Quick viewing(Text Mode)

JAERI-Review JP0250004

JAERI-Review JP0250004

JAERI-Review JP0250004

Japan Atomic Energy Research Institute (1=319-1195

This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken T 319-1195, Japan.

© Japan Atomic Energy Research Institute, 2001 m JAERI- Review 2001-043

0

(2001 ^ 10^ 29

(35CK 37Cl) (IRMS)

(AMS) i^J;5 36C1

•. T 319-1195 JAERI- Review 2001-043

Recent Research Activities and Future Subjects on Stable- and Radio- of in Environment

Kouhei KUSHITA

Nuclear Technology and Education Center (Tokai Site) Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken

(Received October 29, 2001)

This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, 35C1 and 37C1, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, 36C1 etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed.

Keywords: Chlorine, Stable , Radioisotope, Environment, Isotopic Ratio Mass Spectrometry, Accelerator Mass Spectrometry, 35C1,37C1,36C1. JAERI-Review 2001-043

g

#£ • ^ijfflfe^ 3 2.1 3 2.2 3 2.3 3 2.4 3 2.5 4 2.6 4 2.7 5 2.8 5 2.9 6 2.10 7

12 3.1 12 3.2 12 3.3 17 3.4 3.5 19 3.6 3.7 21

4. 30 4.1 30 4.2 31 4.3 31 4.4 (D:IRMS 32

4.5 (2):TIMS 35 4.6 4.7 36 4.8 37 4.9 38 JAERI- Review 2001-043

5. M.mtkfti&.mGLmz.m-tzw% 53 5.1 36c\mm&ffi^mm-f&ffiR 53 5.2 3Hc\m^ikm^mmi-^m^ 54 5.3 &mwi^wMi~zffliz 54 5.4 mT-jjmm/w^jjmmm^mm-f&miz 55 5.5 WiBlgiSC&Wtt&itfKllljI-rsWSS 56 5.6 ^ftsy^^§ii-sw5£ 57 5.7 ^£f^&@-f 3W2E 58 5.8 m¥/mM\^m^&ffiR 58 5.9 ^(DitiwWR 59

6. ^m$Lfc®t3z(DmM 79 6.1 mwimmmu.w-*m^tz9%MM 79 6.2 %%mw%Lftw$i.w\^£%^W)Lfo\kmfe 79 6.3 <£fe&Mn®.fo*Rl^tzM9?MM 80

7. Sifc 87 m & 87

88

iv JAERI-Review 2001-043

Contents

1 . Introduction 1

2 . Properties, Occurrence, Utilization of Chlorine 3 2.1 Discovery and Occurrence of Chlorine 3 2.2 Chlorine in the Ocean 3 2.3 Chlorine in the Atmosphere 3 2.4 Chlorine Isotopes 3 2.5 Chlorine as Single Substance 4 2.6 Inorganic Compounds of Chlorine 4 2.7 Organic Compounds of Chlorine 5 2.8 Analysis of Chlorine 5 2.9 Chloride 6 2.10 Life, Ocean, Human Body, and Chlorine 7

3 . Environmental Pollution and Chlorine 12 3.1 Halogenide Compounds in the Air 12 3.2 Organic Compounds of Chlorine Related with Drainage 12 3.3 Chlorination of Water 17 3.4 Environmental Endocrine Disrupters and PCDDs 18 3.5 Analysis of PCDDs 19 3.6 Chlorofluorocarbons (CFCs) and Destruction of the Ozone Layer 19 3.7 Warm-up of the Earth and Chemical Substances 21

4. Studies Using Chlorine Stable Isotopes (35CU 37C1) 30 4.1 and Isotope Fractionation Factor 30 4.2 Studies of Stable Isotopes: 31 4.3 Early Studies on Chlorine Stable Isotopes 31 4.4 Determination Method of Chlorine Stable Isotope Ratio (1):IRMS 32 4.5 Determination Method of Chlorine Stable Isotope Ratio (2): TIMS 35 4.6 Isotopic Effect 36 4.7 Geochemistry of Stable Isotopes 36 4.8 Applied Studies for Hydrology and Ground Water 37 4.9 Thermodynamics and Others 38

V JAERI-Review 2001-043

5. Studies of Chlorine Radioisotopes (36CU 38CK etc.) 53 5.1 Studies of 36C1 Measurement 53 5.2 Studies of 38C1 Measurement 54 5.3 Studies Related to Nuclear Bomb Experiments 54 5.4 Studies Related to Nuclear Power Generation and Nuclear Waste 55 5.5 Studies Related to Chlorine Radioisotopes Produced by Cosmic rays 56 5.6 Studies Related to Dating 57 5.7 Studies Related to Hydrology 58 5.8 Studies Related to Medicine and Labeling 58 5.9 Others 59

6 . Future Research Subjects on Chlorine 79 6.1 Research Subjects Using Chlorine Radioisotopes 79 6.2 Determination of Chlorine Stable Isotope Ratio by a Light Element Mass Spectrometer 79 6.3 Research Subjects Using Chlorine Stable Isotopes 80

7 . Conclusion 87

Acknowledgement 87

References 88

vi JAERI-Review 2001-043

1.

chlorine Mo) L

(cation) J&5}Tfe3^ b y ?^ ^ (anion) (Dfflfi

"9

^/V (PCB) 2,3,7,8-

il 19 oo,

(so 35Cl t 37Cl cD^fl^cD SI i: (-

si

(RI) -m, ^M»! 30 n¥mm(D RI & RI 36Cl «C RI (AMS) 36Cl , AMS

- 1 - JAERI-Review 2001-043

si*3«fct*Ri

- 2 - JAERI-Review 2001-043

2.

2.1 H2SO4, HN(X R.Glauber t± NaCl Id H2SO4 £{1^ffl £-ti:T HCl ^ i: £3§ I,

U =t

NFft^o<5l/^c0 1774 ^ Scheele « HC1

^ MnO2 coS^i-^^^l^feco^Tk^M/i^^^^i-S^Xco^^-rsr tS:|8Ebfco 1811 ¥J.L. Gay-Lussac t Thenard ttiUac^ dO^^Sr^flct^X., H. Davy (±^57-(-^ttJ;5 t LTML, -ocO^^-Cfc5 ir co^f^^T U -g^

-t*^, r

HC1 tf'pm!k\Utfxq>K%1\,^t££tiZtf, Cl

^20{iL-C(130 n g/g)-T?foZ>of&ynk LTtt^-J^NaCK* U^ikKCU ^7-^-/1^^ KC1

•MgCl2-6H2O, ^ffil£ AgCK i&$$V>-EK^ CasCPO^sCl ft ¥ &&>%<, ^fSi^\^t.tiX\t^tc Cl $s HC1

Cl lkg ^ Cl 19

2.2 h Table 2.1 x-^ £^1"2 )

2.3

3) (Fig. 2.D

2.4 (SI) 38C1 (RI) ^#ftf5 4) (Table 2.2

- 3 - JAERI-Review 2001-043

36ci

2.5 6'7) C O2, N2 ©

Ch fi. \ MnO2 V«D Ch t P4O1 ) ^\ Ch

Ch 0 3 C, 4 50 ppmT-fi30-60 o Ch

Au^Pt \ Ch o H2 2.3 f^^W Ch *S^E(t, H2O + Ch ^ H+ +Cl" + HCIO

> Br2, h, S &ttiiroCh (i H2O2, NHs, CO, NO, SO2 /£

2.6 M * (HCl) H2 Ch

d = 1.187 (-85°Ciit)0 0 100 g \Z 82.3 g T HCl-nH2O fin = 2, 3, 4, 6& HCl

(HCl • aq) fi HCl itiS^tt 37.2 %, d = 1.19, j^J 12 M, ?£ FeCb -CLtfLtfUfe, **^^tl(± 108.584 °C,

20.222 %, m 6 Mo 3figg-t?(0.I M 92.6 %) #< W^Ji tSJS LT H2 §rffi1-o Au, Ag,

&i, Nb, Ta, ftk*X~Wlik£tlX Ch &titf-o (ChO, CI2O3, CIO2, CI2O4, CI2O6, CI2O7,

- 4 - JAERI-Review 2001-043

(CIOF, C10F3, C102F, CIO2F3, C103F 3?h &MMM&. (HCIO), m. (MCIO), mM^wt (Hcichh wMmmm. (MCM, mmm (HOOK mmm& (HC104), m&mmt& (MCICM (CINO3)

2.7 lit CH3C1

(-23.7 r) 0.920o

(Table 2.3 M CH2CI2 : li, itfi 1.320 (20"C) (I3.2g^g, 20 ) CHCb, f -A' (PCB)

(Aspergillus, Penicillium ft if) d^M,o(t bMtt nyt-r h tr^, tt0^ (Anaptychia, Buellia, Lecanora ^C if)

2.8 o ( +3 +4 (H +5 HClCbh +7 (ill

Agco3 Agci

- 5 - JAERI-Review 2001-043

V -, EPMA, ESCA, NMR, SIMS, ICP, ICP-MS

(PCB, Lt, Kylin , Petrick HPLC & ECD-GC

PCB

2.9 l3)

Hallstatt

, 19 itt,i

1.9 3-

o 99 %

fo 1/3

(1)

(3)

2 800 ha, SMgffitfS 20 000 ha & !9 , ¥0 600 ^ t

- 6 - JAERI-Review 2001-043

(4)

(5) *^ 7

140

2.10

30 ^4fI 2000 (21%)

, 3ff 5000 19 , * m

)#>—jKl' to T Table 2.1 Table 2.4 \Z.7f?t«t 9 t , Na t Cl , t

l4)

- 1 - JAERI-Review 2001-043

- 8 - JAERI-Review 2001-043

Table 2.1 Main chemical components in the sea water2*

fife ft ™«" mmm (mg/kg) (mmol/kg) (mg/kg) (¥) Na 0.5561 10,760 468.0 6.9 4.8x107 Mg 0.06679 1,294 53.2 3.9 l.OxlO7 Ca 0.02127 412 10.2 15.0 8.5xlO5 K 0.0206 399 10.2 2.1 5.9x106 Sr 0.00041 7.9 0.090 4 xlO6 Cl 1.0000 19,350 545.0 8.1 7.3xlO7 SO4 0.1400 2,712 28.2 10.6 7.9x106 HCO3 0.00749 145 2.38 55.9 8.0x104 Br 0.003473 67 0.84 1 xlO8 B 0.000240 4.6 0.39 1 xlO7 F 0.000067 1.3 0.068 5 xlO5 : 15 mg/kg, Si;2.9 mg/kg

Table 2.2 Isotopes of chlorine4> m - t ?tJt (MeV), Zi(MeV) 33 + C1 2.511 s -21.004 3/2 j3 + /r4.51;y 0.841 (0.54) fdl 34C1 1.5262 s -24.440 0+ 0 + i3 +4.50 34mCl 32.23 m -24.294 3+ j3+53%, IT47% j3+2.47[34]{til, y 2.128(42), 0.146 (IT) {til 35C| (75.77 %) -29.014 3/2" a 43, / 15; a 0.48, Ip 0.59; a a'0.08 mb 36C1 3.01xl05 y -29.522 2+ ]3 "98%, EC2%, j3 "0.709; /3 +0.2; no y 37CI (24.23 %) -31.762 3/2+ a (0.7 s) 0.005, o (37 m)0.43, / 0.32 38

C1 37.24 m -29.798 2 "C D i3"4.91 (58), 2.77(11), 1.11(31); y 1.642(40), 2.168(55) 3SmC, 0.715 s -29.127 5" IT y 0.671 (99.95) 39

C1 55.6 m -29.804 3/2" "C D 13" 1.91 (85) {til; y 1.267 (54) {til 4OC] 1.35 m -27.540 2 13--7.5, -3.2; y 1.461 (77) {t!l : ate* off a . ^J:5 0.5eV U

- 9 - JAERI-Review 2001-043

Table 2.3 Symptoms of poisoning by methil chloridel5>

ait, ^fio

4 H5PH1 LCLO = 3000 ppm. (LCLo ^

Table 2.4 Na, K, and Cl concentrations in the human bodyl4)

(mg = A% mmm Na 144

<< K 163.9 152 160 > 205

37- Cl 109.7- 114 A (53) 163.9 152 205 54.2- 38- 203"

Na/Kht 35 36 0.05 (0.13)

10%, 15%)

-10- JAERI-Review 2001-043

10,000 8,000 6,000 4,000 2,000 0 nP 50 C 40 30 itio n 20 "c u c 10 o O 0 10 'u t " .d 1 8 •p 1 (c)I 1 6 1 A. /s •^ ( 4 / ^ // 2 - v' 0 6 7 8.9 10 11 12 1 2 Month

Fig. 2.1 Atmospheric particulate (•) and gaseous (O) Cl, Br and I concentrations from June 1991 to February 1992 in Chiba sity, Japan.3)

- 11 - JAERI- Review 2001-043

3.

t

Rl 36C1 ^ C1 fcSl^fct 38C1

3.1 l6>

, ±

LT, Kylin

PCB ®^WJ£S:S^LTV^5O ®.\z.X V mm HCP (hexachlorobenzene) , PCB (polychlorinated biphenyls) t DDE (l,l-dichloro-2,2-bis-4-chlorophenyl-ethene) s *3 ^ (GC) fe^J;i9 6

3.2 16

18 27

co Table 3.1 I Table 3.1 ±^ fc

12- JAERI-Review 2001-043

>\ (22)PCB, *5 «fcU«(23) ? P P ^ib, 4) #14, x-^^-r l7)

(1) MJ^noxf i/y Trichloroethylene CAS Registry Number = 79-01-6

y 1J V

: CHCICCh0 131.40o itM. : 1.465O ^ : -86.4 °CO ^ : 86.7 °CO

69.0 mmHg(25 °C)O : 1,100 mg/L (25 °C)O & : 32.2 °C0 : 2.5 ~ 90 %

$C^-^ : 4.54O : 10.2 % (25 °C)D

1990 56.850 to

40 . 1, 2 — - h MJ ^ n , 0H7

511ti 0.29 ~ 12 // g / L "C 5:£II 15 #rf7COiftT7KIi^"e(i, h U ^nnxf-uyii 1,360 0.5~ 1.0 M g/L

.03 m g/L £M Lfco

7 y h (DB P LDso fi 4.92 g / kgo B6C3F1 -? $ X Cliffl MJ^nox &!£ 99 %w±, \f Ky ^-^ftlicofb^t/^^tp)^ia5 H, 78

*|l«lT^*e>tl^:o (NCI)5S^^tiWffifi, IARC : 3 , USEPA : B2 yeast Sffl^$^lgtt^KeiilttgJ|*

857 mg/ kgo

- 13- JAERI-Review 2001-043

5) Daphnia magna 48-h LCso 94 mg / L Salmo gairdneri 48-h LCso 120mg/L (LCso fi 6)

«& : 2-105o 50 ppm0

*P 0.03mg/Lo 0.3 mg/L

Carbon tetrachloride CAS Resistry Number = 56-23-5

: CCUO : 153.82O ft H : m&W$\WLfoo M & : -22.9 °CO ^ ^3 6,54 °C

(760mmHg)o 1.594O i=^U± : 115.2 mmHg (25°C)O TK^^S : 805 m g/L (20 °C)0

WM^fe : 5.3O 2) ^jg 1990 50,547 t, 19,868 to 3)

95 %

, cox 330 *£Sk±, Molina Pjfi 30 - 50

1965 «|ft:^ 0 , Wiffifi 0.003 m g/ L 4)

LDso tt2800 mg/kgo , 7 y 30 mg / kg bw

2 BN USEPA:B2

5) 48 H#^ LCso (mortality) 35 mg / L 96 H#fH1 LCso 1.97 mg / L 6)

-14- JAERI-Review 2001-043

•. 2 -

PPm0 m&m -. i

0.002 m g / Lo ^TKS* 0.02 m g / Lo

n^V Dichloromethane CAS Registry Number = 75-09-2

50

: CH2CI2 84.94O M & : -96.8O ^ ^ : 39.75 °CO Jt S : 1.335O

: 349mmHg (20°C) : 13,000 mg / L (25°C)O ^^^Pitit : 55% (

BM&& : 2.93O 2) ^g

77,466 to 3)

19 53 ~ 127 0 o JrV*ls~®LM\%M\±7rils(D 1 / 1000 1982 1360 2-6 Co 1983 101 99 0.002 ~ 5.6 pp X 63 ^S~¥^4¥S*"C"C 527 ^{$* 98 0.00004 0.012 mg/Lo 4) #tt

•v •> ^ (DB P LDSO fi 1987 mg / kg, y y h "C 2,136 mg / kgo F344 7 y h {^ 78 , 5 ~ 250

«tfe^»ft#^t^Eti*PLT^5 t LTV^o Ames 20,000 ppm 30 1,000 ppm

SffifilARC : 2 B, USEPA : B 2O 5) mmmm

imm : 2-36o S^tl^^*^& : ff^MSt 100 ppmo ^EfefeJKJAfiJS^&t/

(22) PCB Polychlorinated Biphenyl

-15- JAERI-Review 2001-043

CAS Number = 92-52-4

PCB 210 o i&

PCB

its KC -200, Ar. 1232 1.223 ~ 1.243 270 360 KC - 300, Ar. 1242 1.310 — 1.322 325 360 KC - 400, Ar. 1248 1.376-1.389 340 375 KC - 500, Ar. 1254 ~$M.\YM 1.460—1.475 365 390 KC - 600, Ar. 1260 1.539-1.555 385 420

2) 4i

1971 57,330 U ffflA* 590 t t £tl%o &\Z.& Lfc 1970 11,0001,

o 1972 PCB (D 3) PCB

4)

o PCB -PCB

5) \f LCso (48h) 0.3 - 10 mg / L LCso (48h) 3 - 10 mg / L 6) m3 SIS 0.5 ppm, 0.1 ppm, ?L»fp 1 ppm, 0.2 ppm, P 0.2 ppm, O") 0.5 ppm, ik rM) 3 ppm, ^§s^^ 5 ppm

(23) ^no*M Chloroform CAS Registry Number = 67-66-3

-16- JAERI-Review 2001-043

: CHCb 119.3O Jt£ : 1.48O & : -63.5 °CO : 61.7 °CO WMB : 246 mmHg (25°C) : 7.950 m g / Lo 4.1 (25°C)O 2) ^M n 7 1990 37,000

3)

80 B-f

139 29 %X\ 0.1 ~ 13 n g/L Tfe5o 1982 -£.Z>£.m 15 1,360 |f©H 305 ^{$/^ 0. 5~ 1.0 n ^ 182 &#, 10 ~ 100 M g/L

4)

5/ LDso n 908 mg/kgo

iilAP?r^L/co (NCI 1976) Ames f$ -^, ^ nn*W 200 m 1 ©tg^fi&JEWCfc 19 ^ 1,000 ppm 7 j; <9

5) Salmo gairdberl (— i/v ^) LC50 66.8 mg/L

3.3

hz> 18) ^ 16 *t^ 0.4

i/^ P P

-17- JAERI-Review 2001-043

>\ f k FI, ^07x7-/* ^if^fcSc Table 3.2

3.4 L/r 1962 V

>' (Environmental hormon) " (Environmental Endocrine Disruptors) #» ( 20-24)

1998 ; SPEED'98J ^ffi ^ tl,

vftffl l

1998 LT Table 3.3

, 75 ^ (PCDD) <7) 77^(PC

13 Umy (2,3,7,8-TCDD) tf , :© 2,3,7,8-TCDD (D^tt^r 1 i: (TEQ; Toxicity Equivalent Factor) ^v, PCB 20-24)

h) ?rt^^^ LT PCDD *3«tU« PCDF

27\ DDT>PCBs>HCHs>HCB>PCDFs>PCDD

-18- JAERI-Review 2001-043

PCDDS/PCDFS t,

2ioPb h W ^ 19

3.5 , Petrick [4HPLC ^ ECD-GC ^=fc<9 PCB fe Quintanilla-Lopez h 29)lt, Ztl1z.-?\Zi&&&tlX^Z> ECD-GC Wm t&m 36-so pp

(Fig. 3.1)o Nakano ^ 30)[4, 40 HRGC-MS/SIM (iSj^-ftfmifX 9 n- PCDD, PCDF, PCB PCB 3 3 •C 2.8 ng/m\ PCDD *5 J; tf PCDF ttZMfi 8.6 pg/m , 8.8 pg/m T'fe o ^co r.

3.6 1974

z 31) 1977

Dy n 12 S: 1981 30 % r t ^«)^Lfc 15)

Table 3.5 1985

, m< 1986

NASA is=

. 1987

-19- JAERI-Review 2001-043

1989 ¥~ 1998 1986 ^xso

1990

2000

, 1992 1996 V^ 1994 L, ^i: I,I,I - h V 1996

— -)5 y \2 ^y \C {%t> > , HCFCs ( partially halogenated hydrochlorofluorocarbons) , HFCs (hydrofluorocarbones) *£

t

mm n

nm O2 *S^fl? LT ^ O

O2 0 + 0

0^ 03

03 + %&•!& -* 02 + o

CH3CI 25 %

^>= CFC) l- 34- 35)

CFCb (7ny- 11) CF2CI2 190-220

-20- JAERI-Review 2001-043

CFCh + $&%•&. CFCk + Cl CF2CI2 B CF2CI + Cl

O3 + Cl -• O2 + CIO cio + o -» 02 + ci

Os + O -> 2O2

i^^- ci ^ o im

cio tt, o

CIO + NO2 + M -* CIONO2 + M Fig. 3.2

3.7 Table 3. , 7 , 1970 , 1980

20 %

, 21

1991

1990 ¥ 10

-21 - JAERI-Review 2001-043

2000 1990 Z. t

L Table 3.6 CO «fc : m± IPCC 1=^1

60 %£ 15 ~ 20 %N 70 ~ 80 t 2025

-22- JAERI-Review 2001-043

Table 3.1 Chemicals listed in the drain standard and water environment standard25'

g m (1) (2) (24) (3) (4) (5) 1,2 (6) 1.1.1 - hV (7) 1.1.2 - h ]} (8) (30) (9) (10) 1,3 - (D - D) (11) (33) yn ^ If ^ K (12) (CAT) (34) EPN (13) (14) (15) (IBP)

(39) n (40)

(17) t (18)* (19) i (44) (20) ^ O A (45) (21) (22)PCB

-23- JAERI-Review 2001-043

Table 3.2 List of possible environmental endocrine disrupters25'

No. fflii 1 2 I (PCB) 3 I (PBB) o mmm 4 (HCB) 5 V (PCP) 6 2,4,5 - o 7 2,4 - v o 8 7; — A o mrnrn, , mrnvmim 9 T h o 10 -A o 11 o 12

13 A o 14 n A-r "y 15 16 trans - J-j-^7 u;V 17 1,2 - v>:/p^e - 3 - t> o 18 DDT 19 DDE and DDD 20 o 21 r >v o 22 o 23 24 o 25 26 27 o 28 y o 29 o 30 o 31 32 o 33

34 h y 7i=

-24- JAERI-Review 2001-043

35 hy o 36

y- —A-

4 • 37 38 in 39 in 40 in 41 O in 42 in 43 *<>*/ (a) t o 44 2,4—i/? n n 7x/ — /I/ 45 o 46 47 4-^ h D o 2,4 - i/~

48 p 49 50 51 52 53 54 55 h y 56 y > 57 58 - h 59 h ]) y 60 61 62 63 64 65 66

67 n - rfifcfrlglft.

(2)

25- JAERI-Review 2001-043

Table 3.3 By-products of water chlorination and their effects on people I8)

p p CHCb JFFStt, CHBrCh

CHBr2Cl

CHBr3 CH2CICOOH CHChCOOH

CCbCOOH

1,1-^na: CH3CH2CHCI2 CHChCN

CHBr2CN ppTi? h^ h y CHBrClCN h y CHCbCN CNC1

y >• CCI3NO2 h y CbCCHO

C&1H6C1 5 2,4 - v 9 n P ~7 3 — ;\> CeHeCh 2,4,6 - h y * n n —/U C&H6C13 HCHO CH3CHO MX (3-^nt ^/l') - 5 t 2(5 H) - 7

HBrO, BrO3" H2O2

-26- JAERI-Review 2001-043

Table 3.4 Levels of chlorinated compounds in urban air of Kobe, Japan 30)

Compound Range Average (ng/m3) PCBs 0.9- 11.7 2.8 trans-chlordane 0.06 - 0.30 0.16 cis-chlordane 0.04 - 0.22 0.12 tans-nonachlor 0.03 - 0.17 0.09 cis-nonachlor 0.001- 0.035 0.014 chlordanes* 0.12-0.50 0.34 a-HCH 0.01 - 0.29 0.14 P-HCH 0.01 - 0.52 0.16 HCB 0.01 -0.15 0.04 p,p-DDE 0.003 - 0.010 0.006 PCDDs 0.0014 - 0.037 0.0086 PCDFs 0.0022 - 0.022 0.0088 chlordanes* : chlordane + nonachlor

Table 3.5 CFCs and their ozone-depletion factors

7ny n (CCbF) 1.0 7nyi2 (CCI2F2) 1.0 7ny 113 (CCI2FCCIF2) 0.8 7ny 114 (CCIF2CCIF2) 1.0 7oy 115 (CCIF2CF3) 0.6

AD is 1211 (CF2BrCl) 3.0 ^ny 1301 (CFsBr) 10.0 A o is 2402 (C2F4Bn) 6.0 (ecu) 1.06 1,1,1-h V ? 0.10

-27- JAERI-Review 2001-043

Table 3.6 Principal anthropogenic green-house gases and GWP15)

ppmv ppmv pptv pptv ppbv (1970-1800) 280 0.8 0 0 288 353 1.72 280 484 310 1.8 0.015 9.5 17 0.8 (0.5 %) (0.9 %) (4 %) (4 %) (0.25 %) [y] 50 ~ 200 10 65 130 150

1980-- 1990 ^(^TWtr 55 % 15% 17% 1-7 % 6%

100^ 21 3,500 7,300 290 :^H^:(GWP* * global warming potential : Si) ppmv : parts per million by volume, ppbv : parts per billion by volume, pptv : parts per trillion by volume

-28- JAERI-Review 2001-043 a.u.10

8 3.0

tvj cri 2.0

1.0-

0- 10 20 mm

Fig. 3.1 An example of gas chromatogram of organochloric pesticides,29)

temporary active chain temporary reservoir reaction reservoir

CH,

HO

0, NO

N0 2 CIONO-

Fig. 3.2 The most important chemical transformations among inorganic chlorine species in the stratosphere except during the polar winter. Ozone depletion ocurs only while chlorine is in the forms of Cl and C1O34).

-29- JAERI-Review 2001-043

4.

?{::,£ 5 LTfi, ^T-ai^S Kaufmann b 1- J: 37)

35 37 -. ( a; 75.77%1 a; 24.23% 79Br; 50.69%

(stable isotope ratio gas chromatographic mass spectrometry: IRMS) id <£ t/

(thermal ionisation mass spectrometry: TIMS) X°fo&o IRMS "C(4, CHaCl

4.1 t

38)

Table 4.1^7SL7t/5\ r ^ 9 o 7km

8 D = [(RA/RS)- 1] x 1000 %o

RA, RS

RS t

Table 4.2 t0 Table 4.1

fe, a B-A = RB/RA t B t W&o AtB

In a B-A = ln(l +Z1 B-A/1000) ^A B-A/1000

a B-A =(1 +6 I3CB-A/1000)/0 +6 I3CA/1000)

lOOOln a B-A ^Z1B-A (%O) = 5 I3CB -6 I3CA

-30- JAERI-Review 2001-043

4.2 SO2 t , if ~ 34S/ 32S co-fix (5 34S)

35)

SO2 (A, 5 34S ffi^o

SiJ0 CDT fi Table 4.2 £#!$)„ -#, /feM' 34S (itSt£+20 %o CDT

, 6 34S fiI^+20 %o CDT /£ P> DMS

(SO2, SO42-) J;

4.3 1919 Cavendish W^0f(D Aston ft Nature LTV^S 39> ^ (Ne) ^^ffitS 20 45^^22

c0 Aston

(HCl) > (COCO

, 1923 ^ Dorenfeldt ft, Bample CO Odegaarden 1&\li-?W;%L&tl1ZT'<* 4 h (appatite) tS^^W^^[?!]^^tb^\ 40) oTV^ o wtm, DJ /c^\ D (for standard NaCl) = 1.202867, D (from appatite) = 1.202855 t V^9 x —

1926 *^ Harkins ii, s 41) 5 , appatite, wernerite, sodalite 35.45755 ± 0.0002> 35.458o ± 0.000s, irl fl Hoering t>b 1960 ¥t

-31 - JAERI-Review 2001-043

HCI HCl (memory effect) (/)?$Mfch&ti'\ 9 7 Ch, NH4CI t HCl, NaCI £ Cl\ Cl\ 1.0002 tf>b 1.0038 ffi 100

Nier 43) 2 2 3 4+ 5 O HCl , HCl\ HCl \ H\ Cl\ CI \ CI \ Cl , Cl \ jo j; 1/ Cl'-f st> -^^fe, 35C1/37C1 tt^ 3.07 ± 0.03, ~tt£t>h 3SC1 = 75.4%, "Cl Fig. 4.1 l'^^C0t# fc 44) -•% 1947 ^(d urey u,

1954 ¥(- Langvad 7 4 —\Z. J: 19 46) \ 43 m LT KC1 7

Konstantinov (LiCU NaCK 47) 1962 ¥1- Shields J: t LV^ 35C1 = 75.7705%, 37C1 = 24.2295% 48) fM^C, 1980

<9 Kaufmann hit 1984 ± 0.24

37)

-^T\ 37Cl/35Cl Jrb t LT 0.324 37C bi: LX ± 0.12 %o ( a = 0.05 %o) t^oU ffitiLfctt (SMOC; Standard Mean Ocean Chlorine) t SMOC (<5 37C = 0) ^

4.4 ffi ( 1 ) : IRMS

7 'fe (stable isotope ratio gas chromatographic mass spectrometry: IRMS or GCMS) & J: Xff£4 ^r (thermal ionisation mass spectrometry:

-32- JAERI-Review 2001-043

TIMS) TfcSo SIT,

(4CH3C1 CH3CI

49) Taylor +3000 v jyj;i>'-3ooo v Table 4.3 (

LT, capcitive integration circuit HJ; >9 Willey ^i- J;

Long f>fi 1993 ^Wffe^: 51)1: S± 0.09 (5 37C1)

50 t 52 CH3CI ft-Bi@, rfck

CCh

AgNCta ^^*JPx.N AgCl

%s 47mm 4> s 0.45 M m

NH4OH

conc.NH40H k conc.HCl

(CHsCl ^ : 3-10 c AgCl $r Fig. 4.2

I CH3I CH3C1 ^t if CHsI mTorr

-33- JAERI-Review 2001-043

AgCl + CH3I -> Agl + CHsCl s 10 mg

CH3I ftip U T ^ 3 -O r , 110-125 °CT'2 Prnifc

(CH3CI o GC

Fig. 4.3 7J 7 Afi Porapak Q, 80-120 mesh, 9 mm 0 x 1.5 mo =^

: CH3CI t 50 ^{i1--

CHSCISMOC(in %o) = 5 "(sample) - 5 52(SMOC)

tctcL, SMOC: Standard Mean Ocean Chloride0 SMOC tm

o Long bfc'&tc 8 37C1 — ^ % Fig. 4.4 , immmt

SMOC 37C1SMOC , NIST (D

t 5 37C1SMOC i: NBS975 37C1 8 37Cl(i,

37C1SMOC ± 0.02

Musashi kfi:7 (HF) 52) ^ fc HF HF

(Dowex-l) t^«t 19 F «t Cl &ftffi1-Zo *

-34- JAERI-Review 2001-043

ik voc LTffig £*LTV5o Holt biDjjm-i. Cl/VOC Sr CuO t*t- 550 °C, 2hMU CO2 CuCl \Z.WfctZ>o £b\^CJxlfc1*X\ CO2 £|&^/c?£, Fig. 4.5 (O^-fX 9 ^ CuCl £ CHal 37 s 2 h&MU OfcCl £#£;£&-?*>£„ ^HbtL/c CFhCl 1- «fc 6 6 C1 KcDfjt 37 yt0 £fc, ChbCI ^CuCl^x, I?S CH3CI i'€^ LT^PJS'J^ Lfc 6 C1 37 I3 fi offset i\M.t LT-0.23 ± 0.05 %0~<:h-otz.o &?I Cl/VOC frt>%btitz& C1 fcJ:t/5 C §r l3 37 Table 4.4 ^TF1~/0 \ 8 C (D^WMMfc 34 %af£0)[ZttL, 5 Cl fit>"f/iMC 4.5 %ot'feo fco L?0^L8 37CliiJ>£Wff^/i5± 0.1 %o-Cfo<3, +^>^^^ I'5 l3c Wx-^tffiirr^^a^ctt'J;^ VOC

Jendrzejewski fjfi^fg^Ji^lft'^^*^ Wili^fc J;l//^^»[W]fif$fJJ)t(7)7tfccO CH3CI *5 CO2 ^f^fllEfe$:$a^LTV^ 55)« 1-2 n L0^m&*atfW(&% CuO h&\Z. 620-820 °C "C^nUft L

CO2 ££fi££i±\ $ofc CuCl ^t> CH3CI I^IftL, |P]{if»J/£^tf9o ^f^WiJ^^ Fig. 4.6 l^-To ^CD^f^^J;^^l^CD|lla^^^W^^I&tTtTo/c:IW]fifr^^f-Cfc, 6 "Cl Tf± 0.08 %o, 6 I3C "C± 0.05

4.5 M.m&feMtiLfol£mfe&tfi ( 2 ) : TIMS (thermal ionisation mass spectrometry: TIMS) t|LT, Vengosh h (i Cl (NTIMS) ^^^-T^S 56)

± 2%ot IRMS

(1991 ^) TIMS cDfrLV^^&ir LT, Xiao fjfiH^Sr^* Lf;7 ^ 7

tz 57) m&n

Cs C"Cs) Sr^fflL, ^ biz.r «O#SiSrM|g L,

Xiao P>fi*f«»*^e> Ba2+M«PI^^^^^#t)iH-eit^^}i*bT, ^Jp HC1 fflft& 58) tc O PTIMS (Positive-TIMS) CO Ta 7 ^ y } > h l^tiHi'p^ 7!)- (H#&*&*+ 80%^^

CsCO3 ^?> CsCl ^f^M-t5(-iifI^^^^t

, pH ^ 2-5 -h Cs : Cl it^S 1 : 2 COB#-Cfeo/c0 35 + 37 + (Cs2 Cl ) ir 303 (Cs2 CI ) iS*'(ytrl'Wl'fc IRMS J; ^f^^5tw», f^3f5co TIMS ^TiH^iis^cK (± o.34%o), i^4IiK^lRMS «fc *)&Z>fr\z.ffi®.tzh^onM. 59) Xiao too 1995 *f(n%kn' X*lt, PTIMS coay^ft/^^r ± 0.1 %o (la) t L-T^5O $ b 37CI ijt^iJ^L/i 60'6I)

-35- JAERI- Review 2001-043

ig. 4.7 pH, ClSft. *s£Xfiig&k 8 37CI

Vk Magenheim PTIMS n 37C1 62) PTIMS 2 ci

4.6 "ci t 35ci

1954 ¥(- Bartholomew n 7 -f I* (C4H9CI) h&ik&foZ \/^-tfc&tiki- h V R^, 35ci (DR^M&it 37ci 63) (-0.001 ~+0.002)£^9te£#T^5 O « ^^^^^^, Ch tz Howaid HC1 ^^tw^co CI 37C1/35C1 Yth LX : HC1 (dissolved), 1.0050 ± 0.0002; HgCh, 1.0061 ±

0.0009; HC1-H2O, 1.0039 ± 0.0003, SrCh, 1.0042 ± 0.0003; LiCl, 1.0040 ± 0.0003, t£}£Wlk 35 37 &ktfftfrr>tc0 CH3CI ^^-CO C1 *• C1 -CgtfeLfe

, C-Cl PaWfii^fk^TvU-t-ir-Th^ -0.00041 nm t^5o - tl h

Eggenkamp ^ 66) 37 35 37 35 (a) O afi, a = -( C1/ C1)precipitate/( C1/ C1)solution K KCK *Jctt/ MgCh-6H2O i: -tcofi&JFp^^^t?(7) 3ft*, NaCl "CJi; 103ln a (NaCl - solution) = +0.26 ± 0.07 (la) Fig. 4.8 t-^-t-J: ^ td. 5 "

Fig. 4.

4,7

37Cl fit) ^«fc

-36- JAERI-Review 2001-043

5tt5 37ci/35ci Jt'£

Eggenkamp " K-t>->T Halmahera CO Kau ?M(M$$M!$)cP

37 COS C1 ^tJ^L/co ^Hf&tt AgCl iJn CHJI CH3CI IRMS {lFig. 4.9(C7 5 6 37CI , 35ci fi 37ci 1.0023 - 1947 ¥1-Madorsky b djt (1.00207) Magenheim bfi CsCl SrfflV^c PT1MS (JffiJS 0.25 0.2-7.5

Lofoten Islands +CO 5 37C1

37C1 SMOC £ 37cifit (-0.3 ^f> +0.11 (SMOC) ft Eggenkamp fet^^" (carbonatite) 7I) ^fiS 37C1 ^ ?6 I3C ootJ^tffoT 37C1 14 SMOC (6 37ci ^ +4.7

4.8

o Desaulniers

73) ^

35ci 37ci Kj 15,000

-37- JAERI- Review 2001-043

74-76)

Phillips hit, (*5 . 77) , cm r i® (ion filtration) J -T (mobility) tt'ffl^/K

ib\on mobility s Fig. 4.10 \Z.^ir «t 5

Ransom 5 37C1 78)

Xiao hlZCs2C\+(O 28 pH, it

fc 79)

Cfe5o Sturchio (chlorinated aliphatic hydrocarbons ;

80) 8 "Cl ^ o CAH

y (trichloroethene; TCE) i:*S (Fig. 4.11 #BSK

4.9 ^^3^, (SI) /J JW (1947 ¥), Urey It H, Li, B, CK Bi\

45)

0.031

(199130, Tanaka 8|)

-38- JAERI-Review 2001-043 ib+2.61

Price Lt, "Cl i: 35Cl CD NMR y (HSA) 82) Fjf

Warmerdam fc 83)

^^{t:-p-^

1,1,1-trichloroethane (TCA)T, Ztlhl$mft0>ik¥M&£#.fi->t>&Wi£tlt£bo fa bit Parr 1901 Bomb (d«t S^SJ^fe (ASTM method D808-91) X-&M& 37 I3 CH3C1

-39- JAERI-Review 2001-043

Table 4.1 Isotopic ratios of some important light elements38'

H c N O s 'H 99.9844 % 12C 98.89% 14N 99.64% 99.763 % 32S 95.02 % 2H 0.0156 13C 1.11 I5N 0.36 I7O 0.07351 33S 0.75

18O 0.1995 34S 4.21

36S 0.02 LXlt Table 2.2

Table 4.2 International Standards for stable-isotope geochemistry

H(6 2H*) SMOW WMW-&JMA(Standard Mean Ocean Water) C(<5 13C) PDB 7^11lt*P7'i'-^'>H t°—x-f—Jl^tt^'(t^"(CaC03) N(6 15N) i^.%^M 0(5 18O) SMOW, PDB S ( 6 34S) CDT Canon Diablo WiWi ^

-40- JAERI- Review 2001-043

Table 4.3 Mass scan of methil chloride reference sample,49' ) Positive ions Negative ions m/e Relative intensity Major species Relative intensity Major species 35 2.8 "Cl 100.0 35C1 36 1.2 H35C1 — 37 1.0 "Cl 32.4 37C1 38 0.4 H"C1 — 47 7.7 C35C1 0.25 C35C1 48 3.2 CH35C! 0.20 CH35C1 35 37 35 37 49 9.6 CH2 C1 + C C1 0.50 CH2 C1 + C C1 35 37 37 50 100.0 CH3 C1 + CH CI 0.10 CH C1 13 35 37 37 51 3.4 CH3 C1 + CH2 C1 0.14 CH2 C1 37 52 31.4 CH3 C1 — 53 0.5 "CH337C1 —

-41 - JAERI- Review 2001-043

Table 4.4 Yields and isotopic data for duplicate analyses of various chlorinated compounds54) 1 CO2' CHJCI Compd. yield (%) 6 L1C(%o) yield (%'.)*2 5 37CI(%o) CHsCl 99 -58.77 93 -0.25 98 -58.03 91 -0.26 CH2CI2 nm -34.17 91 + 1.56 nm -34.21 91 + 1.55 CHCb nm -43.25 90 -1.51 nm -43.17 89 -1.53 ecu 100 -47.18 91 -0.02 100 -47.25 92 -0.01 C2H2CI2 nm -27.34 88 +0.35 nm -27.37 88 +0.51 C2HCI3 nm -27.17 91 -1.32 nm -27.19 88 -1.51 C2CU nm -24.06 89 +0.49 nm -24.09 88 +0.56 C2H3Ch'3 nm -25.49 80 -2.86 nm -25.58 79 -2.87 CuCl na na 99 +2.13 na na 98 +2.10 CuCh-H2O na na 95 +0.44 na na 97 +0.40 *1: nm; not measured, na; not applicable. *2: Uncorrected Cl yield. *3: solvent grade, containing 5% "preservative".

-42- JAERI-Review 2001-043

120

R Her s 36

KSQ

38 s s j L 37 1/ 20 21 22 23 24 25 Encrqu of Tons (\/o/fs)

Fig. 4.1 Typical mass spectrum found in the region of HC1+. Accelerating voltage aplied to electrons was 100 V, and magnetic field was 1175 gaus.43>

-43- JAERI-Review 2001-043

j Vacuum

Cajon tee-join Syringe

Silicone septum

Pyrex sample tube

Fig. 4.2 Vacuum line for the preparation of CH3CI.51' S = stopcock, P = pressure gauge

-44 JAERI-Review 2001-043

Hood Vacuum

Vacuum line S - stopcock M - manometer line V - valve T - cold trap GC - gas chromatograph p - pressure gauge CF - cold finger

Fig. 4.3 Vacuum line for the purification of CFbCI.51)

-45- JAERI-Review 2001-043

SMOC Other (1) Marine evaporites (1,2,3, 6,8) Lakes, lacustrine evap. (3) Shale leachate, Milk R.(10)

Milk River, Ontario (10) Geothermal waters (2,6) Tucson Basin (3) Stripa, Sweden (5) Canadian Shield (4) Quaternary Till, Ontario (7)

Michigan (8) Knox , TN (9) Palo Duro, TX (9) Gulf Coast (9) Gutf Coast (1) Porphyry biotite (9)

Porphyry copper fluids (9)

Mississippi Valley-type TN (9)

-1.0 1.0 2.0 6 37 Cl, per mil

Fig. 4.4 Ranges of 8 "Cl in natural samples studied.50 Data are presented as histograms or as mean ± 2 a , where data are more numerous. For solid histograms and bars, precision = ± 0.09 %o(l a ) or better. For others, precision = 0.12-0.24 %o(l a). Numbers in parentheses indicate references.

-46- JAERI-Review 2001-043

100

Reagent grade CuCI (300°C)

• CuCI from combustion of CH?C l2 (300°C)

• CuCI from combustion oi CH3CI (250°C)

5 10 15 20 Heating Time (h)

Fig. 4.5 Yield of CHaCl vs heating time for the reaction: CuCI + Chbl -» Cul + CHJCI. 54)

-47- JAERI-Review 2001-043

Borosllicate or silica class seajicd Tube CuO H In aqueous solution 62O-g20''C ) Under vacuum Cracking under vacuum Solid residue ( and phase separation (glass + CuO. Cu;0) 2 Dissolution Gas QfCuCl.CuCl ; ) Cryogenic separation and purification of CO; : Solid reridu* ~- ••• Cl- In solution Pure CO, ( Disposed of 3 C Added to KNO,+pH buffer Mass Spectrometer

Precipitation J c 1CH, -> C1CH, Agj) Gas Chromatogtaphy ~") Pure CICH, ( Mass Spectrometer

Fig. 4.6 Diagrammatic summary of the procedure for stable isotopic analysis of chlorine and from chlorinated solvent samples.55' after infection of the sample, the products of the combustion at 620-820 °C are treated first under vacuum (shite domain) and subsequently in aqueous solution (gray-shaded area).

-48- JAERI-Review 2001-043

tn CD

"5

CD 75 X CL

-3

to CD J5 b • "o

200 - n o

O c 100 - o o

CD -

0 - i I • O -3 -2 -1

1.0 -3 -2 -1

Fig. 4.7 Variation of 8 37Cl (%o) with: (a) pH; (b) chloride concentration; and (c) density of brines.60

-49- JAERI-Review 2001-043

0.4 —i

I ' I ' I ' I T 0.2 0.4 0.6 0.8 Fraction chloride precipitated

Fig. 4.8 Calculated 5 37C1 values of the precipitate and the remaining brine.66) The bold lines indicate the average values. The area between the short-dashed lines indicates the error for the residual brines and the area between the long-dashed lines indicates the error for the precipitates. Note the discontinuities in the curves for the precipitates.

0—,

-0.4 -0.3 -0.2 -0.1 0.0 0.1

Fig. 4.9 Best-fit diffusion line for core Kll of Kau Bay, Indonesia, for the calculation of diffusion coefficient ratio.675

-50- JAERI-Review 2001-043

2.000 37 © 6 CI colculoted using 3-layer model 7 • • b^ CI dolo from \ Koufmonn el ol.(l983) a \ « \ \

3.000 * • • \ \ • e \ o. \ a • • 4,000 - s • \ • \ \

\ -

5,000 i 1 -1.5 -1.0 -0.5 0.0 0.5 10

637CI (%oSMOC)

Fig. 4.10 A comparison of calculated 5 37C1 as a function of depth77) with data obtained by Kaufmann et al.37)

-51 - JAERI-Review 2001-043

-2.0 0.001 0.01 0.1 1 10 100 1000 TCE, mg/L

Fig. 4.11 Diagram showing 6 37CI value of TCE (%o) vs TCE concentration (mg/L) in water samples.80* Solid line is exponential best-fit yielding a = 0.999475.

-22 PCE Dow PCE • T ICI -24 • PPG TCA A Vulcan -26 _ T TCA CQ TCE • Q TCA -28 A a. TCA -30 • TCE TCE U -32 • TJ PCE -34

-36 PCE 1 1 "I 1 1 1 1 -38 -3 -2-10123 d37 Cl %o (SMOC)

Fig. 4.12 <537Clvs<5 I3C of PCE, TCE and TCA from 4 different manufacturers.83' The solvent type is noted beside the isotopic field: Dow; Dow Chemical Company, ICI; ICI Chemicals and Polymers Group, PPG; PPG Industries, Vulcan; Vulcan Chemicals.

-52- JAERI-Review 2001-043

5.

Table 2.2 (d^-f J; ¥$Jfflj&S#] 30 36CK ¥UM 37 ^>

(D)

5.1 Chalk River W^S^f-Cfi, 1982 ^n^y (TASCC: Tandem Accelerator Superconducting Cyclotron) (AMS: Accelerator Mass Spectrometer) \Z.«fc "9 , 36CI 16) Fig. 5.1 KiaSr^LTfeSiJS, rco TASCC-AMS -y^rACIi, gWif—#fa m, Bragg «tiit^ ^^i^-A^^yl^iaStef'fty 36S if

Table 5.1 t 5.2 t Rochester ^^ (T^ y *) T"bfi£*7&>k I4CS"J^*if^iffl LTV^c AMS - 36C1

85) 36 35 iiffl LTV^-5 O S (DBW&Mtf 5 fcfe gas-filled magnet isobar separator L, C1

^ AMS - I29I IJ;5#ic (>700 !*$•) CD 36Cl i LT, 1950-1960 ¥ (n, 36Ci

-53- JAERI-Review 2001-043

Zurich (^4^) OOPSI/ETH AMS JtSlST*12, 36C1 AMS U 48 MeV CO b"— A -T 1015 15 36 89) . 10- ci Kco Summit UJ©7ktt<£>##f ft if diiffl £ ft. 6C1 if I

6 -* Purser (i, C1 lJ0) -|x(- 36

is MeV , -3 MeV 21 36 ^ 1000 £MU 10-14 36C1/C1 f#|S|-£$J 5/min 10"15

5.2 Tamai 8CI 91) t/c o ^ffil*7 ^t'fiTSK-gel IC-Anion-SW 50 mm

>' (Cl\ C1O3\ C1O4") ^x 38ci 8ci KC1O3, KCIO4

8ci ^ if JJ

5.3 Ogard P>fi Nevada (T* V (3H) 4oJ:^ , LSC fc.tr/ AMS 3H+J: I? \^l anion exclution fc92 )

-*• Phillips b (4 New Mexico (7 36C1 i: 3HW^/^^ (Fig. 5.3 #B8 RI ir E^ LT AMS fc«t XI LSC SJ(- «t <9 Ii 93) 36 fc o Anion exclusion W&t LT* U C1 liT «t 0 tMfi< CMLt^t j^ifu:«t51«t

Synal ^(4, Dye-3 43°50'W) 36C1 1945 ¥/^ib 1985 AMS \z L (Fig. 5.4 #Rg), Lfc 36C1 36C1 (D^m 2 ± 0.3 /i 3C' C1 (D

-54- JAERI-Review 2001-043

94)

cm 30 Cornell bf295\ 36C1 biosphere tt Fig. 5.5 l 9 d CD ±9 biosphere

Cecil t«, TV 36Cl 96)

Kato Cl §r Munich AMS <9 . m Fig. 5.6 Pace

Cornett 129I AMS Tt 98) , AMS 36 0 AMS Fig. 5. C1/C1 6C1

5.4 36C1 Cl 36C1 129II ^ 1414C 36 t£o Sheppard fc C1 99)

129I rtt I29I

-i *? y ^CO Parry bti, I i: 36CI ro^ ^fi Magnox ^ mg,Cl/kg,Bulk g 100)

36ci fcJitf 129i Ashtonbfi, Fig. 5.8 6CI fc l0l) V ~ h t WOa £2 : 1 mM &, LSC 102)

-55- JAERI-Review 2001-043

t 36

103) Table 5.3 ( t

5.5 36C1 40Ar »^ffi# () 36Ar(n,p)36Cl ^o Jiang h li 36Ar(n,p)36CI Fig. 5.9 l04) 36Cl —^ 5-10 MeV Elmore J;r/l0Be (Ti/2 = l.6xlO6 y) £ AMS "Ca^ U 0 t Ltz m\ L/0>L, l700ADt!cD Maunder M^S (Maunder sunspot minimum) ifemiZ 11 , Priller Rheingau 3OC1 tc (Fig.5.10) i06)

36ci/ci

,a) 36CK *5J;tJ«(2) 35 35 36 CI t fc : C1 (n, y ) CU Tfc50 Stone 6C1

0.012 0 m Ca t- «fc .1 atom/g/aN l07)

36Cl

^ 36CI SrConnell (HET) (^=f9M LT Table 5.4 l08) MeV/u, 18Myr 36Cl 0Ar fcSo 36Cl ^ Keywood 36 z¥m& AMS fc 109) m CI

36Cl

-56- JAERI-Review 2001-043

5.6 6ci l4c 500 ^/6>ib 50,000 30.1 36C1

36 36 Leavy n tr- AMS t'± to 4^-#f i n tc ii0) \^^4JCO 36C1 (DJ&MH^ 35C1 40 39 N 40 Ca

37) > O Plummer fj tt 4 36C1/C! \ 11,000 36C1 IH)

Zreda 6C1/C1 Jrb^Sr AMS Tr^^f L, 36C1 c "2) 36 o Fig. 5. , C1/C1 36C1 4160 ± 310 atoms 36Cl/y/mol-K, 40Ca (D^fiK^ffi 3050 ± 210 36CI/y/mol-Ca, 35C1 5 ± 0.24) x 10 neutrons / (kg of rock) /yo 36C1 (^J;5iffiT7k©¥ftSiJ^^SMf^t/c Mazortt, #(C *tiaLT^5 "3>o *fetfef4, 36C1 , Br, 3H, 14C,

, Dep btt 36C1 \ mm/ky £XT(Dm&lZ, 8§£ 30 cm 36Cl

Phillips Lt, 36CI *S 0Be 27

ll4)

Zreda £>fi Hebgen Lake IffM (T* ]} tl) CO^-^CO 36ci gij^tc:«t "J

115)

36 Milton fc C1 ^ ll6)

(Fig.

-57- JAERI-Review 2001-043

5.7 3 U 36 H ^ C % C1 fizK^ (hydrology) RI Lt, (3.01xl05 yh ffi, Bentley P>tt^-^. I- 7 V TAB > AMS lcj;5 Cl cDffliJ^(-J; Off ofc " o ^»|5m Fig. 5.14 (zKfin) fi^S('*<, il'Mc/i^ 1000 km ii^roifeT/Ktt 100 36 ^fc:0 ^

ll9) :, 36C1 fc

Balderer bti TX, if** , 36C1 120> 6C1 (mass balance)

/?C = RaCat* + ReqCo ( 1 - e"") ^

~l In

c^H, Fig. 5.15 -frh 80

Na+, K\ Ca LTPfe. CD

PH Korbmacher P>(i A10 LT X

(O fi , SITS ( 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid) -^ DIDS

-58- JAERI-Review 2001-043

(4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) ft

"C Carlsen ^tt I31I, I25I, I4C & XU 36CI /i I22) , #ii RI

FT Szilard Chalmers 127Kn,y )128I I28I ^ (Szilard-Charmers Muller /c 38ci

I23)

—*• Berei I24)

38C1

Lo CF2CI2 CF3CI LX h fe l25) 3BCl WM ^-^^Xl HI /c CF3C1 £9 CF2CI2 38ci ^ tzyV Chao

126) CF3CI - C2H4 , O2 H2S

i27)

5.9 36ci Ghosh ^(i 36C1 £ h U— f"ir Lt, WKl ( 128) , 550

37Cl(n,y)38Cl 38CI JRR-3M (iifg (PN-3)

-59- JAERI-Review 2001-043

m0.715#CD38-CI (7 : 671.33 keV) (Fig. 5.17 #!#,) 12'J) Berei £{2, h 37CI (n,-y ) 38CI T 38CI

34mCI (33.99 min; 0+ 53%; IT 47%) K Table 5.5 RI t Ptll-, PET ffl RI £ L

r t^-C^5/i^ Lagunas-Solar (t°~^JR^-C30MeV) td J: 5 MmCl ^E^WBfffiflSrlia^, 108 ± l3l) 34m 14.6 mb o t/i^ibfi, CI

800 MeV »Fe CittL, \%WW (spallation) I-J; <9 HI* &Ltzm%kX\ Vonach o Kozub ^tt, 9Be(36S,a p y)40Cl

-60 JAERI-Review 2001-043

Table 5.1 Chalk River TASCC-AMS system parameters 84) Ion source 20 samples, spherical ionizer, 15 kV extraction Injector Two 45o magnetic analyses with 1 85 kV acceleration between magnets Mass selection variation of accelerating and focussing voltages MP tandem Operates to 15 MV AMS-100 MeV 36C17+, gas stripping Velocity filter Electric deflection plates 85 cm long, gap 1.7 cm, max. voltage ± 40 kV Maximum magnetic field 0.3 T Homogeneity of fields ± 0.1% over 1 cm2 Gas-filled magnet 42.8° sector, 2 m radius, uniform field Gas, 3.1 mbar l\h Entrance window-100 n g/cm2 polypropylene Detector Longitudinal field Active area, 11 cm x 7 cm Length, up to 30 cm Gas, 53 mbar isobutane Signals, /} E, and residual E Range and avalanche Operating mode Constant magnetic field Constant terminal voltage Stable isotope currents Off-axis Faraday cups after analyzing magnet Counting cycle 35Cl 2 s; 36C1, 15 s; 37C1, 2 s; 36C1, 15 s

-61 - JAERI-Review 2001-043

Table 5.2 Chalk River TASCC-AMS system performance 84) Ion source Sample wheel change time, 5 h Typical output current, 5 |i A Sample size i£ 0.5 mg AgCI Memory effects 10"3 - 10"4 Injector Mass resolution ~ 170 Attenuation of 35, 37 > 106 Terminal voltage Band pass ± 25 kV Long-term stability ~± 5 kV 6 Velocity filter Attenuation of 35, 37 > 10 Gas-filled magnet Transmission ~ 100% 36S suppression > 100 X Throughput ~ 10 unknowns/24 h (1992-93) Total unknowns, 236 Background limits 35'"C1 < 10"18 36C1/C1

36S ^ ]0-is 36C|/C1

Sample preparation: Air and water, ~ 10"15 36CI/C1 Rock samples, ~ 10'14 36CI/CI Accuracy 5-10% with repeat measurements

-62- JAERI-Review 2001-043

Table 5.3 Chloride (Cl) in agronomic plants and plant parts sampled at boreal region of Canada'03) Plant and part Cl concentration Plant/ concentration (common name) (rng/ kg) ratio (CR) Barley heads 1900 66 Barley stalks 3600 120 Beet flesh 1100 18 Beet petiole and leaf 2800 43 Broccoli flower 920 14 Broccoli leaf 1300 20 Cabbage inner leaf 1000 16 Cabbage outer leaf 820 13 Cabbage stalk 520 8 Cantaloupe fruit and shell 420 7 Carrot petiole and leaf 640 10 Carrot flesh 420 7 Chives 1200 18 Corn cob 420 7 Corn leaf and stalk 370 6 Corn silk and sheath 250 4 Cucumber flesh 590 9 Cucumber vine 300 5 Dill weed 640 10 Green bean stem and leaf 270 4 Green bean 370 6 Lettuce leaf 790 12 Onion bulb 300 5 Onion leaf 450 7 Pea stem and leaf 450 7 Pea pod 320 5 Potato tuber 620 10 Potato stem and leaf 1300 20 Pumpkin fruit and shell 400 6 Tomato fruit 550 9 Tomato stem and leaf 690 10 Yellow bean stem and leaf 300 5 Yellow bean 450 7 Overall GM (GSD) *a 620 (1.9) 10(2.2) Edible parts GM (GSD) 590(1.6) 10(1.9) Weighted by human diet'b 790 16 *a: GM - geometric mean, GSD - geomelric slandard deviation. *b: 30% cereal, 18% polalo, 30% vegetable, 18% fruit.

-63- JAERI-Review 2001-043

Table 5.4 Observed ratios of chlorine isotopes ' Origin 35C1/C1 36C1/C1 37C1/C1 37C1/35C1 Cosmic radiation 63.5 5.2 31.4 49.4 Solar system abundances 75.0 24.5 32.7 (in %)

Table 5.5 Comparison of selected nuclear and physico-chemical properties of positron-emitting radiohalogens.131)

Radiohalogen -18 Chlorine-34m -75 -122 Half-life (min) 109.77 31.99 95.5 3.63 Decay modes 96.9% 0 + 53% 0 + 75.5% 0 + 77% 0 + 3.1% EC 47%IT 24.5% EC 23% EC Most abundant 511 keV 511 keV 511 keV 511 keV emissions* (193.8%) (106%) (151%) (154%) — 2127 keV 287 keV 564 keV (42%) (91.6%) (18%) 146 keV 141 kev 693 keV (31.2%) (6.9%) (1.33%) 1176keV 428 keV 793 keV (11.3%) (4.5%) (1.26%) 3304 keV 377 keV — (10.9%) (4.1%) Ionic radii (A) 1.33 1.81 1.96 2.20 Electron affinities (eV) 3.448 3.613 3.363 3.063 Common radio- chemical forms F\ F2 cr Br", Bn I\ h, I+ Bond strengths (kcal/mol at 298 K) x-x 37.83 58.06 46.33 36.46 H - X 135.9 103.2 87.4 71.4 CsHs - X 125 95 80 64 *Emissions are listed in descending order of their abundances. There are several other emissions for 75Br (112-952 keV, 1-4.5%) not listed.

-64- JAERI-Review 2001-043

Det EQ - ELECTRIC O.UA0RUP0LE S3 N NEGATIVE ION SOURCE 0 MAGNETIC DIPOLE F FARAOAY CUP GVM - GENERATING VOLT METER Q - MAGNETIC QUAORUPOLE WF - WIEN FILTER W THIN WINDOW Del - PARTICLE DETECTOR

MP TANDEM (15 MV)

0 I I SCALE (m)

Fig. 5.1 Schematic diagram of the TASCC AMS facility.84)

-65- JAERI-Review 2001-043

RESIDUAL ENERGY

Fig. 5.2 Two-dimensional plot of total energy versus residual energy measured by the detector, showing the separation of 36C1 from 36S and 37C1 ions.84)

-66 JAERI-Review 2001-043

700

200

I960 19.70 19 80

Fig. 5.3 A comparison of average northern hemisphere bomb 3H fallout, decay corrected to 1985, with calculated mean global bomb 36C1 fallout. The circles represent 36C1 fallout data from Dye 3 in Greenland. The measured 36C1 (kg ice)"1 values were converted to 36C1 m"2 assuming 50 kg m"2 y'1 precipitation.935

-67- JAERI-Review 2001-043

measured fallout data Simulated fallout data A A A atom8pheric tests 1.0E+8 c—i i I i i i !lilllII1TTT'IITT''II|>l I I I I I I

1.0E+7

1.0E+6

CO m 1.0E+5

1.0E+4 ,t ,f, I J.T.tli. ,t,l,. , I 1 , I ILULl^txt It 1 X, I l-LLL 1940 1950 1960 1970 1980 1990 Year

Fig. 5.4 36C1 fallout rates are compared with the results from model calculations.941 For the calculations a 36C1 stratospheric residence time of 2 years has been used. The arrows indicate the dates when 36C1 release to the atmosphere has been considered.

-68- JAERI-Review 2001-043

Cl- and36 CI Mass Balance

Troposphere 0.06b <0.V

Vegetation

0.4 0.4 Groundwater Surface Watei 0.8 1.5 2 1 1

a b Inventory g Cl nv2 c Residence Time for fresh fallout (years)

Fig. 5.5 Mass balance model of Cl and 36C1 in the terrestrial biosphere.95' The numbers within the compartments (lower left and right hand sides) and the Cl inventory (b, g m"2) and the residence time (c, years). 'The fluxes shown beside the arrows are expressed in g Cl m"2 year. The calculations assume a steady-state mass balance based on an input of 0.8 g Cl m"2 year'1 and mean Cl concentrations in the compartment.

-69- JAERI-Review 2001-043

(x1012)

12 O-i J Experiment 10 • Calculation

£ o 0) 6 a c

c O' z> c

E c) x: •-•

0 0 10 20 30 40 50 60 Distance from the superior (cm)

Fig. 5.6 Thermal neutron fluence in the uper part of the tombstone.97' The ordinate indicates the thermal neutron fluences derived from the 36CI/CI ratios on the assumption that 16CI were produced only by thermal neutrons. The squares show results obtained from a preliminary Monte Carlo calculation for Pace's neutron fluence, where the energy output of the A-bomb assumed to be 15 kilotonnes.)

-70- JAERI- Review 2001-043

CI-36 in Teeth and Bone

• Water 0 Teeth and Bone • Paleo samples

L L_L 0 0.1 0.5 1 2.5 5 10 50 100 CI-36:CI kCLU

Fig. 5.7 36C1:C1 ratios in samples of teeth and bone and in modern water samples for comparison. 98)

To Vacuum

70ml, 1M NaOH

Concrete

Fig. 5.8 Apparatus used for the digestion and separation of chlorine and iodine from concrete.100 In the extraction flask, NaCl and Nal carrier are added to 3 M nitric acid at 70 °C to extract iodine. After 3 h, permanganate solution is added to the flask at 70 °C to extract chlorine. To the sodium hydroxide solution containing chlorine, sodium nitrite solution is added to reduce chlorate to chloride, then nitrate solution is added to precipitate silver chloride.

-71 - JAERI-Review 2001-043

600 /

500 /

:mb ) \ 400

ion ( - /

sec t 300

200

Cros s -1 100

0r, , 1 ,, I ,• 1 , 1 v. 1 , ! , 1 5 7 9 11 13 15 17 19 Neutron energy (MeV)

Fig. 5.9 The exitation curve of 36Ar(n,p)36Cl reaction.104' A; Davis et al., +; Jiang et al., ; V; Levkovskii.

n-10

1930 1940 1950 1960 1970 1980 Year of vintage

Fig. 5.10 36C1/C1 ratio of the wine samples.106'

-72- JAERI-Review 2001-043

AGE, 10 YEARS

Fig. 5.11 Comparison of 36C1/C1 ratio from dated samples with the calculated sea-level 36C1/C1 buildup curve.110' Solid line is buildup calculated using data cited in the text; dashed lines include the ± 20% uncertainty for production rate of 36C1 by spallation from 40Ca and 39K. Measured ratios are normalized for chemical composition, geomagnetic latitude, elevation, and sample depth below ground surface. Error bars represent 2 a analytical uncertainty for sample ages and 1 a for 36C1/C1. Symbols indicate the different sample localities.

-73- JAERI-Review 2001-043

900

387-M 800

700-

600-

Measured 500

[10-«]

0 100 200 300 400 500 600 700 800 900

Theoretical ^CI/CI [10'l5j

Fig. 5.12 Comparison of measured versus theoretically predicted 36CI/CI for the calibration samples."2*

CI36 Fossil Dating 1000

100 -

CD m O

100 1000 Age by Stratigraphic or other Methods (kyr)

Fig. 5.13 Plot of ages determined by stratigraphic, optical and/or radiocarbon dating methods versus age estimates from 36C1."6) -74- JAERI-Review 2001-043

100 200 300 -00 SOO SOO 700 900 IjOOO Flow Distance (km from outcrop)

Fig. 5.14 Comparison of 36C1 and hydrodynamic groundwater ages along the southern flow line as a function of flow distance from the Hooray Sandstone outcrop."7' Shading around the hydrodynamic age line represents the age uncertainty resulting from an uncertainty of +50% and -25% in the ratio K/n.

75- JAERI-Review 2001-043

1.4

«• 1.2 (0 ID > 1.0 Pas KayJ a> en 0.8 -Tuz— CO '*Hid~ Koc Kuc "5 0.6 Yal "8 • Arm Neb o 0.4 Ac to ft G4 Km I_ Man Bad 0.2 Kay-T- KiTI i Kuzuluk Bursa Yalova/ Gonen/ Bergama/ Tuzla/ Armutlu Yenice Kocak Kestanbol

Fig. 5.15 Ages of deep ground waters from six different areas in North-Western Turkey. 120)

100-.

c o u 50-

Hi a ~CL I U CD n

nr12 n=10 nril n=1l 0 J Control Br' I" Acetate" N03"

Fig. 5.16 Inhibition of 36C1 uptake in bicarbonate-preincubated A10 cells by various extracellular anions.121' Uptake solution was nominally bicarbonate free and contained 50 mM of the indicated anion and 5-10 kBq 36C1 per ml. Uptake time was 2 min, bars indicate S.E. values.

-76- Element Cl

Amount NH4CI Irradiation 5 s Cooling 7 s Measurement 10 s S-D distance 110 mm

M 3 M O O I

2 CO

500 1000 1500 2000

Gamma - ray energy / keV

Fig. 5.17 Gamma-ray spectrum of irradiated Cl.129) JAERI-Review 2001-043

350 1 1 1 i 1 1 i i

i 9 36 3 c Re( S,a P7) C1 280 - -

210 -- -

3 o CmO u 140 - CO — CO 00 u »—t CO 70 - CO_^ - oo0 CD CO 60 1 ^•43 2 -48 5 0 If I /v 350 650 950 1250 Channel

Fig. 5.18 Spectrum of y rays in coincidence with an a particle and a .l33> All labeled lines are attributed to 40Cl unless otherwise noted. Energies are in keV. Random background from a xn and pxn evaporation channels has been sbtracted (note zero offsets).

-78- JAERI-Review 2001-043

6.

38ci 37.24

36a 36C1 3SC1 36C1 (AMS) AMS

36ci

36C1 &5VM2 38C1

6.2

(IRMS) fc (TIMS)

H2 CO2, iEsRji N2, 02, mnt* S02,

-79- JAERI- Review 2001-043

Fig.

Finigan MAT ftcD IRMS >^fA (MAT 252) 90 Table 6.1

, i-fet>*)HCNOs (ci) 6 37Cl/6 35C1

5 Long Fig. 6.3 Eggenkamp tfi Long LtcftfeX CHsCl Fig. 6.4

6.3 35ci t 37ci 37C1 / 35C1

, ftifi PTIMS

-80- JAERI-Review 2001-043

RI

, isotopomer)j n4)

n 18 (H20) I6O ^ o t o

-81 - JAERI-Review 2001-043

Table 6.1 Nominal specifications of MAT 252 system MAT 252 n 1-150 amu (10 kV) CNOS: ml A m = 200 HD: m/Zlm = 2 t°-^ YyfW-ms. 5 2xlO"4 1000 ft1-/-(3rV (m/e=44 CO2 [Zft LX) 0.5 A/mbar < 2xlO"6 (m/e=45 ^'

-82- (m/e) H2: 2/3 C02: 44/45/46 CN J 28/29/30 02: 32/33/34 S02: 64/66 CH3CI:: 50/52

-» JAERI-Re i

Magnet /ie w 200 1

r -04 3

Ion Source \> Ion Col lector System

Fig. 6.1 Principle of isotope ratio mass spectrometry for the light elements. JAERI Review 2001 043

Fig. 6.2 Isotope ratio mass spectionietry system.

-84- JAERI- Review 2001-043

IIRMS fttixmrnt* j-^mw&y p—->- h 11

Dissolve the sample (in case of solid) Concentrate (to 3 mgCI/L, if necessary) 1 Adjust pH «pH2) with HNCb i Boil the solution for a few min to remove CCh I Add AgNCb, keep dark for 2 h 1 Check the end of reaction by adding a few more drops of AgNCb I Filtrate AgCl precipitate, rinse with dil. HNCb 1 Remove SO42' (when necessary) by dissolving the AgCl with NH-iOH, adding BaSO-t, filtration, and re-forming AgCl with AgNCb I Take 3-10 mg of AgCl in a glass tube, then connect to a vacuum line I Add pure CFM by a syringe under vacuum (<20 mTorr) while cooling the reaction tube by LN I Seal off the reaction tube while cooling it by LN I Anneal the tube, cover with Al foil, and keep for 2 d at 110-125 °C I Separate CH3CI from CH3I by gaschromatography (Poropak Q, 80-120 mesh) i pure CH3CI for IRMS

Fig. 6.3 Flow-sheet of chemical procedure for the synthesis of CH3CI by Long et al.51)

-85- JAERI-Review 2001-043

IRMS fttitmmt* ^^mmmy p —>- h n|

Dissolve the sample to 3000 ppm, Cl i Take 1 mL of the sample solution and mix with 4 mL of a 1 M KNCb solution to reach a high ionic strength I Add 2 mL of a citric acid-phosphate buffer to keep constant, low pH (20.6 g citric acid + 0.71 g Na2HPO4-2H2O in liter water) I Heat at 80 °C and add 0.2 M AgNOa I AgCl precipitate in the hot solution I Filtrate AgCl precipitate (with Whatman 0.7 um glass fiber filter, type GF/F ) 1 Dry overnight, shielding from light I Take the AgCl precipitate with the filter in a Pyrex tube connected to a vacuum line I Add 100 uX CH3I while cooling the reaction tube by LN, then evacuate and seal off I Keep the glass capsule at 80 °C for 2 d to obtain CHaCl I Set the capsule in a GC line, break the capsule and trap the gas mixture in a LN cold trap I Heat the trap with hot water to introduce the gas mixture to GC 1 Purify CHsCl on GC (75 cm culumn filled with Poropak Q) I

Fig. 6.4 Flow-sheet of chemical procedure for the synthesis of CH.iCl by Eggenkamp et al.53, 66)

-86- JAERI-Review 2001-043

7.

t

37ci/35ci

m CAMS) RI AMS

1*7 7 y 9 xWffitfft $titz

-87- JAERI-Review 2001-043

^11,264(1975). 2) MJH • UW d#, 143(1979). 3) , Vol. 10(3), 214-220 (1995). 4) , 1-35 (1995). 5) 6) j-7^0997). 1) ; 184, 188 (1988). 8) K. W. Oum, M. J. Lakin, D. O. DeHaan, T. Brauers and B. J. Finlayson-Pitts: Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles, Science (Washington, D.C.), 279, 74-77 (1998). 9) %m,m (1991). 10) %m (1997). 11) H. Kylin, E. Nordstrand, A. Sjoedin and S. Jensen: Determination of chlorinated pesticides and PCB in pine needles - improved method for the monitoring of airborne organochlorine pollutants, Fresenius1 J. Anal. Chem., 356, 62-69 (1996). 12) G. Petrick, D. E. Schulz and J. C. Duinker: Clean-up of environment samples by high-performance liquid chromatography for analysis of organochlorine compounds by gas chromatography with electron-capture detection, J. Chromatography, 43^, 241-248 (1988). 13) &#, 1-641 (1995). 14) 15) 0*{k¥£W>: Til 5M {£¥&% foRHt^MU] %W, H-877, 11-833, 11-779, 11-834 (1995). 16) H. R. Andrews, G. C. Ball, R. M. Brown, R. J. J. Cornett, W. G. Davies, B. F. Greiner, Y. Imahori, V. T. Koslowsky, J. McKay, G. M. Milton and J. C. D. Milton: Development of the Chalk River program for chlorine-36, Nucl. Instrum. Methods Phys. Res. B52, 243-248 (1990). mL^w&mmtzcnftVrm] ,mmt^m%^ (1994). 18) , 23 (1999). 19) (1997). 20) ^±, (1998). 21) v—T • r^/ix^-V: r^^tLL^^J (gm^IR) , mM± (1997). 22) (1998). 23) (1998). 24) (1998

-88- JAERI-Review 2001-043

25) l^T—^^*^^^f+ffi SPEED'98j, ^^{fc^ Vol.8, No.3 , 574-596 (1998). 26) «§#&&, iMPIiS MttS#, ^MlUK «M, &HBSSC: r±ig, *iiu ^hflllK »l$£ffl^fc^lC&tf 5^V ^^>^II^Il-f 5W3EJ miMik¥ (J. of Environm. Chem.) Vol. 9, No. 1, 53-69 (1999). 27) mitMs t&ffl^U!, MPf4>^ Kf*j:fc, H&#/£IW: Jg^fci^ (J. of Environm. Chem.) , Vol. 9(1), 1-10 (1999). 28) ti#{#-, tbnW^> /fta?'K^, &/3ifefc, itfp^: riig^jy^i/^iRf^jS^^w^v^-dr i/^^^^"f 5li YVl/ Kflfflf J H^t^ (J. of Environm. Chem.), Vol.9, No.2 , 379-390 (1999). 29) J. E. Quintanilla-Lopez, R. Lebron-Aguilar and L. M. Polo-Diez: Comparative study of clean-up and fractionation methods for the determination of organochlorine pesticides in lipids by gas chromatography, J. Chromatography, 59, 303-311 (1992). 30) T. Nakano, M. Tsuji and T. Okuno: Level of chlorinated organic compounds in the atmosphere, Chemosphere, H>, 1781-1786 (1987). 31) M. J. Molina and F. S. Rowland: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812 (1974). 32) F. Wu and R. W. Carr: Observation of the CFCI2CH2O Radical in the Flash Photolysis of CFCI2CH3 in the Presence of O2. Kinetics of the Reactions of Cl and CIO with CFCI2CH2O2 and CH2CFCIO2., J. Phys. Chem., 99, 3128-3136 (1995). 33) 1l7k tff: Chlorofluorocarbons and Antarctic ozone hole, KAGAKU (it¥) 43(8), 542-543 (1988). 34) F. S. Rowland: Stratospheric ozone depletion by chlorofluorocarbons, Angew. Chem., Int. Ed. Eng., 35, 1786-1798(1996). 35) Andrews, J. E., Brimblecombe, P., Jickells, T. D., and Liss. P. S. : n%ftU^A^X^\ (l8i2 ]EfO , ~>^!J y#- • 7i77-^Jt(Stt^tt (1999) . 36) H. G. M. Eggenkamp: The stable isotope geochemistry of the Cl and Br: a review of 15 years development, Mineral. Mag., 62A, 343-344 (1998). 37) R. S. Kaufmann, A. Long, H. Bentley and S. Davis: Natural chlorine isotope variations, Nature, 309, 338-340 (1984). 38) m# #K ®^»: ^femzmmik^} Mux^im^, 5 (1996). 39) F. W. Aston: The constitution of the elements, Nature, J04, 393-393 (1919). 40) M. Dorenfeldt: Relative determination of the atomic weight of chlorine in Bamle apatite, J. Am. Chem. Soc, 45, 1577-1579 (1923). 41) W. D. Harkins and S. B. Stone: The isotopic composition and atomic weight of chlorine from meteorites and from minerals of non-marine origin, J. Am. Chem. Soc, 48, 938-949 (1926). 42) T. C. Hoering and P. L. Parker: The geochemistry of the stable isotopes of chlorine, Geochim. Cosmochim. Acta, 23, 186-199 (1961).

-89- JAERI-Review 2001-043

43) A. O. Nier and E. E. Hanson: A mass-spectrographic analysis of the ions produced in HCl under electron impact, Phys. Rev, 50, 722-726 (1936). 44) H. R. Owen and O. A. Schaeffer: The isotope abundances of chlorine from various sources, J. Am. Chem. Soc, 77, 898-899 (1955). 45) H. C. Urey: The thermodynamic properties of isotopic substances, J. Chem. Soc., 69, 562-581 (1947). 46) T. Langvad: Separation of chlorine isotopes by ion-exchange chromatography, Acta Chem. Scand., 8, 526-527 (1954). 47) B. P. Konstantinov and E. A. Bakulin: Separation of chloride isotopes in aqueous solutions of chloride, sodium chloride, and hydrochloric acid, Russ. J. Phys. Chem., 39^ 315-318 (1965). 48) W. R. Shields, T. J. Murphy, E. L. Garner and V. H. Dibeler: Absolute isotopic abundance ratios and the isotopic weight of chlorine, J. Am. Chem.l Soc., 84, 1519-1522 (1962). 49) J. W. Taylor and E. P. Grimsrud: Chlorine isotopic ratios by negative ion mass spectrometry, Anal. Chem., 4J_, 805-810(1969). 50) J. F. Willey and J. W. Taylor: Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and methyl bromide, Anal. Chem., 50, 1930-1933 (1979). 51) A. Long, C. J. Eastoe, R. S. Kaufmann, J. G. Martin, L. Wirt and J. B. Finley: High-precision measurement of chlorine stable isotopes, Geochim. Cosmochim. Acta, 57, 2907-2912 (1993). 52) M. Musashi, G. Markl and R. Kreulen: Stable chlorine-isotope analysis of rock samples: New aspects of chlorine extraction, Anal. Chim. Acta, 362, 261-269 (1998). 53) H. G. M. Eggenkamp: The geochemistry of chlorine isotopes, Ph.D. Thesis, Utrecht University, The Netherlands, pp. 150 (1994). 54) B. D. Holt, N. C. Sturchio, T. A. Abrajano and L. J. Heraty: Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine, Anal. Chem., 69, 2727-2733 (1997). 55) N. Jendrzejewski, H. G. M. Eggenkamp and M. L. Coleman: Sequential determination of chlorine and carbon isotopic composition in single microlitre samples of chlorinates solvent, Anal. Chem, 69, 4259-4266 (1997). 56) A. Vengosh, A. R. Chivas and M. T. McCulloch: Direct determination of and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry, Chem. Geol. (Isot. Geosci. Sec), 79, 333-343 (1989). 57) Y.-K. Xiao, L. Jin and H.-P. Qi: Investigation of thermal ion emission characteristics of graphite, Int. J. Mass Spectr. Ion Processes, K)7, 205-213 (1991). 58) Y.-K. Xiao and C.-G. Zhang: High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the CS2CI+ ion, Int. J. Mass Spectrom. Ion Processes, 116, 183-192(1992).

-90- JAERI-Review 2001-043

59) Y. K. Xiao, Y. M. Zhou and W. G. Liu: Precise measurement of chlorine isotopes based on CS2CI+ by thermal ionization mass spectrometry, Anal. Lett., 28, 1295-1304 (1995). 60) W. G. Liu, Y. K. Xiao, D. P. Sun, H. P. Qi, Y. H. Wang, L. Jin and Y. M. Zhou: A preliminary study of chlorine isotopic composition of salt lakes in the Qaiam Basin, Chin. Sc. Bull., 40, 699-700(1995). 61) W. G. Liu, Y. K. Xiao, Q. Z. Wang, H. P. Qi, Y. H. Wang, Y. M. Zhou and P. V. Shirodkar: Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China, Chem. Geol., 136, 271-279 (1997). 62) A. J. Magenheim, A. J. Spivack, C. Volpe and B. Ransom: Precise determination of stable chlorine isotopic ratios in low-concentration natural samples, Geochim. Cosmochim. Acta, 58, 3117-3121 (1994). 63) R. M. Bartholomew, F. Brown and M. Lounsbury: Chlorine isotope effect in reactions of ter-butyl chloride, Can. J. Chem., 32, 979-983 (1954). 64) R. A. Howald: Ion pairs. I. Isotope effects shown by chloride solutions in glacial acetic acid, J. Am. Chem.l Soc, 8^ 20-24 (1960). 65) W. T. Raynes, M. Grayson, N. M. Sergeyev and N. D. Sergeyeva: 37Cl/35Cl isotope effects on the carbon and proton shielding in CHiCl: measurement and theory, Chem. Phys. Lett., 226, 433-439 (1994). 66) H. G. M. Eggenkamp, R. Kreulen and A. J. Roster van Groos: Chlorine stable isotope fractionation in evaporites, Geochim. Cosmochim. Acta, 59, 5169-5175 (1995). 67) H. G. M. Eggenkamp, J. J. Middelburg and R. Kreulen: Preferential diffusion of 35Cl relative to 37Cl in sediments of Kau Bay, Halmahera, Indonesia, Chem. Geology (Isot. Geosc. Sec), 116, 317-325(1994). 68) S. L. Madorsky and S. Strauss: Concentration of isotopes of chlorine by the counter-current electromigration method, J. Res. Natl. Bur. Stand., 38, 185-189 (1947). 69) A. J. Magenheim, A. J. Spivack, P. J. Michael and J. M. Gieskes: Chlorine stable isotope composition of the oceanic crust: Implications for Earth's distribution of chlorine, Earth Planet. Sci. Lett., Hi, 427-432 (1995).. 70) G. Markl, M. Musashi and K. Bucher: Chlorine stable isotope composition of granulites from Lofoten, Norway: Implications for the Cl isotopic composition and for the source of Cl enrichment in the lower crust, Earth and Planet. Sci. Lett., J_50, 95-102 (1977). 71) H. G. M. Eggenkamp and A. F. Koster van Groos: Chlorine stable isotopes in carbonatites: Evidence for isotopic heterogeneity in the mantle, Chem. Geology, 140, 137-143 (1997). 72) A. E. Boudreau, M. A. Stewart and A. J. Spivack: Stable Cl isotopes and origin of high-Cl magmas of the Stillwater Comples, Montana, Geology, 25, 791-794 (1997). 73) D. E. Desaulniers, R. S. Kaufmann, J. A. Cherry and H. W. Bentley: 37Cl-33Cl variations in a diffusion-controlled groundwater system, Geochim. Cosmochim. Acta, 50, 1757-1764 (1986). 74) C. J. Eastoe, J. M. Guilbert and R. S. Kaufmann: Preliminary evidence for fractionation of stable

-91 - JAERI- Review 2001-043

chlorine isotopes in ore-forming hydrothermal systems, Geology, J_7, 285-288 (1989). 75) C. J. Eastoe and J. M. Guilbert: Stable chlorine isotopes in hydrothermal systems, Geochim. Cosmochim. Acta, 56, 4247-4255 (1992). 76) R. S. Kaufmann, S. K. Frape, R. McNutt and C. Eastoe: Chlorine stable isotope distribution of Michigan Basin formation waters, Appl. Geochem., %, 403-407 (1993). 77) F. M. Phillips and H. W. Bentley: Isotopic fractionation during ion filtration. I, Theory, Geochim. Cosmochim. Acta, 5J_, 683-695 (1987). 78) B. Ransom, A. J. Spivack and M. Kastner: Stable Cl isotopes in subduction-zone pore waters: Implications for fluid-rock reactions and the cycling of chlorine, Geology, 23_, 715-718 (1995). 79) Y. K. Xiao, W. G. Liu, Y. M. Zhou and D. P. Sun: Isotopic compositions of chlorine in brine and saline minerals, Chin. Sci. Bull., 42, 406-409 (1997). 80) Sturchio, et al.: Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer, Environ. Sci. & Technol., 32, 3037-3042 (1998). 81) N. Tanaka and D. M. Rye: Investigation of thermal ion emission characteristics of graphite, Int. J. Mass Spectromet. Ion Processes, 107, 205-213 (1991). 82) W. S. Price, N.-H. Ge, L.-Z. Hong and L.-P. Hwang: Characterization of chloride ion binding to human serum albumin using Cl NMR null point spectral analysis, J. Am. Chem. Soc, 115, 1095-1105(1993). 83) E. M. van Warmerdam, S. K. Frape, R. Aravena, R. J. Drimmie, H. Flatt and J. A. Cherry: Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents, Appl. Geochem., K), 547-552(1995). 84) H. R. Andrews, V. T. Koslowsky, J. J. J. Cornett, W. G. Davies, B. F. Greiner, Y. Imahori, J. W. McKay, G. M. Milton and J. C. D. Milton: AMS measurements of 36Cl at Chalk River, Nucl. Instrum. Methods Phys. Res. B92, 74-78 (1994). 85) P. W. Kubik, P. Sharma, R. T. D. Teng, S. Tullai-Fitzpatrick, S. Datar, U. Fehn, H. E. Gove and D. Elmore: The AMS program at the University of Rochester, Nucl. Instrum. Methods Phys. Res., B52, 238-242 (1990). 86) -fc.%'feM et al.: Private communication. (1998) 87) L. K. Fifield, T. R. Ophel, J. R. Bird, G. E. Calf, G. B. Allison and A. R. Chivas: The chlorine-36 measurement program at the Australian National University, Nucl. Instrum. Methods Phys. Res. B29, 114-119(1987). 88) J. R. Bird, N. Shahgholi, A. Jenkinson, A. Smith, L. K. Fifield, T. Ophel and G. Allan: Problems of contamination in chlorine-36 studies, Nucl. Instr. Methods Phys. Res., sect. B52, 348-350 (1990). 89) H. A. Synal, J. Beer, G. Bonani, C. Lukasczyk and M. Suter: 36Cl measurements at the Zurich AMS facility, Nucl. Instr. Meth., B92, 79-84 (1994). 90) K. H. Purser: AMS detection of chlorine-36 using small tandems, Nucl. Instrum. Methods Phys. Res., Sect., B123, 167-169 (1997).

-92- JAERI- Review 2001-043

91) T. Tamai, S. Nishikawa, Y. Tanaka, T. Nakamura and T. Hirokatsu: Determination of specific activity of radioactive chlorine nuclide with a radio ion chromatography, Annu. Rep. Res. React. Inst, Kyoto Univ., _19, 124-129 (1986). 92) A. E. Ogard, J. L. Thompson, R. S. Rundberg, K. Wolfsberg, P. W. Kubik, D. Elmore and H. W. Bentley: Migration of chlorine-36 and tritium from an underground nuclear test, Radiochim. Acta, 44-45,213-217(1988). 93) F. M. Phillips, J. L. Mattick, T. A. Duval, D. Elmore and P. W. Kubik: Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert , Water Resour. Res., 24, 1877-1891 (1988). 94) H. A. Synal, J. Beer, G. Bonani, M. Suter and W. Wolfli: Atmospheric Transport of Bomb-Produced 36Cl, Nucl. Instr. Meth., B52, 483-488 (1990). 95) R. J. Cornett, H. R. Andrews, L. A. Chant, W. G. Davies, B. F. Greiner, Y. Imahori, V. T. Koslowsky, T. Kotzer, J. C. D. Milton and G. M. Milton: Is 36Cl from weapons' test fallout still cycling in the atmosphere?, Nucl. Instrum. Methods Phys. Res. B123, 378-381 (1997). 96) L. DeWayne Cecil and S. Vogt: Identification of bomb-produced chlorine-36 mid-latitude glacial ice of North America, Nucl. Instrum. Methods Phys. Res. B123, 287-289 (1997). 97) K. Kato, M. Habara, Y. Yoshizawa, U. Biebel, G. Haberstock, J. Heinzl, G. Korschinek, H. Morinaga and E. Nolte: Accelerator mass spectrometry of chlorine-36 produced by neutrons from the Hiroshima bomb, Int. J. Radiat. Biol., 58, 661-672 (1990). 98) R. J. Cornett, L. Chant, H. R. Andrews, W. G. Davies, B. F. Greiner, Y. Imahori, V. T. Koslowsky, T. Kotzer, J. C. D. Milton and G. M. Milton: 3('Cl and ml in teeth and bones, Nucl. Instrum. Methods Phys. Res. B123, 249-253 (1997). 99) S. C. Sheppard, L. H. Johnson, B. W. Goodwin, J. C. Tait, D. M. Wuschke and C. C. Davison: Chlorine-36 in nuclear waste disposal 1. Assessment results for used fuel with comparison to I29I and I4C, Waste Manage., \6, 607-614 (1996). 100) S. J. Parry, B. A. Bennett, R. Benzing and A. E. Lally: Radiochemical methods in nuclear waste management, J. Radioanal. Nucl. Chem., 219, 191-196 (1997). 101) L. Ashton, P. Warwick and D. Giddings: The measurement of i(lCl and l2''l in concrete wastes, Analyst, VIA, 627-632 (1999). 102) &M%M: private communication (1999). 103) S. C. Sheppard, W. G. Evenden and C. R. Macdonald: Variation among chlorine concentration ratios for native and agronomic plants, J. Environ. Radioact., 43_, 65-76 (1999). 104) S. Jiang and F. Huang: Study of an origin of chlorine-36 nuclei in nature. 3('Ar(n,p)36Cl reaction, Chin. Sci. Bull., 37, 1200-1202 (1992). 105) D. Elmore, N. J. Conard, P. W. Kubik, H. E. Gove, M. Wahlen, J. Beer and M. Suter: Chlorine-36 and -10 profiles in Greenland ice: dating and production rate variations, Nucl. Instrum. Methods Phys. Res. B29, 207-210 (1987). 106) A. Priller, G. Korschinek, E. Nolte and W. Ruehm: A search for correlation between fallout of

-93- JAERI-Review 2001-043

cosmogenic chlorine-36 and solar activity, Nucl. Instrum. Methods Phys. Res., B52, 618-620 (1990). 107) J. O. H. Stone, J. M. Evans, L. K. Fifield, G. L. Allan and R. G. Cresswell: Cosmogenic chlorine-36 production in calcite by muons, Cosmochim. Acta, 62, 433-454 (1998). 108) J. J. Connel, M. A. DuVemois and J. A. Simpson: The cosmic-ray radioactive nuclide 3('Cl and its propagation in the galaxy, Astrophys. J., 509, L97-L100 (1998). 109) M. D. Keywood, L. K. Fifield, A. R. Chivas and R. G. Cresswell: Fallout of chlorine-36 to the earth's surface in the southern hemisphere, J. Geophys. Res., [Atmos.], KB, 8281-8286 (1998). 110) B. D. Leavy, F. M. Phillips, D. Elmore, P. W. Kubik and E. Gladney: Measurement of cosmogenic chlorine-36/chlorine in young volcanic rocks: an application of accelerator mass spectrometry in geochronology, Nucl. Instrum. Methods Phys. Res., B29, 246-250 (1987). 111) M. A. Plummer, F. M. Phillips, J. Fabryka-Martin, H. J. Turin, P. E. Wigand and P. Sharma: Chlorine-36 in fossil rat urine: an archive of deposition during the past 40,000 years, Science, 277, 538-541 (1997). 112) M. G. Zreda, F. M. Phillips, D. Elmore, P. W. Kubik, P. Sharma and R. I. Dorn: Cosmogenic chlorine-36 production rates in terrestrial rocks, Earth Planet. Sci. Lett., J_05, 94-109 (1991). 113) E. Mazor: Reinterpretation of chlorine-36 data: physical processes, hydraulic interconnections and age estimates in groundwater systems, Appl. Geochem., 7, 351-360 (1992). 114) F. M. Phillips, M. G. Zreda, J. C. Gosse, J. C. Klein, J. Klein, E. B. Evenson, R. D. Hall, O. A. Chadwick and P. Sharma: Cosmogenic 36Cl and '"Be ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming, Geol. Soc. Am. Bull, K)9, 1453-1463 (1997). 115) M. Zreda and J. A. Noller: Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at Hebgen Lake, Science, 282, 1097-1099 (1998). 116) G. M. Milton, S. J. Kramer, T. G. Kotzer, J. C. D. Milton, H. R. Andrews, L. A. Chant, R. J. Cornett, W. G. Davies, B. J. Greiner, Y. Imahri, V. T. Koslowsky and J. W. McKay: Cl 36 - A potential paleodating tool, Nucl. Instrum. Methods Phys. Res., B123, 371-377 (1997). 117) H. W. Bentley, F. M. Phillips, S. N. Davis, M. A. Habermehl, P. L. Airey, G. E. Calf, D. Elmore, H. E. Gove and T. Torgersen: Chlorine-36 dating of very old groundwater 1. The Great Artesian Basin, Australia, Water Resour. Res, 22, 1991-2001 (1986). 118) J. Fabryka-Martin, S. N. Davis and D. Elmore: Applications of iodine-129 and chlorine-36 in hydrology, Nucl. Instrum. Methods Phys. Res. B29, 361-371 (1987). 119) G. Vourvopoulos, J. V. Brahana, E. Nolte, G. Korschinek, A. Priller and B. Dockhorn: Chlorine-36 measurements and the hydrology of an acid injection site, Nucl. Instrum. Methods Phys. Res, B52, 451-454 (1990). 120) W. Balderer and H. A. Synal: Use of chlorine-36 as tracer for the evolution of waters in geothermal and tectonically active areas in Western Turkey, Nucl. Instrum. Methods Phys. Res. B123, 387 (1997). 121) C. Korbmacher, H. Helbig, M. Blank, S. Dressier, F. Stahl and M. Wiederholt: Characterization

-94- JAERI-Review 2001-043

of chloride/bicarbonate exchange in A10 vascular smooth muscle cells usin chlorine-36(l-), Biochim. Biophys. Acta, 985, 67-74 (1989). 122) L. Carlsen, P. Lassen, J. V. Christiansen, P. Warwick, A. Hall and A. Randall: Radio-labeling of humic and fulvic materials for use in environmental studies, Radiochim. Acta, 58-59, 371-376 (1992). 123) H. Muller and I. Hagenlocher: Chemical effects of nuclear transformations in mixed crystals, Radiochim. Acta, 56, 73-77 (1992). 124) K. Berei, L. Vasaros and I. Kiss: Reactions of recoil chlorine-38 atoms with dichloroethanes, J. Chem. Soc., Faraday Trans. 1, 82, 3003-3011 (1986). 125) J. G. Lo, J. H. Chao and J. T. Chuang: Preparation of labelled 3SCl hydrocarbons by recoil 38Cl atom reaction and detection by radio-gas chromatographic techniques, Appl. Radiat. Isot, 38, 685-688 (1987). 126) J.-h. Chao and J.-g. Lo: Recoil chlorine reactions with ethylene, J. Radioanal. Nucl. Chem. Articl., 185, 355-367(1994). 127) A. Y. Wang, J. G. Lo and J. H. Wang: Radio-high-performance liquid chromatographic study on radioactive chlorine-38 compounds, J. Radioanal. Nucl. Chem., 166, 287-297 (1992). 128) G. Ghosh and M. C. Drew: Comparison of analytical methods for extraction of chloride from plant tissue using chlorine-36 as tracer, Plant Soil, B6, 265-268 (1991). 129) *^4>eggi$, mttmm, mRm&, &&&&-. rjRR-3M &mmtfwim\ -^-(7>M#1%ra£*lJffl1-5*t£^-$£Mfc##fj JAERI-Tech 98-046, 0 TO (1998). 130) K. Berei and L. Vasaros: Substituent effects in hot replacement by recoil halogens. Part 3. Bromine replacement by recoil and photolytic chlorine atoms, Radiochim. Acta, 77, 59-62 (1997). 131) M. C. Lagunas-Solar, O. F. Carvacho, F. Omar and R. R. Cima: Cyclotron production of PET radionuclides: 14mCl (33.99 min; b+ 53%; IT 47%) with on natural isotopic chlorine-containing targets, Appl. Radiat. Isot., 43, 1375-1381 (1992). 132) H. Vonach, A. Pavlik, A. Wallner, M. Drosg, R. C. Haight, D. M. Drake and S. Chiba: Spoliation reactions in vAl and S6Fe induced by 800 MeVprotons, Phys. Rev. C: Nucl. Phys., 55, 2458-2467 (1997). 133) R. L. Kozub, J. F. J. Shriner, M. M. Hindi, R. Holzmann, R. V. F. Janssens, T. L. Khoo, W. C. Ma, M. Drigert, U. Garg and J. J. Kolata: Electromagnetic transitions in neutron-rich chlorine-40, Phys. Rev. C: Nucl. Phys., 37, 1791-1793 (1988). 134) fr%&m (H) : rgt#fH||©ftffcJaj Hfflmj&£,l|4j$, 323-336 (1997).

-95- SI SBJII

m * * 15 f « » 12 ft*!! mm 15 5 - m min, h, d 10" X E * P ^'' 7 A kg 10" ~! ? p m 2 s IJ .y f. ^i/ 1. L 10' X 7 T m T y T A h y t 10' +' ts G h" y K 10' M is * 7 *' ^ h eV ft IV 3 a k ft mol u 10 + w E7-Rft*& 2 s y x 7 cd 10 h 10' X •h da ¥ ft 7 •y' T y rad leV=1.60218xlO-"J it <* ft Xx 7 y sr 1 u= 1.66054x10-" kg 10"' x" •y d io-2 -b y x c io-3 IJ m *3 10"' -7 -f ? o p. «4 ffijffl SI <£&. io-' X j n ft * * 121 2 io-' f P It •y Hz s-' io-" 7 x A h f 2 10"" T i - h y N m-kg/s • ?"X h D - A A r a X A >i/ 2 E IE ^3 Pa N/m — y b X; tiv y* i - yi/ t#, »ft J N-m — IV bar X •y h W J/s IV Gal - 5 i as 5 is, mm ? — D y A-s a ft . c + * >) - Ci o tztfi, lev m IV m4, «± *• V W/A y y ¥ y R 7 7 7 K F C/V & m ft 7 V rad m % - A n V/A A rem y ? y x •y - t V X s A/V r-iv, B. •5 i - Wb V-s A=0.1 nm=10-"'m 2 X X 7 T Wb/m 2 2e 2 % b=100fm =10- m y ^ y x 'N y ') - H Wb/A 3. barli, bar=0.1 MPa=105Pa •> •? x S S •t iv -y >> x s °C $ ;u y 1m cd-sr P. IS IV X lx lm/m2 lCi=3.7xl0'°Bq r, barnfci » W fig Bq s" lR=2.58xlO"C/kg 2 $ ft f Gy J/kg 1 rad = lcGy = 10" Gy ft a ft - ^,v Sv J/kg 1 rem=lcSv=10-2Sv

b ( = 10 dyn) kgf lbf ;± MPaOlObar) kgf/cm2 atm mmHg(Torr) lbf/in!(psi) 1 0.101972 0.224809 1 10.1972 9.86923 7.50062 x 103 145.038

9.80665 1 2.20462 0.0980665 1 0.967841 735.559 14.2233

4.44822 0.453592 1 0.101325 1.03323 1 760 14.6959

ffi IS 1 Pa-s(N-s/m2)=10P(*:TX-)(g/(cm-s)) 1.33322 x 10'' 1.35951 x 10- 1.31579 x 10- 1 1.93368 x 10-

2 < 2 3 lm /s=10 St(x V-9 x)(Cm /s) 6.89476 x 10 7.03070 x 10- 6.80460 x 10- 51.7149 1

X J( = 10'erg) kgf*m kW- h cal(lt»S) Btu ft • lbf eV leal = 4.18605 JdtJliS)

IV 1 0.101972 2.77778 x 10" 0.238889 9.47813 x 10" 0.737562 6.24150x10" = 4.184J (j»Mfc¥)

1 9.80665 1 2.72407 x 10-' 2.34270 9.29487 x 10"3 7.23301 6.12082x10" = 4.1855 J (15 °C) f± 3.6x10' 3.67098x10' 1 8.59999 x 10 s 3412.13 2.65522 x 10' 2.24694x10" = 4.1868J(SI!8«S»JO 4.18605 0.426858 1.16279x10-' 1 3.96759 x 10'3 3.08747 2.61272x10"

21 * 1055.06 107.586 2.93072x10" 252.042 1 778.172 6.58515 x 10 = 75 kgf-m/s 3 1.35582 0.138255 3.76616x10-' 0.323890 1.28506 x 10- 1 8.46233 x 10" = 735.499 W 1.60218 x 10"" 1.63377 x 10-20 4.45050 xlO'26 3.82743 x 10'20 1.51857 x 10-22 1.18171 xlO"* 1

Bq Ci Gy rad C/kg Sv

1 2.70270 x 10- 1 100 3876 1 100

3.7 x 1010 1 0.01 1 2.58 x 10- 1 0.01 1