Vigna Unguiculata (L.) Walp.]

Total Page:16

File Type:pdf, Size:1020Kb

Vigna Unguiculata (L.) Walp.] Plant Reprod (2016) 29:165–177 DOI 10.1007/s00497-015-0273-3 ORIGINAL ARTICLE New observations on gametogenic development and reproductive experimental tools to support seed yield improvement in cowpea [Vigna unguiculata (L.) Walp.] 1 2 1 Rigel Salinas-Gamboa • Susan D. Johnson • Nidia Sa´nchez-Leo´n • 2 1 Anna M. G. Koltunow • Jean-Philippe Vielle-Calzada Received: 28 October 2015 / Accepted: 21 December 2015 / Published online: 4 January 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Key message Cowpea reproductive tools. floral bud size and reproductive organ development, Abstract Vigna unguiculata L. Walp. (cowpea) is recog- determining that gametogenesis occurs more rapidly in the nized as a major legume food crop in Africa, but seed anther than in the ovule. We also show that the mode of yields remain low in most varieties adapted to local con- megagametogenesis is of the Polygonum-type and not ditions. The development of hybrid cowpea seed that could Oenothera-type, as previously reported. Finally, we be saved after each generation, enabling significant yield developed a whole-mount immunolocalization protocol increases, will require manipulation of reproductive and applied it to detect meiotic proteins in the cowpea development from a sexual to an asexual mode. To develop megaspore mother cell, opening opportunities for com- new technologies that could support the biotechnological paring the dynamics of protein localization during male manipulation of reproductive development in cowpea, we and female meiosis, as well as other reproductive events in examined gametogenesis and seed formation in two this emerging legume model system. transformable, African-adapted, day-length-insensitive varieties. Here, we show that these two varieties exhibit Keywords Megagametogenesis Á Megasporogenesis Á distinct morphological and phenological traits but share a Microgametogenesis Á Cowpea Á Reproductive calendar Á common developmental sequence in terms of ovule for- Whole-mount immunolocalization Á Ovule mation and gametogenesis. We present a reproductive calendar that allows prediction of male and female game- togenesis on the basis of sporophytic parameters related to Introduction Many of the poorest countries in the world derive 10–20 % Communicated by Dolf Weijers. of their total dietary protein from grain legumes, members of the Fabaceae (Akibode and Maredia, 2011). Cowpea, Anna M. G. Koltunow and Jean-Philippe Vielle-Calzada are co-senior Vigna unguiculata (L.) Walp. is one of the eight grain authors. legumes currently being targeted for yield and agronomic Electronic supplementary material The online version of this improvement by the Consultative Group for International article (doi:10.1007/s00497-015-0273-3) contains supplementary Agricultural Research (CGIAR). Cowpea originated in material, which is available to authorized users. Africa, which produces over 95 % of the 5.4 million tons & Jean-Philippe Vielle-Calzada of dried cowpeas produced globally, on an estimated 11.5 [email protected] million hectares of land across a diverse range of farming 1 systems, in the semiarid regions of West and Central Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Africa. Approximately 200 million individuals are esti- Nacional de Geno´mica para la Biodiversidad, CINVESTAV Irapuato, CP 36821 Guanajuato, Mexico mated to consume the grain daily in West Africa as it provides a high source of protein (25 % by weight) and all 2 Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, plant organs are edible. Cowpea is an important component Private Bag 2, Glen Osmond, SA 5064, Australia in increasing sustainable farming production by being 123 166 Plant Reprod (2016) 29:165–177 drought resistant and having the ability to fix atmospheric megagametogenesis in Vigna. An important prerequisite nitrogen, contributing to reduced soil erosion. for developing robust hybrid seed production systems or Conventional cowpea breeding is currently underpinned attempting to alter reproduction in cowpea is a clear by the use of molecular markers (Lucas et al. 2011, 2013), understanding of the temporal and spatial events of sexual correlations between genetic and physical maps (Pottorff male and female gametophyte formation in relation to et al. 2014), and large-scale genomic sequencing (Andargie flower morphology and supporting cytological tools to et al. 2011; Barrera-Figueroa et al. 2011; Huang et al. efficiently and accurately examine changes induced by 2012). Transformation technologies have been established hybridization, mutation, or transgenic approaches. for cowpea and are being implemented to accelerate In this paper, we applied a range of cytological techniques agronomic performance, with strong indications of success to a pair of cultivated African cowpea varieties of known in the development of seed borer-resistant lines (Kang et al. pedigree developed by the International Institute of Tropical 2014; Popelka et al. 2006). Despite advances in increasing Agriculture (Kang et al. 2014) and developed a reproductive cowpea yields and stress tolerance over the last two dec- calendar that allows prediction of male and female game- ades, many varieties are still low yielding and susceptible togenesis on the basis of sporophytic parameters such as to a range of biotic and abiotic stresses (Lush and Evans floral bud size, gynoecium length, and integument growth. 1981; Singh 2014; Huynh et al. 2015; Lucas et al. 2015). Although one flowers earlier than the other, both share a The development of cowpea hybrids has the potential to common developmental sequence in terms of ovule forma- increase crop yields by 30 % as suggested by published tion and gametogenesis. Contrary to previous reports, we studies aimed at identifying levels of heterosis in progeny show that the female gametophyte is not of the Oenothera - from crosses between inbred cowpea parents (Bhaskaraiah type but consistently develops from three mitotic nuclear et al. 1980; Ortiz 1998; Ushakumari et al. 2010; Kumari divisions of the most chalazal megaspore, giving rise to a et al. 2012). Hybrid seed production systems have not yet megagametophyte of the Polygonum-type. Callose staining been developed in cowpea. Impediments include self-fer- of pollen tubes and tracking of sperm cells within the tilizing hermaphrodite flowers, low outcrossing rates megagametophyte showed that fertilization occurs 12–14 h (\5 %; Timko and Singh 2008), and high flower drop rates after pollination. We also developed a simple whole-mount (Wien and Summerfield 1980; Ehlers and Hall 1996; immunolocalization procedure with sufficient sensitivity to Ojehomon and Samyaolu 1970). In all current hybrid seed allow the detection of meiotic proteins specifically expressed production systems, hybrid seeds need to be generated and in the megaspore mother cell. Collectively, the methods purchased each growing season, impeding their purchase developed here for cowpea are likely to be applicable to by poor farmers. The current inability to produce hybrid analyses of gametogenesis in a range of legumes. seeds relates to the plant’s sexual reproductive process. Meiosis and recombination during gamete formation and gamete fusion at fertilization alleviate heterosis, concur- Materials and methods rently leading to trait segregation. Development of cowpea hybrids from which seeds could be saved by farmers would Plant material and growth conditions offer the potential to generate higher-yielding cowpea crops in an economical manner. The generation of such Seeds of Vigna unguiculata IT97K-499-35 and IT86D- ‘‘self-reproducing’’ hybrids would require changing 1010 were germinated and grown in either a soil mixture of reproduction in the sexually reproducing hybrid to an 3:1:1 sunshine soil/vermiculite/perlite (v/v/v), and Osmo- asexual seed forming mode mimicking the events of apo- cote (1.84 kg/m3) as a fertilizer, or a mixture of BioGrow mixis to generate clonal seed where vigor was preserved. (60 % coarse milled composted pine bark[7 mm, 30 % of Recent studies have provided proof-of-concept of clonal fine milled composted pine bark 3–6 mm, and 10 % of seed generation, which might be applicable for the gener- washed coarse river sand) and Osmocote (1.84 kg/m3). ation of self-reproducing cowpea hybrids (Marimuthu et al. Both varieties were grown under greenhouse condi- 2011; Hand and Koltunow 2014; Gilbert 2015). tions but did not flower during winter; temperatures in While general descriptions of reproductive development Irapuato were 25–28 °C (spring–summer) and 20–24 °C in members of the Fabaceae have been published from a (autumn–winter), and temperatures in Adelaide were physiological and developmental perspective (Brown 1917; 22–28 °C (summer) and 18–23 °C (winter). Mitchel 1975; Rembert 1977; Albertsen and Palmer 1979; Kennell and Horner 1985; Moc¸o and Mariath 2003; Cytological analysis Soverna et al. 2003; Rodriguez-Rian˜os et al. 2006; Chehregani and Tanaomi 2010; Ghassempour et al. 2011), For light microscopy analysis, floral buds were manually there is surprisingly scarce information on micro- and dissected and fixed in FAA (ethanol (50 %), formaldehyde 123 Plant Reprod (2016) 29:165–177 167 (10 %), acetic acid (4 %), and water) for at least 12 h, Whole-mount protein immunolocalization before being dissected with hypodermic needle and scalpel. Both the bud and the gynoecia length were measured Immunolocalization was performed as previously descri- before proceeding
Recommended publications
  • Establishing a Framework for Female Germline Initiation in the Plant Ovule Jorge Lora1, , Xiujuan Yang2, and Mathew R
    Journal of Experimental Botany, Vol. 70, No. 11 pp. 2937–2949, 2019 doi:10.1093/jxb/erz212 Advance Access Publication 7 May 2019 Establishing a framework for female germline initiation in the plant ovule Jorge Lora1, , Xiujuan Yang2, and Mathew R. Tucker2,* 1 Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain 2 School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia *Correspondence: [email protected] Received 27 November 2018; Editorial decision 29 April 2019; Accepted 2 May 2019 Editor: Sílvia Coimbra, University of Porto, Portugal Abstract Female gametogenesis in flowering plants initiates in the ovule, where a single germline progenitor differentiates from a pool of somatic cells. Germline initiation is a fundamental prerequisite for seed development but is poorly understood at the molecular level due to the location of the cells deep within the flower. Studies in Arabidopsis have shown that regulators of germline development include transcription factors such as NOZZLE/SPOROCYTELESS and WUSCHEL, components of the RNA-dependent DNA methylation pathway such as ARGONAUTE9 and RNADEPENDENT RNA POLYMERASE 6, and phytohormones such as auxin and cytokinin. These factors accumulate in a range of cell types from where they establish an environment to support germline differentiation. Recent studies provide fresh insight into the transition from somatic to germline identity, linking chromatin regulators, cell cycle genes, and novel mobile signals, capitalizing on cell type-specific methodologies in both dicot and monocot models. These findings are providing unique molecular and compositional insight into the mechanistic basis and evolutionary conservation of female germline development in plants.
    [Show full text]
  • Functional Investigation of Arabidopsis Callose Synthases and the Signal Transduction Pathway
    FUNCTIONAL INVESTIGATION OF ARABIDOPSIS CALLOSE SYNTHASES AND THE SIGNAL TRANSDUCTION PATHWAY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoyun Dong, M.S. (Plant Biology) The Ohio State University 2005 Dissertation Committee: Dr. Desh Pal S. Verma, Adviser Approved by Dr. Biao Ding _______________________________ Dr. Terry L. Graham Adviser Dr. Guo-liang Wang Graduate Program in Plant Pathology ABSTRACT Callose synthesis occurs at specific stages of cell wall development in all cell types, and in response to pathogen attack, wounding and physiological stresses. We isolated promoters of 12 Arabidopsis callose synthase (CalS1-12) genes and demonstrated that different callose synthases are expressed specifically in different tissues during plant development. That multiple CalS genes are expressed in the same cell type suggests the possibility that CalS complex may be constituted by heteromeric subunits. Five CalS genes were induced by pathogen (Peronospora parasitica, a causal agent of downy mildew) or salicylic acid (SA) treatments, while seven CalS genes were not affected by these treatments. Among the genes that are induced, CalS1 and CalS12, showed the highest responses. When expressed in npr1, a mutant impaired in the response of pathogen related (PR) genes to SA, the induction of CalS1 and CalS12 genes by the SA or pathogen treatments was significantly reduced. The patterns of expression of the other three CalS genes were not changed significantly in the npr1 mutant. These results suggest that the high induction observed of CalS1 and CalS12 is NPR1-dependent while the weak induction of all five CalS genes is NPR1-independent.
    [Show full text]
  • Morphological Studies Op Diploid Aud Autotetraploid
    MORPHOLOGICAL STUDIES OP DIPLOID AUD AUTOTETRAPLOID PLARTS OP PHYSALIS PRUIUOSA L. Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By ROBERT DAVID HEURY, B.S., M.S. The Ohio State University 1958 Approved hy Department of Botany and Plant Pathology ACKN OWLEDGMEUT S The writer desires to take this opportunity to express his sincere thanks and appreciation to his adviser Dr, G, W. Blaydes for his guidance, advice, criticisms, and encouragement during the course of this investigation and preparation of the dissertation. Thanks are also extended to Dr. K. K. Pandey for his helpful suggestions concerning the research and to Mr. A. S. Heilman for the photographic work. ii TABLE OP COM'Ei'TTS Page IHTRODU CTI ON ...................................... 1 MATERIALS ARB M E T H O D S ........................ 4 GENERAL MORPHOLOGY AND G R O W T H ............... 8 Observations and Results ..................... 8 Discussion and Summary............ 21 PRE- ADD POST-PERTILIZATIOH MORPHOLOGY............. 27 Development of the Ovule and Emhryo Sac .... 27 Observations and Results ............. 27 Discussion and Summary ................... 33 Development of the Pollen ............ 37 Observations and Results ................. 37 Discussion and Summary ............... 42 Fertilization ........ ................. 43 Observations and Results • ••••...• 43 Discussion and Summary ............. 44 Endosperm ........ .............. 43 Observations and Results
    [Show full text]
  • Effect of Low Temperature on Changes in AGP Distribution During Development of Bellis Perennis Ovules and Anthers
    cells Article Effect of Low Temperature on Changes in AGP Distribution during Development of Bellis perennis Ovules and Anthers Agata Leszczuk 1,* , Ewa Szczuka 2, Kinga Lewtak 2, Barbara Chudzik 3 and Artur Zdunek 1 1 Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland; [email protected] 2 Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; [email protected] (E.S.); [email protected] (K.L.) 3 Department of Biological and Environmental Education with Zoological Museum, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; [email protected] * Correspondence: [email protected] Abstract: Arabinogalactan proteins (AGPs) are a class of heavily glycosylated proteins occurring as a structural element of the cell wall-plasma membrane continuum. The features of AGPs described earlier suggest that the proteins may be implicated in plant adaptation to stress conditions in important developmental phases during the plant reproduction process. In this paper, the microscopic and immunocytochemical studies conducted using specific antibodies (JIM13, JIM15, MAC207) recognizing the carbohydrate chains of AGPs showed significant changes in the AGP distribution in female and male reproductive structures during the first stages of Bellis perennis development. In typical conditions, AGPs are characterized by a specific persistent spatio-temporal pattern of distribution. AGP epitopes are visible in the cell walls of somatic cells and in the megasporocyte walls, Citation: Leszczuk, A.; Szczuka, E.; megaspores, and embryo sac at every stage of formation. During development in stress conditions, Lewtak, K.; Chudzik, B.; Zdunek, A.
    [Show full text]
  • Recent Advances in Understanding Female Gametophyte Development [Version 1; Peer Review: 2 Approved] Debra J Skinner1, Venkatesan Sundaresan 1,2
    F1000Research 2018, 7(F1000 Faculty Rev):804 Last updated: 17 JUL 2019 REVIEW Recent advances in understanding female gametophyte development [version 1; peer review: 2 approved] Debra J Skinner1, Venkatesan Sundaresan 1,2 1Department of Plant Biology, University of California-Davis, Davis, USA 2Department of Plant Sciences, University of California-Davis, Davis, USA First published: 20 Jun 2018, 7(F1000 Faculty Rev):804 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.14508.1) Latest published: 20 Jun 2018, 7(F1000 Faculty Rev):804 ( https://doi.org/10.12688/f1000research.14508.1) Reviewer Status Abstract Invited Reviewers The haploid female gametophyte (embryo sac) is an essential reproductive 1 2 unit of flowering plants, usually comprising four specialized cell types, including the female gametes (egg cell and central cell). The differentiation version 1 of these cells relies on spatial signals which pattern the gametophyte along published a proximal-distal axis, but the molecular and genetic mechanisms by which 20 Jun 2018 cell identities are determined in the embryo sac have long been a mystery. Recent identification of key genes for cell fate specification and their relationship to hormonal signaling pathways that act on positional cues has F1000 Faculty Reviews are written by members of provided new insights into these processes. A model for differentiation can the prestigious F1000 Faculty. They are be devised with egg cell fate as a default state of the female gametophyte commissioned and are peer reviewed before and with other cell types specified by the action of spatially regulated publication to ensure that the final, published version factors.
    [Show full text]
  • Microsporogenesis, Megasporogenesis, and the Development of Male and Female Gametophytes in Eustoma Grandiflorum
    J. Japan. Soc. Hort. Sci. 76 (3): 244–249. 2007. Available online at www.jstage.jst.go.jp/browse/jjshs JSHS © 2007 Microsporogenesis, Megasporogenesis, and the Development of Male and Female Gametophytes in Eustoma grandiflorum Xinyu Yang1, Qiuhong Wang1,2 and Yuhua Li1* 1College of Life Sciences, Northeast Forestry University, Harbin 150040, China 2College of Life Sciences, Heilongjiang University, Harbin 150080, China Embryological characters during microsporogenesis, megasporogenesis, and the development of male and female gametophytes in Eustoma grandiflorum were observed by microscopy. The results are as follows. 1. The formation of anther walls was of the dicotyledonous type. The tapetum was of the heteromorphic and glandular type. Tapetal cells on the connective side elongated radially. 2. Cytokinesis in microsporocyte meiosis was of the simultaneous type and microspore tetrads were tetrahedral. 3. Mature pollen grains were 2-celled and had 3 germ furrows. 4. The ovary was bicarpellary syncarpous and unilocular, having parietal placentas. Ovules were numerous and anatropous. 5. The archespore under the nucellar epidermis directly developed a megaspore mother cell, which in turn underwent meiotic division to form 4 megaspores arranged in a line or T-shape. The chalazal megaspore was observed to be functional. 6. The formation of the embryo sac was of the polygonum type. Before fertilization, the 2 polar nuclei fused into a secondary nucleus. The mature embryo sac was made up of 7 cells. 7. It was found at a very low rate that there were 2 megasporocytes or 2 embryo sacs in an ovule. Key Words: Eustoma grandiflorum, female gametophyte, male gametophyte, megasporogenesis, microsporogenesis.
    [Show full text]
  • Embryology of Manekia Naranjoana (Piperaceae) and Its Implications for the Origin of the Sixteen-Nucleate Female Gametophyte in Piperales
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2007 Embryology of Manekia naranjoana (Piperaceae) and its Implications for the Origin of the Sixteen-nucleate Female Gametophyte in Piperales Tatiana Arias-Garzón University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Ecology and Evolutionary Biology Commons Recommended Citation Arias-Garzón, Tatiana, "Embryology of Manekia naranjoana (Piperaceae) and its Implications for the Origin of the Sixteen-nucleate Female Gametophyte in Piperales. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/234 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Tatiana Arias-Garzón entitled "Embryology of Manekia naranjoana (Piperaceae) and its Implications for the Origin of the Sixteen-nucleate Female Gametophyte in Piperales." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. Joseph Williams, Major Professor
    [Show full text]
  • Epigenetic Dynamics During Flowering Plant Reproduction: Evidence for Reprogramming?
    Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming? The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mary Gehring. "Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming?" New Phytologist 224, 1 (May 2019): 91-96 © 2019 The Author and New Phytologist Trust As Published http://dx.doi.org/10.1111/nph.15856 Publisher Wiley Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/128352 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author New Phytol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 October 01. Published in final edited form as: New Phytol. 2019 October ; 224(1): 91–96. doi:10.1111/nph.15856. Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming? Mary Gehring1,2 1Whitehead Institute for Biomedical Research, Cambridge MA 02142 USA 2Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA Summary Over the last ten years there have been major advances in documenting and understanding dynamic changes to DNA methylation, small RNAs, chromatin modifications, and chromatin structure that accompany reproductive development in flowering plants from germline specification to seed maturation. Here I highlight recent advances in the field, mostly made possible by microscopic analysis of epigenetic states or by the ability to isolate specific cell types or tissues and apply omics approaches. I consider in which contexts there is potentially reprogramming vs maintenance or reinforcement of epigenetic states.
    [Show full text]
  • Modes of Reproduction
    FACULTY OF AGRICULTURAL SCIENCES AND ALLIED INDUSTRIES Modes of Reproduction Different modes of reproduction Knowledge of the mode of reproduction and pollination is essential for a plant breeder, because these aspects help in deciding the breeding procedures to be used for the genetic improvement of a crop species. Choice of breeding procedure depends on the mode of reproduction and pollination of a crop species. Reproduction refers to the process by which living organisms give rise to the offspring of similar kind (species). In crop plants, the mode of reproduction is of two types: viz. 1) sexual reproduction and 2) asexual reproduction I. Sexual reproduction: Multiplication of plants through embryos which have developed by fusion of male and female gametes is known as sexual reproduction. All the seed propagating species belong to this group. Sporogenesis Production of microspores and megaspores is known as sporogenesis. In anthers, microspores are formed through microsporogensis and in ovules, the megaspores are formed through megasporogenesis. Microsporogenesis The sporophytic cells in the pollen sacs of anther which undergo meiotic division to form haploid i.e., microspores are called microspore (MMC) or pollen mother cell (PMC) and the process is called microsporogenesis. Each PMC produce four microspores and each microspore after thickening of the wall transforms into pollen grain. Megasporogenesis A single sporophytic cell inside the ovule, which undergo meiotic division to form haploid megaspore, is called megaspore mother cell (MMC) and the process is called megasporogenesis. Each MMC produces four megaspores out of which three degenerate resulting in a single functional megaspore. Gametogenesis The production of male and female gametes in the microspores and megaspores is known as gametogenesis.
    [Show full text]
  • Embryo Sac Formation and Early Embryo Development In
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector González-Gutiérrez et al. SpringerPlus 2014, 3:575 http://www.springerplus.com/content/3/1/575 a SpringerOpen Journal RESEARCH Open Access Embryo sac formation and early embryo development in Agave tequilana (Asparagaceae) Alejandra G González-Gutiérrez, Antonia Gutiérrez-Mora and Benjamín Rodríguez-Garay* Abstract Agave tequilana is an angiosperm species that belongs to the family Asparagaceae (formerly Agavaceae). Even though there is information regarding to some aspects related to the megagametogenesis of A. tequilana, this is the first report describing the complete process of megasporogenesis, megagametogenesis, the early embryo and endosperm development process in detail. The objective of this work was to study and characterize all the above processes and the distinctive morphological changes of the micropylar and chalazal extremes after fertilization in this species. The agave plant material for the present study was collected from commercial plantations in the state of Jalisco, Mexico. Ovules and immature seeds, previously fixed in FAA and kept in ethanol 70%, were stained based on a tissue clarification technique by using a Mayer’s-Hematoxylin solution. The tissue clarification technique was successfully used for the characterization of the megasporogenesis, megagametogenesis, mature embryo sac formation, the early embryo and endosperm development processes by studying intact cells. The embryo sac of A. tequilana was confirmed to be of the monosporic Polygonum-type and an helobial endosperm formation. Also, the time-lapse of the developmental processes studied was recorded. Keywords: Agavaceae; Chalazal haustorium; Helobial endosperm; Hypostase; Megagametogenesis; Megasporogenesis; Polygonum-type Background et al.
    [Show full text]
  • The Female Gametophyte of Flowering Plants Venkatesan Sundaresan1,2,* and Monica Alandete-Saez1,2
    REVIEW 179 Development 137, 179–189 (2010) doi:10.1242/dev.030346 Pattern formation in miniature: the female gametophyte of flowering plants Venkatesan Sundaresan1,2,* and Monica Alandete-Saez1,2 Summary Plant reproduction involves gamete production by a haploid Box 1. Glossary generation, the gametophyte. For flowering plants, a defining Angiosperms. Flowering plants, in which seeds are produced within characteristic in the evolution from the ‘naked-seed’ plants, or the female reproductive organs. Anthers. The anther, which carries the pollen grain (the male gymnosperms, is a reduced female gametophyte, comprising gametophyte), sits on top of a filament to form the stamen or male just seven cells of four different types – a microcosm of pattern organ of a flower. formation and gamete specification about which only little is Embryo sac. The female gametophyte of flowering plants, which known. However, several genes involved in the differentiation, produces the two female gametes – the egg cell and central cell – for fertilization and post-fertilization functions of the female double-fertilization by the two sperm cells of the male gametophyte gametophyte have been identified and, recently, the (pollen grain). morphogenic activity of the plant hormone auxin has been Eudicots. The term means, literally, ‘true dicotyledons’, as this group found to mediate patterning and egg cell specification. This contains the majority of plants that have been considered article reviews recent progress in understanding the pattern dicotyledons and have typical dicotyledonous characters. formation, maternal effects and evolution of this essential unit Filiform apparatus. Structure formed at the micropylar (distal) pole of the synergid cell wall that is thickened, forming finger-like of plant reproduction.
    [Show full text]
  • Key Factors Involved in Stress-Induced Microspore Embryogenesis in Barley and Rapeseed: DNA Methylation, Arabinogalactan Proteins and Auxin
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS Departamento de Genética TESIS DOCTORAL Key factors involved in stress-induced microspore embryogenesis in barley and rapeseed: DNA methylation, arabinogalactan proteins and auxin MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Ahmed Abdalla Eltantawy Directoras Pilar S. Testillano M.C. Risueño Almeida Madrid, 2016 © Ahmed Abdalla Eltantawy, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS CENTRO DE INVESTIGACIONES BIOLÓGICAS LABORATORIO DE BIOTECNOLOGÍA DEL POLEN DE PLANTAS CULTIVADAS FACTORES CLAVE IMPLICADOS EN LA EMBRIOGÉNESIS DE MICROSPORAS INDUCIDA POR ESTRÉS EN CEBADA Y COLZA: METILACIÓN DEL DNA, PROTEÍNAS DE ARABINOGALACTANOS Y AUXINA TESIS DOCTORAL AHMED ABDALLA ELTANTAWY MADRID, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS CENTRO DE INVESTIGACIONES BIOLÓGICAS LABORATORIO DE BIOTECNOLOGÍA DEL POLEN DE PLANTAS CULTIVADAS KEY FACTORS INVOLVED IN STRESS-INDUCED MICROSPORE EMBRYOGENESIS IN BARLEY AND RAPESEED: DNA METHYLATION, ARABINOGALACTAN PROTEINS AND AUXIN Ph.D. thesis AHMED ABDALLA ELTANTAWY MADRID, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS DEPARTAMENTO DE GENÉTICA FACTORES CLAVE IMPLICADOS EN LA EMBRIOGÉNESIS DE MICROSPORAS INDUCIDA POR ESTRÉS EN CEBADA Y COLZA: METILACIÓN DEL DNA, PROTEÍNAS DE ARABINOGALACTANOS Y AUXINA MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR: AHMED ABDALLA ELTANTAWY VºBº DIRECTORES DE TESIS Fdo. Dra. Pilar S. Testillano
    [Show full text]