Caracterização De Cogumelos Silvestres Da Espécie Amanita Ponderosa

Total Page:16

File Type:pdf, Size:1020Kb

Caracterização De Cogumelos Silvestres Da Espécie Amanita Ponderosa Caracterização de cogumelos silvestres da espécie Amanita ponderosa Produção de metabolitos com atividade biológica Cátia Sofia Clemente Salvador Tese apresentada à Universidade de Évora para obtenção do Grau de Doutor em Bioquímica ORIENTADORAS: Prof. Doutora Ana Teresa Fialho Caeiro Caldeira Prof. Doutora Maria do Rosário Caeiro Martins Doutora Maria de Fátima Pereira Duarte ÉVORA, DEZEMBRO 2014 INSTITUTO DE INVESTIGAÇÃO E FORMAÇÃO AVANÇADA Esta Tese teve o apoio financeiro da Fundação para a Ciência e a Tecnologia (FCT) (Bolsa de Doutoramento, SFRH/BD/61184/2009), através do programa QREN-POPH-tipologia 4.1., coparticipado pelo Fundo Social Europeu (FSE) e Fundo Nacional MCTES. “ A alegria de ver e compreender é a mais bela dádiva da natureza” Albert Einstein Agradecimentos À minha orientadora Professora Ana Teresa Caldeira e coorientadora Professora Maria do Rosário Martins apresento um profundo agradecimento pelo suporte prestado nesta longa etapa. Agradeço imenso pela permanente orientação, por todo o auxílio, dedicação e incansável disponibilidade durante a realização deste trabalho. Agradeço também a amizade, apoio e incentivo que me permitiu concluir este projeto. À minha coorientadora Doutora Maria de Fátima Duarte, do centro de investigação CEBAL, agradeço pela forma como me acolheu na sua equipa de investigação, pela disponibilidade e interesse que sempre mostrou e principalmente pela orientação numa relevante parte do meu trabalho que foram os ensaios em cultura de células. Ao Professor José Maria dos Santos Arteiro agradeço por todos os conhecimentos transmitidos desde que iniciei o trabalho no Laboratório de Biotecnologia e pelas importantes palavras de incentivo e encorajamento para continuar a apostar na investigação científica para a minha formação profissional. Ao Professor Júlio da Cruz Morais agradeço pelo apoio, incentivo e auxilio prestado durante a fase inicial do meu doutoramento. Diriijo também os meus agradecimentos aos Professores do Departamento de Química que contribuíram de alguma forma para o desenvolvimento do meu trabalho. Ao Professor Henrique Vicente agradeço pela transmissão de conhecimentos e importante colaboração na valorização de parte da minha investigação. À Professora Dora Teixeira e ao Professor António Pereira agradeço pela ajuda na realização de alguns ensaios experimentais e análises químicas de compostos, Agradeço ainda ao Professor António Candeias pela cedência de verbas que possibilitaram a divulgação do meu trabalho em congressos científicos. A todos agradeço pela disponibilização de equipamentos e espaços laboratoriais fundamentais ao desenvolvimento do meu projeto de Doutoramento. Agradeço também às Professoras Célia Antunes e Ana V Rodrigues Costa e ao Professor Luís Martins por me terem acolhido e integrado nos projetos em curso durante a fase inicial do doutoramento, tornando possível a aprendizagem de novas metodologias indispensáveis à concretização de algumas etapas do meu trabalho de investigação. Gostaria de agradecer ao grupo de investigação do Centro de Engenharia Química e Biotecnológica do Instituto Superior de Engenharia de Lisboa. Ao Professor Amin Karmali, gostaria de agradecer pelo interesse que manifestou pelo meu trabalho, incentivando à aplicação de metodologias imunológicas, o que permitiu enriquecer e valorizar a investigação em curso. Agradeço ainda a colaboração da Doutora Sónia Martins e da Eng. Magda Semedo, pela cedência de anticorpos que produziram no seu centro de investigação, assim como a partilha de metodologias nesta área. À Dr.ª Maria de Fátima Candeias quero agradecer pela importante colaboração na fase de realização dos ensaios toxicológicos em animais, pela sua constante disponibilidade, interesse e transmissão de conhecimentos nestas aplicações. Agradeço à Eng. Mónica Morais de Brito pela colaboração na obtenção das fotografias de microscópio, e à Eng. Maria do Céu Serralheiro pelo acompanhamento laboratorial durante a realização das análises inorgânicas. Um especial obrigado ao meu grupo de Laboratório: Doutora Marina González, Mestres Mara Silva e Sílvia Arantes, e Drs. Tânia Rosado, Ana Branco, Patrícia Nunes, Ana Fialho e Ricardo Vieira pela amizade e companheirismo Agradeço às técnicas de laboratório D. Maria Helena Carvalho, D. Anabela Cabeça e D. Esperança Alves por tornarem mais fácil a gestão de logística laboratorial. Aos meus pais Maria Vicência e José Salvador pelo incansável apoio, compreensão, e constantes palavras de incentivo. Foi esse suporte emocional que me permitiu chegar até aqui. Agradeço também ao Carlos Travanca pelo suporte e incentivo, que me fez continuar quando tudo parecia mais difícil. Obrigada a todos! VI Resumo Resumo Amanita ponderosa é uma espécie de cogumelos silvestres, comestível, característica de alguns microclimas mediterrânicos, existente na Península Ibérica. Neste estudo, avaliaram-se as propriedades biológicas e toxicológicas destes cogumelos e culturas, com vista a valorizar o seu potencial biotecnológico. Desenvolveu-se também uma metodologia de monitorização, utilizando técnicas de microanálise e imunológicas para screening e análise da especificidade de produção dos compostos bioativos. Os corpos de frutificação apresentaram um relevante conteúdo mineral e um perfil molecular correlacionável com o local de colheita. Tanto os cogumelos como as culturas e seus extratos revelaram baixa toxicidade, in vitro e in vivo, apresentaram propriedades antioxidantes, capacidade hepatoprotetora e efeito antiproliferativo em células MDA-MB-231. Estes resultados sugerem que A. ponderosa e/ou os seus extratos podem constituir uma importante fonte de compostos bioativos, com potencial valor nutracêutico e medicinal, podendo ser utilizados como suplementos alimentares, coadjuvantes no tratamento de doenças hepáticas e/ou tumorais. Palavras-Chave: Amanita ponderosa; cogumelos silvestres comestíveis, composição inorgânica, M13-PCR, complexos proteína-polissacárido, propriedades antioxidantes, efeito hepatoprotetor, atividade antitumoral. VII Abstract Characterisation of Amanita ponderosa wild mushrooms: production of metabolites with biological activity Abstract Amanita ponderosa is a species of wild edible mushrooms that grows in some Mediterranean microclimates in the Iberian Peninsula. In this study, we evaluated the biological and toxicological properties of these mushrooms and cultures, in order to enhance their biotechnological potential. A monitoring methodology was also developed using microanalysis and immunological techniques, for screening and specificity evaluation of bioactive compounds production. The fruiting bodies presented a relevant mineral content and a characteristic molecular profile correlated with the geographical location. Either mushrooms or cultures and extracts have shown low toxicity in vitro and in vivo, and presented antioxidant properties, hepatoprotective effect and MDA-MB-231 antiproliferative activity. These results suggest that A. ponderosa and their extracts may constitute an important source of bioactive compounds with antioxidant benefits, nutraceutical potential and medicinal value, that can be used as dietetic supplements and as co-adjuvant of liver and cancer disease treatments. Keywords: Amanita ponderosa; wild edible mushrooms, inorganic content, M13-PCR, protein-polysaccharide complexes, antioxidant properties, hepatoprotective effect, antitumoral activity. IX Índice Índice geral Agradecimentos V Resumo VII Abstract IX Índice geral XI Índice de figuras XIX Índice de tabelas XXIX Abreviaturas XXXIII Unidades de medida XXXVII Publicações relacionadas XXXIX Objetivos e metodologia do trabalho 1 Capítulo 1 – Cogumelos silvestres e seus metabolitos: propriedades biológicas 5 1.1 Introdução 7 1.2 Cogumelos: Algumas considerações 8 1.3 Género Amanita 10 1.3.1 Espécies venenosas do género Amanita 11 1.3.2 Espécies comestíveis do género Amanita 13 1.3.3 Amanita ponderosa 15 1.4 Cogumelos silvestres comestíveis 19 1.4.1 Valorização económica 20 1.4.2 Valor nutricional 21 1.4.3 Propriedades medicinais 24 1.5 Compostos biologicamente ativos 27 1.6 Atividades biológicas 32 1.6.1 Propriedades antioxidantes 32 1.6.2 Efeito hepatoprotetor 36 1.6.3 Atividade antitumoral 41 XI Capítulo 2 – Caracterização inorgânica, isolamento e análise molecular de estirpes de A. ponderosa 49 2.1 Introdução 51 2.2 Metodologia 55 2.2.1 Amostras 55 2.2.2 Determinação da composição mineral 57 2.2.2.1 Tratamento das amostras de corpos de frutificação 57 2.2.2.2 Tratamento das amostras de solo 58 2.2.2.3 Determinação do conteúdo mineral das amostras de corpos de frutificação e solo 59 2.2.3 Isolamento, identificação e cultura de culturas puras 60 2.2.4 Análise molecular das estirpes isoladas 61 2.2.4.1 Extração do DNA – Método das microesferas adaptado 62 2.2.4.2 Quantificação do DNA 63 2.2.4.3 Amplificação do DNA por M13-PCR 63 2.2.4.4 Amplificação de sequenciação da região ITS 65 2.2.5 Análise estatística 65 2.3 Resultados e discussão 67 2.3.1 Análise da composição mineral presente nos corpos de frutificação 67 2.3.2 Caracterização de culturas de A. ponderosa e estirpes fúngicas que vivem em associação com esta espécie 82 2.3.3 Perfil genético de cogumelos A. ponderosa e de estirpes fúngicas que vivem em associação no seu habitat natural 87 Capítulo 3 – Produção e atividade biológica de compostos bioativos produzidos em culturas de A. ponderosa 97 3.1 Introdução 99 3.2 Metodologia 102 3.2.1 Amostras 102 3.2.2 Culturas líquidas 102 XII Índice 3.2.2.1 Obtenção da biomassa 103 3.2.3 Extração dos
Recommended publications
  • Toxicological and Pharmacological Profile of Amanita Muscaria (L.) Lam
    Pharmacia 67(4): 317–323 DOI 10.3897/pharmacia.67.e56112 Review Article Toxicological and pharmacological profile of Amanita muscaria (L.) Lam. – a new rising opportunity for biomedicine Maria Voynova1, Aleksandar Shkondrov2, Magdalena Kondeva-Burdina1, Ilina Krasteva2 1 Laboratory of Drug metabolism and drug toxicity, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, Bulgaria 2 Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Bulgaria Corresponding author: Magdalena Kondeva-Burdina ([email protected]) Received 2 July 2020 ♦ Accepted 19 August 2020 ♦ Published 26 November 2020 Citation: Voynova M, Shkondrov A, Kondeva-Burdina M, Krasteva I (2020) Toxicological and pharmacological profile of Amanita muscaria (L.) Lam. – a new rising opportunity for biomedicine. Pharmacia 67(4): 317–323. https://doi.org/10.3897/pharmacia.67. e56112 Abstract Amanita muscaria, commonly known as fly agaric, is a basidiomycete. Its main psychoactive constituents are ibotenic acid and mus- cimol, both involved in ‘pantherina-muscaria’ poisoning syndrome. The rising pharmacological and toxicological interest based on lots of contradictive opinions concerning the use of Amanita muscaria extracts’ neuroprotective role against some neurodegenerative diseases such as Parkinson’s and Alzheimer’s, its potent role in the treatment of cerebral ischaemia and other socially significant health conditions gave the basis for this review. Facts about Amanita muscaria’s morphology, chemical content, toxicological and pharmacological characteristics and usage from ancient times to present-day’s opportunities in modern medicine are presented. Keywords Amanita muscaria, muscimol, ibotenic acid Introduction rica, the genus had an ancestral origin in the Siberian-Be- ringian region in the Tertiary period (Geml et al.
    [Show full text]
  • Amanita Muscaria: Ecology, Chemistry, Myths
    Entry Amanita muscaria: Ecology, Chemistry, Myths Quentin Carboué * and Michel Lopez URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France; [email protected] * Correspondence: [email protected] Definition: Amanita muscaria is the most emblematic mushroom in the popular representation. It is an ectomycorrhizal fungus endemic to the cold ecosystems of the northern hemisphere. The basidiocarp contains isoxazoles compounds that have specific actions on the central nervous system, including hallucinations. For this reason, it is considered an important entheogenic mushroom in different cultures whose remnants are still visible in some modern-day European traditions. In Siberian civilizations, it has been consumed for religious and recreational purposes for millennia, as it was the only inebriant in this region. Keywords: Amanita muscaria; ibotenic acid; muscimol; muscarine; ethnomycology 1. Introduction Thanks to its peculiar red cap with white spots, Amanita muscaria (L.) Lam. is the most iconic mushroom in modern-day popular culture. In many languages, its vernacular names are fly agaric and fly amanita. Indeed, steeped in a bowl of milk, it was used to Citation: Carboué, Q.; Lopez, M. catch flies in houses for centuries in Europe due to its ability to attract and intoxicate flies. Amanita muscaria: Ecology, Chemistry, Although considered poisonous when ingested fresh, this mushroom has been consumed Myths. Encyclopedia 2021, 1, 905–914. as edible in many different places, such as Italy and Mexico [1]. Many traditional recipes https://doi.org/10.3390/ involving boiling the mushroom—the water containing most of the water-soluble toxic encyclopedia1030069 compounds is then discarded—are available. In Japan, the mushroom is dried, soaked in brine for 12 weeks, and rinsed in successive washings before being eaten [2].
    [Show full text]
  • Naturstoffe Im Chemieunterricht: Chemie Mit Pilzen
    Neue experimentelle Designs zum Thema Naturstoffe im Chemieunterricht: Chemie mit Pilzen DISS,RTATI.N 0ur ,rlangung des akademischen Grades doctor rerum naturalium 1Dr. rer. nat.2 vorgelegt dem Rat der Chemisch -Geowissenschaftlichen Fakultt der Friedrich-Schiller-Universitt Jena von Jan-Markus Teuscher ge oren am 11.08.1972 in (arl-Mar)-Stadt Gutachter: 1: Prof. Dr. Volker Woest, Arbeitsgruppe Chemiedidaktik 2: Dr. Dieter Weiß, Institut für Organische und Makromolekulare Chemie Tag der öffentlichen Verteidigung: 25.05.2011 Inhaltsverzeichnis S e i t e 3 Inhaltsverzeichnis Abbildungsverzeichnis ............................................................................................................. 5 Tabellenverzeichnis .................................................................................................................. 5 1 Einleitung und Zielsetzung ................................................................................................. 7 2 Biologische Grundlage ....................................................................................................... 9 2.1 Betrachtung der Pilze im Wandel der Zeit .................................................................. 9 2.1.1 Vorgeschichtliche Zeit ......................................................................................... 9 2.1.2 Europäisches Altertum – Anfänge der Naturwissenschaft ................................... 9 2.1.3 Mittelalterliche Scholastik .................................................................................
    [Show full text]
  • Amavadin- BASED VANADIUM COMPLEXES STRUCTURAL INVESTIGATIONS TON HUBREGTSE STRUCTURALINVESTIGATIONS
    amavadin- BASED VANADIUM COMPLEXES STRUCTURAL INVESTIGATIONS TON HUBREGTSE STRUCTURAL INVESTIGATIONS STRUCTURAL UITNODIGING VOOR HET BIJWONEN VAN DE OPENBARE VERDEDIGING VAN HET PROEFSCHRIFT OF EN DE STELLINGEN OP AMAVADIN-BASED VANADIUM COMPLEXES VANADIUM AMAVADIN-BASED DINSDAG 17 APRIL 2007 OM 12.30 UUR IN DE SENAATSZAAL ITNODIGING VAN DE TECHNISCHE UNIVERSITEIT DELFT U MEKELWEG 5 DELFT Voorafgaand aan de verdediging is er om 12.00 uur een toelichting voor niet-chemici. Na afloop van de plechtigheid bent u van harte welkom op de receptie in hetzelfde gebouw. Ton Hubregtse Anna Blamanlaan 8 2104 SE Heemstede 023-5283330 [email protected] T PARANIMFEN: . HUBREGTSE Huub Hubregtse [email protected] 06-46277320 Robert de Vries 2007 [email protected] belonging to the thesis ‘Structural investigations of amavadin-based vanadium complexes’ by Ton Hubregtse 1. Strongly acidic ion-exchange resins should not be used to purify molecules that rely on non-covalent bonds. E. M. Armstrong; D. Collison; N. Ertok; C. D. Garner, Talanta , 2000 , 53 , 75–87. H. Kneifel; E. Bayer, J. Am. Chem. Soc. , 1986 , 108 , 3075–3077. 2. The rule that states that the exception proves the rule is proven because there is no exception to this rule that can prove it. 3. The NMR data of Smith et al. can much better be explained when it is considered, given the three possible ligand stereoisomers and the two possible vanadium configurations, that six enantiomeric pairs of the [V( R,S-hidba) 2]-anion can be formed instead of three. P. D. Smith et al. , J. Chem. Soc., Dalton Trans. , 1997 , 4509–4516.
    [Show full text]
  • Amanita Muscaria: Chemistry, Biology, Toxicology, and Ethnomycology
    Mycol. Res. 107 (2): 131-146 (February 2003). © The British Mycological Society 131 DOI: 10.1017/S0953756203007305 Printed in the United Kingdom. Review Amanita muscaria: chemistry, biology, toxicology, and ethnomycology Didier MICHELOT1* and Leda Maria MELENDEZ-HOWELL2 1 Museum National d'Histoire Naturelle, Institut Regulation et Developpement, Diversite Moleculaire, Chimie et Biochimie des Substances Naturelles, USM 502 UMR 8041 C.N.R.S., 63 rue de Buffon, F-75005 Paris, France. 2Systematique et Evolution, USM 602, 12, rue Buffon, F-75005 Paris, France. E-mail: [email protected] Received 12 July 2002; accepted 14 January 2003. The fly agaric is a remarkable mushroom in many respects; these are its bearing, history, chemical components and the poisoning that it provokes when consumed. The 'pantherina' poisoning syndrome is characterized by central nervous system dysfunction. The main species responsible are Amanita muscaria and A. pantherina (Amanitaceae); however, some other species of the genus have been suspected for similar actions. Ibotenic acid and muscimol are the active components, and probably, some other substances detected in the latter species participate in the psychotropic effects. The use of the mushroom started in ancient times and is connected with mysticism. Current knowledge on the chemistry, toxicology, and biology relating to this mushroom is reviewed, together with distinctive features concerning this unique species. INTRODUCTION 50 cm diam and bright red, orange, or even orange or yellow, apart from the white fleck. Many species of the The fly agaric, Amanita muscaria, and the panther, A. muscaria complex bear so-called crassospores (Tul- A. pantherina, are the species mainly involved in the loss & Hailing 1997).
    [Show full text]
  • Amanita Muscaria: Chemistry, Biology, Toxicology, and Ethnomycology
    Mycol. Res. 107 (2): 131–146 (February 2003). f The British Mycological Society 131 DOI: 10.1017/S0953756203007305 Printed in the United Kingdom. Review Amanita muscaria: chemistry, biology, toxicology, and ethnomycology Didier MICHELOT1* and Leda Maria MELENDEZ-HOWELL2 1 Muse´um National d’Histoire Naturelle, Institut Re´gulation et De´veloppement, Diversite´ Mole´culaire, Chimie et Biochimie des Substances Naturelles, USM 502 UMR 8041 C.N.R.S., 63 rue de Buffon, F-75005 Paris, France. 2 Syste´matique et Evolution, USM 602, 12, rue Buffon, F-75005 Paris, France. E-mail: [email protected] Received 12 July 2002; accepted 14 January 2003. The fly agaric is a remarkable mushroom in many respects; these are its bearing, history, chemical components and the poisoning that it provokes when consumed. The ‘pantherina’ poisoning syndrome is characterized by central nervous system dysfunction. The main species responsible are Amanita muscaria and A. pantherina (Amanitaceae); however, some other species of the genus have been suspected for similar actions. Ibotenic acid and muscimol are the active components, and probably, some other substances detected in the latter species participate in the psychotropic effects. The use of the mushroom started in ancient times and is connected with mysticism. Current knowledge on the chemistry, toxicology, and biology relating to this mushroom is reviewed, together with distinctive features concerning this unique species. INTRODUCTION 50 cm diam and bright red, orange, or even orange or yellow, apart from the white fleck. Many species of the The fly agaric, Amanita muscaria, and the panther, A. muscaria complex bear so-called crassospores (Tul- A.
    [Show full text]
  • PHARMACOLOGICALLY and TOXICOLOGICALLY RELEVANT COMPONENTS of Amanita Muscaria
    Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2017, vol. 86(3), p. 122-134 ISSN 0372-7025 DOI: 10.31482/mmsl.2017.020 REVIEW ARTICLE PHARMACOLOGICALLY AND TOXICOLOGICALLY RELEVANT COMPONENTS OF Amanita muscaria Jiri Patocka , Barbora Kocandrlova Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, University of South Bohemia České Budějovice, České Budějovice, Czech Republic Received 14 th July 2017. Revised 15 th August 2017. Published 8 th September 2017. Summary Amanita muscaria , the red fly agaric, is the most famous of all Amanita. The initial history of this fascinating mushroom dates back to at least the 13 th century. The use of mushrooms began in antiquity and is associated with mysticism. The collection and consumption of mushrooms and other plants containing psychoactive substances is now very popular, especially among young people who are experimenting with drugs. Ibotenic acid and muscimol are the main active ingredients of this mushroom, but other substances are likely to be involved in the psychotropic effects. A. muscaria also contains some other non-psychotropic substances that are interesting not only for their chemical structure but also for their biological activity. Current knowledge about chemistry, pharmacology and toxicology regarding this fungus is reviewed in this article. Key words: Amanita muscaria; fly agaric; ibotenic acid; muscimol; stizolobic acid; muscarufine; betalains INTRODUCTION Amanita muscaria (L. ex Fr.) Hooker, the "fly agaric", is the best known of all the Amanitas . The early history of this fascinating fungus dates back at least to the 13 th century. (Fly Agaric) is a mycorrhizal basidiomycete fungus and it is perhaps the most fascinating mushroom on this planet.
    [Show full text]
  • To Download Sample Issue
    The Journal of Wild Mushrooming Spring-Summer 2018 Issue 118, Vol.33, No.1-2 $7.95 in U.S., $8.95 in Canada Postmaster: Mailed as Periodical Small spalted bowl showcasing every type of spalting. Turned and spalted by Seri Robinson (test tubes) Full range of colors available from the four pri- mary spalting fungi: Scytalidium cuboideum, Scytalidium gano- dermophthorum, Chlorociboria aeruginascens, Chlorociboria aeruginosa (Wood in the lower left corner) Green zone line from the Ama- zon rainforest of Peru. Many zone lines appear black but are actually just highly concentrated colors. (spalted wood just below) Red zone lines found in the Amazon rainforest of Peru (spalted wood bottom right cor- ner) Red-purple pigment found in the Amazon rainforest of Peru See the full article on p. 15! 2 2 Spring-SummerWinter-Spring 2011, 2018, Mushroom Mushroom the the Journal Journal ISSN 0740-8161 Issue 118 Vol. 33, No. 1-2 Spring-Summer 2018 The Journal of Wild Mushrooming Cover Photo: Amanita jacksonii photographed by Walt Sturgeon. For more of Walt’s photos, see the photo-essay on pp. 56-7. Coordinating Editors: Features Leon Shernoff ([email protected]) 13 A Term Defined, by Anne Yen Editor emeritus: 15 The Old Art and New Science of Spalted Wood, by Seri Robinson Don H.Coombs 22 Getting Started at Knowing Mushrooms, by Lee Schuler 33 A Life Full of Mushrooming, by Chuck Barrows Book Review Editor: Ron Tracy 58 Mushrooms and Microhabitats, by Jack Waytz ([email protected]) 66 Amanita muscaria – The Organometallic Dimension, by Beowulf Glutzenbaum Editorial Advisory Board: 68 An Unusual Poison Control Call, by Bill Bakaitis Scott Redhead Agriculture Canada, Ottawa Departments David Arora 4 Easy Edibles: The Newish Morels, by Bob Sommer and Leon Shernoff Santa Cruz, California 9 Word Puzzle: Morel Names, by Donald and Leon Shernoff 10 Obituary: Maggie Rogers, by Betty Gering Paul Stamets Olympia, Washington 24 The Cooking Column: The Joy of Black Trumpets 26 Book Reviews: The Forest Unseen and The Songs of Trees, reviewed by James M.
    [Show full text]
  • Aminita Muscaria & Amanita Pantherina and Others
    AMINITA MUSCARIA & AMANITA PANTHERINA AND OTHERS International Programme on Chemical Safety Poisons Information Monograph (Group monograph) G026 Fungi Please note that further information on Sections 1, 3.1, 3.2 and 8 is pending. 1. NAME 1.1 Scientific name Species of the genus Amanita. The species known to cause the majority of toxic exposures are: Amanita muscaria and Amanita pantherina . The toxins are all isoxazole derivatives. Other Amanita mushrooms contain the same toxins and induce similar toxicity: Amanita muscaria var. Kamtschatica Langsdorff ex. Fr. Amanita regalis (Fr.) R. Mre. (A. muscaria var. umbrina Fr.) Amanita muscaria var. formosa Amanita muscaria var. alba Amanita gemmata (Fr.) Bertillon Amanita velatipes Atk. Amanita cothurnata Atk. Amanita flavovolvata Sing. Amanita strobiliformis (Vitt.) Quel. Amanita pantherina (DC ex Fr.) Secr. Amanita pantherina multisquamosa Amanita pantherina velatipes Amanita pantherina pantherinoides Tricholoma muscaria 1.2 Family Agaricaceae ( Agaricales) The genus is Amanita (Amanitaceae) 1.3 Common name(s) and synonym(s) Amanita muscaria English Fly Agaric German Fliegenpilz, Roter fliegenpilz Spanish Falsa oronja, Amanita matamoscas French Amanite tue-mouche, Agaric aux mouches, fausse oronge Italian Ovulo malefico, Uovolaccio Polish Muchomor czerwony Amanita pantherina English Panther cap. German Pantherpilz, Braunner Knollenblätterpilz 1 Spanish Amanita pantera, galipiermo falso French Amanite panthère, Fausse golmelle Italian Tignosa bigia, Tignosa regata, Agarico panterino Polish Muchomor plamisty 2. SUMMARY 2.1 Main risks and target organs The most frequent cause of intoxication is the consumption of Amanita muscaria by people who mistake it and ignore its toxicity. Amanita muscaria might also be ingested in order to obtain mind-altering effects. The central nervous system is the major target organ.
    [Show full text]
  • Chemical Education
    96 CHIMIA 2019, 73, No. 1/2 Columns doi:10.2533/chimia.2019.96 Chimia 73 (2019) 96–97 © Swiss Chemical Society Chemical Education A CHIMIA Column Topics for Teaching: Chemistry in Nature The Fungus Amanita muscaria: From Neurotoxins to The origins of A. muscaria poisoning lie in the neurotoxins Vanadium Accumulation ibotenic acid and muscimol (Scheme 1). Both are derivatives of the heterocycle isoxazole. Ibotenic acid mimics the stimulatory Catherine E. Housecroft* brain neurotransmitter L-glutamic acid (Scheme 1), while muscimol mimics the inhibitory neurotransmitter γ-aminobutyric *Correspondence: Prof. C. E. Housecroft, E-mail: [email protected], [2] Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH- acid (GABA or 4-aminobutanoic acid). Ibotenic acid acts as 4058 Basel an excitatory neurotoxin in contrast to the depressive effects of GABA. After ingestion of A. muscaria, ibotenic acid and Abstract: The fungus Amanita muscaria contains neurotoxins muscimol are rapidly absorbed by the body. The dominant effects which account for its long-time use as a hallucinogen. In on a mammal of ingesting the fungus are agitation and confusion, contrast, A. muscaria is also a bioaccumulator of high levels of consistent with ibotenic acid being the dominant neurotoxin vanadium, the reason for which is still obscure. present.[3] The name fly agaric arises from a traditional use of Keywords: Amavadin · Bioinorganic · Chemical education · extracting neurotoxins and using the extract for controlling flies Chirality · Fungus · Neurotoxins · Vanadium in farming communities.[4] The fungus Amanita muscaria is instantly recognisable by HO HO HO its appearance (Fig. 1) and is an iconic image in fairy stories.
    [Show full text]
  • The Dream on the Rock
    1 Foundations of the Research The “Religious” Problem and the Origins of Consciousness If by “religion” we mean (1) a structured system of repeated and repeatable cults and rituals, (2) a reference to alleged divinities or supernatural beings, (3) the existence of some kind of officiants’ hier‑ archy, (4) places specifically assigned to this purpose, and (5) a notable number of followers or believers who recognize themselves in these practices, then there is no doubt that such a religious or proto‑reli‑ gious form in so‑called prehistory did not exist, at least until the Middle/Late Neolithic period. Moreover, the worldwide distribution of “advanced” religious forms took place gradually and in different and widely separated places. Extensive world areas were as yet excluded from it when such anthropological phenomena began to appear in India, Egypt, and the Middle East. Leroi‑Gourhan’s palaeontological researches systematically demolish the insubstantial “scientific evidence” about presumed cults of the bones, the mythical cult of the bear, and funerary rituals demonstrating with purported certainty the existence of postmortem expectations. The discovered finds are too scarce and the possible number of variables too high. He concludes, not without some justi‑ fied sarcasm: Prehistory is a kind of clay‑headed colossus, whose fragility increases as one ascends from the ground to the head. The colossus’ feet, made up of geological, botanical and zoologi‑ cal evidence seem solid; but already the hands turn out to be more friable, since the study of prehistoric practices is marked by a large conjectural halo. 11 © 2013 State University of New York Press, Albany 12 / THE DREAM ON THE ROCK As for the head, this one, alas!, crumbles at the slightest touch .
    [Show full text]
  • Introduction
    The most widely recognized mushroom: Chemistry of the genus Amanita By: Chen Li and Nicholas H. Oberlies Li, C. and Oberlies, N.H. (2005) The most widely recognized mushroom: Chemistry of the genus Amanita. Life Sciences 78, 532-538. doi:10.1016/j.lfs.2005.09.003 Made available courtesy of Elsevier: http://www.sciencedirect.com/science/journal/00243205 ***Note: Figures may be missing from this format of the document Abstract: Many review papers have been published on mushrooms of the genus Amanita, as these are well known to both scientific and lay audiences, probably due to the toxic and/or hallucinogenic properties of some species. This article aims to supplement the content of previous reviews by categorizing all of the natural products isolated from any species in the genus Amanita. These compounds are subdivided into six major structural types, and references are provided for all species that have been examined chemically. Keywords: Amanita; Mushrooms; Chemical structural classes Article: Introduction Some of the morphological characteristics of the genus Amanita include white spore prints, gills free from the stem, and the presence of a universal veil (Lincoff, 1981). Species of this genus are found commonly throughout the world, and this includes mushrooms known to possess either toxic and/or hallucinogenic properties. Historical evidence suggests that at least three Roman emperors and a Pope may have been among the victims of mushroom poisoning (Block et al., 1955). Even in modern times, it has been estimated that nearly 90% of reported cases of lethal poisonings caused by the consumption of mushrooms, especially in Central Europe and North America, are due to two of the most poisonous species of this genus, the notorious death cap (A.
    [Show full text]