Booker T. Washington National Monument

Total Page:16

File Type:pdf, Size:1020Kb

Booker T. Washington National Monument National Park Service U.S. Department of the Interior Natural Resource Program Center Booker T. Washington National Monument Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2010/234 THIS PAGE: A spring box, used as an early refrig- erator. Holes at each end of the box allow fresh, cool water to flow through, keeping perishables cool and fresh for several days at a time. ON THE COVER: The kitchen cabin (right) and smoke- house, historic buildings on the Burroughs Plantation where Booker T. Washington lived as a boy. National Park Service photographs courtesy Timbo Sims (Booker T. Wash- ington National Monument) Booker T. Washington National Monument Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2010/234 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 August 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U. S. Government. Printed copies of this report are produced in a limited quantity and they are only available as long as the supply lasts. This report is available from the Geologic Resources Inventory website (http://www.nature.nps.gov/geology/inventory/gre_publications.cfm) and the Natural Resource Publications Management website (http://www.nature.nps.gov/publications/ NRPM). Please cite this publication as: Thornberry-Ehrlich, T. 2010. Booker T. Washington National Monument: geologic resources inventory report. Natural Resource Report NPS/NRPC/GRD/NRR—2010/234. National Park Service, Fort Collins, Colorado. NPS 807/105489, August 2010 ii NPS Geologic Resources Division Contents List of Figures ................................................................................................................ iv Executive Summary ....................................................................................................... v Acknowledgements ...................................................................................................... vi Credits ........................................................................................................................................................................ vi Introduction ................................................................................................................... 1 Purpose of the Geologic Resources Inventory ............................................................................................................... 1 Park Setting and Establishment .................................................................................................................................... 1 Geologic Setting .......................................................................................................................................................... 1 Physiographic and Tectonic Provinces near Booker T. Washington National Monument ................................................. 2 Geologic Issues .............................................................................................................. 5 Introduction ................................................................................................................................................................. 5 Water Issues ................................................................................................................................................................ 5 Erosion ........................................................................................................................................................................ 6 Adjacent Development ................................................................................................................................................. 7 Seismicity ..................................................................................................................................................................... 7 Seeps and Springs ........................................................................................................................................................ 7 Shrink-and-Swell Clays ................................................................................................................................................. 7 Geologic Features and Processes ................................................................................ 12 Geologic Influences on History ................................................................................................................................... 12 Weathered Regolith ................................................................................................................................................... 13 Map Unit Properties .................................................................................................... 15 Geologic History .......................................................................................................... 19 Precambrian and Early Paleozoic Era: Ancient Mountain Building and Iapetus Ocean Formation .................................. 19 Paleozoic Era: Appalachian Mountain Building ........................................................................................................... 20 Mesozoic Era: Rifting, Atlantic Ocean Formation, and Mountain Erosion ..................................................................... 21 Cenozoic Era: Shaping the Modern Landscape............................................................................................................ 22 Glossary ........................................................................................................................ 28 Literature Cited ............................................................................................................ 33 Additional References ................................................................................................. 36 Geology of National Park Service Areas ...................................................................................................................... 36 Resource Management/Legislation Documents ........................................................................................................... 36 Geological Survey Websites ........................................................................................................................................ 36 Other Geology/Resource Management Tools .............................................................................................................. 36 Appendix A: Overview of Digital Geologic Data ....................................................... 37 Attachment 1: Geologic Resources Inventory Products CD BOWA Geologic Resources Inventory Report iii List of Figures Figure 1. Map of Booker T. Washington National Monument in Hardy, Virginia ................................................................ 3 Figure 2: Location of the monument relative to the tectonic provinces and major faults of west-central Virginia ............... 4 Figure 3: Location of the monument relative to the physiographic provinces and subprovinces of Virginia ........................ 4 Figure 4: Rocks within Gills Creek, which is part of the monument’s west boundary and flows through the monument .... 8 Figure 5: Jack-O-Lantern Branch originates within the monument and forms the east and south boundary ....................... 8 Figure 6: The bedrock channel of Jack-O-Lantern Branch at Booker T. Washington National Monument ........................... 9 Figure 7: Gravel and finer sediments within a meander along Jack-O-Lantern Branch ....................................................... 9 Figure 8: Jack-O-Lantern Branch flowing west with increased flow and volume .............................................................. 10 Figure 9: Weathered outcrop on eroded, reforested landscape within the monument .................................................... 10 Figure 10: Undercut slope along a small, unnamed tributary .......................................................................................... 11 Figure 11: Jack-O-Lantern
Recommended publications
  • Detrital Zircon Ages and Nd Isotopic Data from the Southern Appalachian
    Geological Society of America Memoir 197 2004 Detrital zircon ages and Nd isotopic data from the southern Appalachian crystalline core, Georgia, South Carolina, North Carolina, and Tennessee: New provenance constraints for part of the Laurentian margin Brendan R. Bream* Robert D. Hatcher Jr. Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410, USA Calvin F. Miller Department of Geology, Vanderbilt University, Nashville, Tennessee 37235, USA Paul D. Fullagar Department of Geological Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3315, USA ABSTRACT Sedimentary and metasedimentary rocks within the southern Appalachian Blue Ridge and Inner Piedmont contain a valuable record of Late Proterozoic Laurentian margin evolution following the breakup of Rodinia. Paleogeographic reconstructions and increasing amounts of geochronologic and isotopic data limit the derivation of these paragneisses to the Laurentian and/or west Gondwanan craton(s). Southern ε Appalachian crystalline core paragneiss samples have Nd values between –8.5 and –2.0 at the time of deposition and contain abundant 1.1–1.25 Ga zircon cores with Grenville 1.0–1.1 Ga metamorphic rims. Less abundant detrital zircons are pre-Grenvillian: Mid- dle Proterozoic 1.25–1.6 Ga, Early Proterozoic 1.6–2.1 Ga, and Late Archean 2.7–2.9 ε Ga. Blue Ridge Grenvillian basement has almost identical Nd values and displays the same dominant magmatic core and metamorphic rim zircon ages. Based on our data, nonconformable basement-cover relationships, and crustal ages in eastern North Amer- ica, we contend that the extensive sedimentary packages in the southern Appalachian ε Blue Ridge and western Inner Piedmont are derived from Laurentia.
    [Show full text]
  • Ar/ Ar Ages of Feldspar and Muscovite from the Source and Detritus of The
    40Ar/39Ar Ages of Feldspar and Muscovite from the Source and Detritus of the French Broad River, North Carolina by Di Fan A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 6th, 2016 Keywords: muscovite, K-feldspar, 40Ar/39Ar, geochronology, Blue Ridge, French Broad River Copyright 2016 by Di Fan Approved by Willis E. Hames, Chair, Professor of Geosciences Mark G. Steltenpohl, Professor of Geosciences Haibo Zou, Associate Professor of Geosciences Abstract As the westernmost metamorphic belt of the Appalachians, the Blue Ridge has been the subject of many geochronology studies. The Blue Ridge experienced high-grade deformation and peak metamorphism during Taconic orogeny, followed by a low-grade metamorphic overprint during the Acadian orogeny. The Alleghanian orogeny is the last collisional stage of the Appalachians and associated regional metamorphism and ductile deformation is documented along most of the Piedmont and the Carolina Slate belt. There is still debate, however, as to the extent of Alleghanian metamorphism in the western Blue Ridge. This concern is made more difficult to evaluate because previous work generally did not characterize the history of low-temperature metamorphism of the Blue Ridge in the region between western North Carolina and Tennessee. To address the cooling history of the Blue Ridge, samples were collected in the area of the French Broad River catchment in North Carolina. Single crystals of muscovite from basement and stream sediment samples and K-feldspar from the basement, were dated in this project to avoid the ‘inherited’ ages often associated with high-temperature geochronometers.
    [Show full text]
  • Scenic Landforms of Virginia
    Vol. 34 August 1988 No. 3 SCENIC LANDFORMS OF VIRGINIA Harry Webb . Virginia has a wide variety of scenic landforms, such State Highway, SR - State Road, GWNF.R(T) - George as mountains, waterfalls, gorges, islands, water and Washington National Forest Road (Trail), JNFR(T) - wind gaps, caves, valleys, hills, and cliffs. These land- Jefferson National Forest Road (Trail), BRPMP - Blue forms, some with interesting names such as Hanging Ridge Parkway mile post, and SNPMP - Shenandoah Rock, Devils Backbone, Striped Rock, and Lovers Leap, National Park mile post. range in elevation from Mt. Rogers at 5729 feet to As- This listing is primarily of those landforms named on sateague and Tangier islands near sea level. Two nat- topographic maps. It is hoped that the reader will advise ural lakes occur in Virginia, Mountain Lake in Giles the Division of other noteworthy landforms in the st& County and Lake Drummond in the City of Chesapeake. that are not mentioned. For those features on private Gaps through the mountains were important routes for land always obtain the owner's permission before vis- early settlers and positions for military movements dur- iting. Some particularly interesting features are de- ing the Civil War. Today, many gaps are still important scribed in more detail below. locations of roads and highways. For this report, landforms are listed alphabetically Dismal Swamp (see Chesapeake, City of) by county or city. Features along county lines are de- The Dismal Swamp, located in southeastern Virginia, scribed in only one county with references in other ap- is about 10 to 11 miles wide and 15 miles long, and propriate counties.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Geology of Gambrill State Park
    Introduction A West Gambrill State Park is located along the eastern edge of the Blue Ridge b Physiographic Province. The Blue Ridge Mountains stretch from northern Georgia to southern Pennsylvania. The Blue Ridge is made up of folded Eas x t rocks that are broken in places by faults. In Maryland, the Blue Ridge b consists of two separate ridges-Catoctin Mountain, locally known as A B C Braddock Mountain on the east, and South Mountain to the west. The Blue Figure 1. Rocks of Gambrill State Park. A, Catoctin Formation. Green- Ridge is bordered on the east by the Piedmont Physiographic Province. The ish metamorphosed basalts. B, Loudoun Formation. Volcanic ash Piedmont is underlain by metamorphic rocks that were formed when the containing pebbles of lava (at A). C, Weverton Formation. Cross- 9 W Appalachian Mountains were uplifted more than 250 million years ago bedded sandstone (b=bedding, x=cross-bedding) . ever C ton Form (hereafter Ma). What we see from Catoctin Mountain today is the result of to weathering and erosion. As a result of this durability, the Weverton ation millions of years of erosion of those mountains. Formation represents the main ridge-forming layer on both Catoctin and Bedrock Layers South mountains of the Blue Ridge of Virginia, Maryland, and Pennsylvania. Nearly all of the rocks present in the park are assignable to three These ridges are erosional features left standing high after the softer or more geologic rock units, called formations. These are the Catoctin, the Loudoun, soluble rocks on either side were worn down by weathering and erosion.
    [Show full text]
  • Catoctin Formation
    Glimpses of the Past: THE GEOLOGY of VIRGINIA The Catoctin Formation — Virginia is for Lavas Alex Johnson and Chuck Bailey, Department of Geology, College of William & Mary Stony Man is a high peak in Virginia’s Blue Ridge Mountains that tops out at just over 1200 m (4,000’). Drive south from Thornton Gap along the Skyline Drive and you’ll see the impressive cliffs of Stony Man’s northwestern face. These are the cliffs that give the mountain its name, as the cliffs and slopes have a vague resemblance to a reclining man’s forehead, eye, nose, and beard. Climb to the top and you’ll see peculiar bluish-green rocks exposed on the summit that are ancient lava flows, part of a geologic unit known as the Catoctin Formation. From the presidential retreat at Camp David to Jefferson’s Monticello, from Harpers Ferry to Humpback Rocks, the Catoctin Formation underlies much of the Blue Ridge. This distinctive geologic unit tells us much about the long geologic history of the Blue Ridge and central Appalachians. Stony Man’s summit and northwestern slope, Shenandoah National Park, Virginia. Cliffs expose metabasaltic greenstone of the Neoproterozoic Catoctin Formation. (CMB photo). Geologic cross section of Stony Man summit area (modified from Badger, 1999). The Catoctin Formation was first named by Arthur Keith in 1894 and takes its name for exposures on Catoctin Mountain, a long ridge that stretches from Maryland into northern Virginia. The word Catoctin is rooted in the old Algonquin term Kittockton. The exact meaning of the term has become a point of contention; among historians the translation “speckled mountain” is preferred, however local tradition holds that that Catoctin means “place of many deer” (Kenny, 1984).
    [Show full text]
  • MARYLAND GEOLOGICAL SURVEY Kenneth N
    MARYLAND GEOLOGICAL SURVEY SC (OH1-7'' CONVERSION FACTORS AND ABBREVIATIONS For the convenience of readers who prefer to use International System (SI) units rather than the inch-pound units used in this report, values may be converted using the following factors: Multiply inch-pound unit By To obtain SI units inch (in.) 25.40 millimeter (mm) foot (ft) 0.3048 meter (m) mile (mi) 1.609 kilometer (km) 2 square mile (mi ) 2.590 square kilometer (km2) acre 0.4047 hectare (ha) gallon (gal) 3.785 liter (L) million gallons (Mgal) 3,785 cubic meter (m3) acre-foot (acre-ft) 0.001233 cubic hectometer (hm3) foot squared per day 0.09290 meter squared per day 2 (ft /d) (m2/d) gallon per minute 0.06309 liter per second (L/s) (gal/min) gallon per day 0.003785 cubic meter per day (gal/d) (m3/d) gallon per minute per 0.2070 liter per second per meter foot [(gal/min)/ft] [(L/s)/m] cubic foot per second 0.02832 cubic meter per second 3 (ft /s) (mVs) cubic foot per second 0.01093 cubic meter per second per square mile per square kilometer 3 2 [(ft /s)/mi ] [(m3/s)/km2] ton 907.2 kilogram (kg) Chemical concentration is expressed in milligrams per liter (mg/L) or micrograms per liter (/ig/L). Water temperature in degrees Celsius (0C) can be converted to degrees Fahrenheit (0F) using the following equation: 0F = 1.8 (0C) + 32 "Sea level" as used in this report refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) — a geodetic datum derived from a general adjustment of the first-level nets of both the United States and Canada, formerly called "Mean Sea Level of 1929." Department of Natural Resources MARYLAND GEOLOGICAL SURVEY Kenneth N.
    [Show full text]
  • Sessions Calendar
    Associated Societies GSA has a long tradition of collaborating with a wide range of partners in pursuit of our mutual goals to advance the geosciences, enhance the professional growth of society members, and promote the geosciences in the service of humanity. GSA works with other organizations on many programs and services. AASP - The American Association American Geophysical American Institute American Quaternary American Rock Association for the Palynological Society of Petroleum Union (AGU) of Professional Association Mechanics Association Sciences of Limnology and Geologists (AAPG) Geologists (AIPG) (AMQUA) (ARMA) Oceanography (ASLO) American Water Asociación Geológica Association for Association of Association of Earth Association of Association of Geoscientists Resources Association Argentina (AGA) Women Geoscientists American State Science Editors Environmental & Engineering for International (AWRA) (AWG) Geologists (AASG) (AESE) Geologists (AEG) Development (AGID) Blueprint Earth (BE) The Clay Minerals Colorado Scientifi c Council on Undergraduate Cushman Foundation Environmental & European Association Society (CMS) Society (CSS) Research Geosciences (CF) Engineering Geophysical of Geoscientists & Division (CUR) Society (EEGS) Engineers (EAGE) European Geosciences Geochemical Society Geologica Belgica Geological Association Geological Society of Geological Society of Geological Society of Union (EGU) (GS) (GB) of Canada (GAC) Africa (GSAF) Australia (GSAus) China (GSC) Geological Society of Geological Society of Geologische Geoscience
    [Show full text]
  • APPALACHIAN WORKSHOP Lkmf
    G-o9Q eA-w- JQA—vii: Gioj"- kj tzb 4s• IØ So APPALACHIAN WORKSHOP lKMF JNtSTY OF Vth1Oft1T LTOft VT I2;LoXPiItti ir QUEBEC VEROT APPALACHIAN WORKS+OP Apr11 14 - 16, 1989 Kalkin Hall, University of Vermont Burlington, Vermont Co-Sponsored by: The Department of Geology Visiting Lecture Series The Canadian Studies Program The Graduate College, University of Vermont EDITORS Maurice Coipron and Barr,' Doolan Department of Geology • University of Vermont Burlington, Vermont Cover: Perspective block diagram of the Québec- Vermont Orogen (from Dóolan, 1989; see Doolan, this volume). Additional copies are available upon request from: Vermont Geological Society, Inc. P.O. Box 304 twfontpelier, Vermont 05602 PROGRAM AND CONTENTS SATURDA V. APRIL 15, 1989 8:00 - INTRODUCTORY REMARKS I. EVOLUTION OF THE ANCIENT NORTH AMERICAN MARGIN IN THE QUEBEC REENTRANT ............................................................................. 1 Chairperson: Charles A. Ratté 8:15 - Stephen Kumarapeli* and Hillar Pintson: Geochronologic constraints on the timing of rifting and continental breakup at the Sutton Mountains triple junction...........3 8:40 - William M. Dowling: Paleogeographic analysis of the preshelf facies in the Oak Hill and Camels Hump Groups: constraints on syn-rift and post-break-up subsidence in theQuébecreentrant ...........................................................................................................5 9:05 - Charlotte Mehrtens: The Cambrian platform and platform margin in northwestern Vermont..............................................................................................................................8
    [Show full text]
  • Assessing the Physical and Hydraulic Properties Of
    THE INFLUENCE OF FRACTURE CHARACTERISTICS ON GROUNDWATER FLOW SYSTEMS IN FRACTURED IGNEOUS AND METAMORPHIC ROCKS OF NORTH CAROLINA (USA) By Justin E. Nixon May, 2013 Director of Thesis: Dr. Alex K. Manda Major Department: Geological Sciences The yield of water wells drilled in crystalline rock aquifers is determined by the occurrence and interaction of open, saturated fractures which decrease with increased depth, outside of the influence of large-scale features such as fault zones. These trends suggest that in the shallow subsurface, (i) fluid flow is controlled by specific fracture types, and (ii) there is a bounding depth below which groundwater flow is significantly reduced. These hypotheses are tested in this paper. The analysis of fracture properties identified in boreholes offers an approach to investigate the depth evolution of groundwater systems in crystalline rocks. Optical televiewer, caliper and heat pulse flow meter logs are utilized to investigate the attributes, distributions, orientations, and the contribution to flow of 570 fractures that intersect 26 bedrock wells drilled in crystalline rocks of North Carolina. Results indicate that the dominant fracture types are foliation parallel fractures (FPFs) (42%), other fractures (32%) and sheet joints (26%). The boreholes are drilled into five lithologic terranes and intersect seven major lithologic and rock fabric types, consisting of: (1) felsic gneiss, (2) andesitic to basaltic flows, (3) diorite, (4) mafic gneiss, (5) gneiss and amphibolite, (6) gneiss and mylonite and (7) schist. The dominant fracture type in the upper 40 m is sheet joints. Rocks with sub-horizontal planar fabric prefer to develop FPFs instead of sheet joints.
    [Show full text]
  • COMMONWEALTH of VIRGINIA DEPARTMENT of CONSERVATION and ECONOMIC DEVELOPMENT DIVISION of MINERAL RESOURCES Robert C
    VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 27 CONTRIBUTIONS TO VIRGINIA GEOLOGY- IV COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHAR LOTTESVI LLE, VI RGIN IA 1980 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 27 CONTRIBUTIONS TO VIRGINIA GEOLOGY- IV COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHAR LOTTESVILLE, VIRGINIA 1980 FRONT CoVER: Isoclinal folds (FJ in kyanite quartzite of the Arvonia Forma- tion at woods Mountain, Buckingham county, Virginia. (pocket knife just below center of photo serves as scale.) VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 27 CONTRIBUTIONS TO VIRGINIA GEOLOGY-IV COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHAR LOTTESVI LLE, VI RGI N IA 1980 COMMONWEALTH OF VIRGINIA DEPARTMENT OF PURCHASES AND SUPPLY RICHMOND 1980 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond, Virginia FRED W. WALKER, Director JERALD F; MOORE, Deputy Director BOARD J. H. JOHNSON, West Point, Chairman ARTHUR P. FLIPPO, Doswell, Vice Chairman FRANK ARMSTRONG, III, Winchester MYRON P. ERKILETIAN, Alexandria HENRY T. N. GRAVES, Luray ADOLF U. HONKALA, Midlothian MILDRED LAYNE, Williamsburg FREDERIC S. REED, Manakin-Sabot GEORGE P. SHAFRAN, Arlington SHELTON H. SHORT,III, Chase City NICHOLAS D. STREET, Grundy E. FLOYD YATES. Powhatan CONTRIBUTIONS TO VIRGINIA GEOTOGY-TV CONTENTS Page Evidence for the correlation of the kyanite quartzites of Willis and Woods mountains with the Arvonia Formation, by James F.
    [Show full text]
  • Geology of Virginia Introduction and Geologic Background CD-ROM 1
    Geology of Virginia Introduction and Geologic Background CD-ROM 1 Teacher’s Guide Second Edition REPRODUCTION OF COPY MASTERS These copy masters are designed for individual student use and intended for reproduction for teacher and student use only. The Project Authors, Dr. Parvinder Sethi, Dr. Robert Whisonant, Ms. Karen Cecil, and Ms. Phyllis Newbill, therefore transfer limited reproduction rights to the purchaser of these masters at the time of sale. These rights are granted only to a single classroom teacher, whether that teacher is the purchaser or the employee of a purchasing agent such as a school district. The masters may be reproduced in quantities sufficient for individual use by students under that teacher’s classroom supervision. Reproduction of these masters for use by other teachers or students not purchasing the CD-ROM and materials is prohibited and constitutes a violation of the United States Copyright Law. Copyright 2001 Radford University Radford, VA 24142 ii Foreword The accompanying Teacher’s Guide of lesson plans and copy masters for Geology of Virginia - CD-ROM 1: Introduction and Geologic Background is designed to complement any text or course of study in Geology. The CD-ROM and worksheets for studying geology may be used as the backbone for units in the absence of a text or curriculum guide. These instructional materials along with supporting explanations provided by the teacher will supply the information needed to cover the State Standards of Learning (SOLs) for the Earth Science curriculum. The Geology of Virginia CD-ROM project is a series of four CD-ROMs. This CD-ROM, Introduction and Geologic Background, introduces major concepts of geology with a focus on Virginia examples.
    [Show full text]