ghost Ranch in the Chama Basin of northwestern New Mexico provides insights 24 into the biostratigraphy and terrestrial ecosystem changes during the Late Triassic of 25 northwestern Pangaea. Spore-pollen assemblages from the Poleo Sandstone, Petrified Forest, Lindström et al. 2 26 and 'siltstone' members are dominated by pollen of corystospermous seed ferns (Alisporites) 27 and voltziacean conifers (Enzonalasporites, Patinasporites). Other abundant taxa include 28 Klausipollenites gouldii and the enigmatic fused tetrad Froelichsporites traversei, whereas 29 spores of ferns and fern allies are generally rare. -
Bulletin No. 6
Bulletin no. 6 Dr. Robert D. McCord and Debra Boaz, eds. Bulletin number 6 was produced as a companion to the 1999 Southwest Paleontological Symposium hosted by the Mesa Southwest Museum and the Southwest Paleontological Society (SPS). The volume is a collection of papers and descriptive abstracts of the presentations given by professional scientists, students, and avocationists. The subject matter is broad, reflecting the abundance of paleontological resources in the southwestern region. 60 pages. Southwest Paleontological Symposium Proceedings Mesa Southwest Museum Bulletin No. 6 Table of Contents Enigmatic Structures in the Apache Group, 1.2 GA., North‐Central Arizona (abstract) John McClellan and Carol M. Tang Department of Geology Arizona State University Skolithos Piperock in the Bolsa Quartzite (Cambrian), Whetstone Mountains, Arizona (abstract) Carol M. Tang Department of Geology Arizona State University Description of Two Coral Species in the Devonian Martin Formation (Kohl's Ranch, Arizona) (abstract) Lisa Glonek and Carol M. Tang Department of Geology Arizona State University Brachiopod Variation Within the Lower Pennsylvanian Naco Formation, Tonto Creek, Central Arizona (abstract) E.M. Young and Carol M. Tang Department of Geology Arizona State University Lower Chinle Group (Upper Triassic: Upper Carnian) Tetrapods from the Vicinity of Cameron, Arizona (abstract) A. B. Heckert Department of Earth & Planetary Science University of New Mexico S. G. Lucas and J. W. Estep New Mexico Museum of Natural History and Science Additions to the Vertebrate Fauna of the Upper Triassic Blue Mesa Member (Adamanian‐Latest Carnian) of the Petrified Forest Formation in the Blue Hills, Apache County, Arizona (abstract) A. B. Heckert Department of Earth & Planetary Science University of New Mexico S. -
Envision Odessa Master Plan
2016 S XA , TE O DESSA Table of Contents Table of Contents ................................................................................................. i Acknowledgements ............................................................................................ v Odessa’s Roadmap .............................................................................................. 3 Community Snapshot: Who We Are ................................................................... 9 Our History .............................................................................................................................................. 10 Population ............................................................................................................................................... 12 Demographics .......................................................................................................................................... 15 Demographic Changes ............................................................................................................................. 18 Economics ................................................................................................................................................ 20 Planning Area .......................................................................................................................................... 26 Existing Land Use .................................................................................................................................... -
KCGI: the Kyoto College of Graduate Studies for Informatics
Japan’s first IT professional graduate school KCGI:KCGI: TheThe KyotoKyoto CollegeCollege ofof GraduateGraduate StudiesStudies forfor InformaticsInformatics Study cutting-edge IT in Kyoto, Japan Link to the Pioneer Spirit URL: https://www.kcg.edu/ E-mail: [email protected] Inquiries: Admissions Section, The Kyoto College of Graduate Studies for Informatics 7 Tanakamonzen-cho, Sakyo-ku, Kyoto 606-8225, Japan Telephone: 075-681-6334 (+81-75-681-6334 outside Japan) Fax: 075-671-1382 (+81-75-671-1382 outside Japan) 英 語 202107 No. 1 & the Only One ! In order to cultivate high level professionals in the field of IT School Philosophy The objective of our school is to train highly-qualified information With the advancements in science and technology, technology professionals with strong practical knowledge remarkable technological innovations, and radical of the current business practices, a solid theoretical background, and a creative and innovative spirit which will enable them to meet socioeconomic changes (diversi�ication, increasing the demands of society and to be responsible for the current complexity, increasing sophistication, globalization, and future generation. and the arrival of the age of IoT, etc.) in recent years, expectations for the education of high level IT professionals viable both in Japan and internationally KCGI's Mission and Purpose are rapidly increasing. In the �ield of IT, however, which spans such To meet the need for high level and diverse human resources specialty �ields as information and management, in our IT society and, furthermore, to contribute to the realization the number of colleges and graduate schools able to of a high level information society and the development of meet the challenges of cultivating high level IT the economy through the provision of high level IT professionals system professionals has been virtually almost zero who possess extensive knowledge and high level skills beyond what is conventional and who are also internationally minded until now. -
Speleogenesis and Delineation of Megaporosity and Karst
Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations 12-2016 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Jon T. Ehrhart Stephen F. Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Hydrology Commons, and the Speleology Commons Tell us how this article helped you. Repository Citation Ehrhart, Jon T., "Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas" (2016). Electronic Theses and Dissertations. 66. https://scholarworks.sfasu.edu/etds/66 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/66 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas By Jon Ehrhart, B.S. Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the requirements For the Degree of Master of Science STEPHEN F.