Bee Colony Collapse Disorder (CCD), Nosema and Varroa Mite Infections (And Other Suspects - Except GM Crops)

Total Page:16

File Type:pdf, Size:1020Kb

Bee Colony Collapse Disorder (CCD), Nosema and Varroa Mite Infections (And Other Suspects - Except GM Crops) Bee Colony collapse disorder (CCD), Nosema and Varroa mite Infections (and other suspects - except GM crops). Klaus Ammann, ASK-FORCE, AF-1 revised Version 20160205 open-source, 105 pages. With 331 full text references, [email protected] 1. The Issue: ........................................................................................................................................................................ 2 1.1. Alarmist press releases: The colony collapse disorder (CCD) is allegedly caused by GM crops ......... 2 1.2. False lobby reports of (organic) Bee Keeper Associations .................................................................. 3 1.3. More cheap propaganda blaming GM crops for CCD, without scientific evidence ............................ 4 2. Summary ......................................................................................................................................................................... 5 3. General comments ....................................................................................................................................................... 6 3.1. Recent scientific reviews on CCD ........................................................................................................ 6 3.2. Latest reports on general management of experimentation with bees in laboratories and field .... 19 3.3. GM crops ruled out as a possible cause of CCD ................................................................................ 21 3.4. Reports of CCD from times when GM crops did not exist yet ........................................................... 29 4. More recent scientific information on possible causes of CCD................................................................. 30 4.1. Recent Honeybee Colony Declines, Summary in Science and CSR Report for the US Congress ...... 30 4.2. Negative influence of landscape structure and biodiversity through modern agriculture? ............. 33 4.3. Possible protein deficiency as a follow up of a Picornia–like viral infection ..................................... 40 4.4. Imidacloprid (and neonicotinoids) or other pesticides and fungicides as possible cause of CCD? ... 42 4.5. A novel way of intoxication of Honeybees: Translocation through guttation drops ....................... 60 4.6. Another new possible cause of the Colony Collapse Disorder: Entombed Pollen?.......................... 62 4.7. Energetic stress: a possible cause of the Colony Collapse Disorder? ................................................ 62 4.8. A virus (IAPV, Israeli Acute Paralysis Virus) might be the cause of CCD ............................................ 63 4.9. Varroa mite infection, a major threat to honeybees ........................................................................ 65 4.10. Natural infection by Nosema ceranae (including Nosema apis) the cause of CCD? ......................... 69 4.11. Chalkbrood and stonebrood: two fungal diseases affecting Honeybees .......................................... 72 4.12. A new threat to the honeybees: the parasitic Phorid fly Apocephalus borealis ............................... 73 4.13. Could climate change contribute to the colony collapse of Honeybees? ......................................... 74 4.14. Inbreeding may cause bee populations more susceptible to infections? ......................................... 74 4.15. Could Electro-smog be the cause of the Colony Collapse Disorder? ................................................. 76 4.16. Hidden GMOs not substantiated in relation to bee mortality .......................................................... 76 4.17. Diesel exhaust rapidly degrades floral odours used by honeybees .................................................. 77 4.18. Monsanto proposes a solution .......................................................................................................... 77 2 4.19. The Issue of multiple factors ............................................................................................................. 78 4.20. Legal Aspects, EU Court of Justice Decisions, EU Labelling Rules, Misunderstandings among European Bee Keepers ..................................................................................................................................... 80 4.21. Summary: Colony Collapse Disorder: Many suspects, no smoking gun, except the Varroa mite, other parasites and the Deformed Viral Wing disease, systemic pesticides (imidacloprids) focus on regional differences ....................................................................................................................................................... 82 5. Bibliography Scientific Literature and Reports ............................................................................................. 85 6. Literature cited .......................................................................................................................................................... 85 1. The Issue: 1.1. Alarmist press releases: The colony collapse disorder (CCD) is allegedly caused by GM crops Read the article from the German weekly magazine DER SPIEGEL, the magazine maintains also a website in English: Der Spiegel Online International http://www.spiegel.de/ as a typical example of a sensational, unsubstantiated European press feature: In the headlines they ask: “Are GM Crops Killing Bees”? The German Contribution talks in the headline about “Aids in the Bee Hive”. And instead of making the allegation that GM crops are the real culprit themselves, they interview a well-known beekeeper and opponent of GM crops. Latsch, G. (2007) Aids im Bienenstock, Der Spiegel 12 pp 58-59 (Der Spiegel Article) English: http://www.ask-force.org/web/Bees/Latsch-CCD-Spiegel-2007.pdf Latsch, G. (2007) Electronic Source: Are GM Crops Killing Bees? , Der Spiegel Online International, published by: Der Spiegel Online March 22, 2007 Spiegel Online for free: http://www.spiegel.de/international/world/0,1518,473166,00.html “Walter Haefeker, the German beekeeping official, speculates that “besides a number of other factors,” the fact that genetically modified, insect-resistant plants are now used in 40 percent of cornfields in the United States could be playing a role. The figure is much lower in Germany—only 0.06 percent—and most of that occurs in the eastern states of Mecklenburg-Western Pomerania and Brandenburg. Haefeker recently sent a researcher at the CCD Working Group some data from a bee study that he has long felt shows a possible connection between genetic engineering and diseases in bees. The study in question is a small research project conducted at the University of Jena from 2001 to 2004. The researchers examined the effects of pollen from a genetically modified maize variant called “Bt corn” on bees. A gene from a soil bacterium had been inserted into the corn that enabled the plant to produce an agent that is toxic to insect pests. The study concluded that there was no evidence of a “toxic effect of Bt corn on healthy honeybee populations.” But when, by sheer chance, the bees used in the experiments were infested with a parasite, something eerie happened. According to the Jena study, a “significantly stronger decline in the number of bees” occurred among the insects that had been fed a highly concentrated Ask-force.org/web-poison feed. According to Hans-Hinrich Kaatz, a professor at the University of Halle in eastern Germany and the director of the study, the bacterial toxin in the genetically modified corn may have “altered the surface of the bee’s intestines, sufficiently weakening the bees to allow the parasites to gain entry—or perhaps it was the other way around. We don’t know.” Of course, the concentration of the toxin was ten times higher in the experiments than in normal Bt-corn pollen. In addition, the bee feed was administered over a relatively lengthy six-week period. Kaatz would have preferred to continue studying the phenomenon but lacked the necessary funding. “Those who have the money are not interested in this sort of research,” says the professor, “and those who are interested don’t have the money.” (Latsch, 2007) 3 The irony is, that Prof. Kaatz got an additional hefty sum of 300’000 Euro to finish up his studies, his report was not available for many years to the Monitor experts (the author of this report was a member of the expert group). Prof. Kaatz was very unhappy about this illegally broken embargo with the preliminary alarm despite clear promises by the Spiegel journalist. The author of this report tried to help him, but it was simply too late and Prof. Kaatz himself did not want to exacerbate the dispute further on – unfortunately. The final report (Kaatz, 2004) then stated without any doubt that negative impacts could be excluded completely. All details in the chapter 3.3 of this report, ruling out GMOs as a reason for the CCD. It is astonishing, that the report has never been published. Citations from the report in chapter 3.3. In such disputes, a new phenomenon appears to work with success: the denial and automatic rejection of scientific work and expertise, nowhere in this unfortunate Spiegel-triggered controversy there was mention of the well-known and well published expertise of Prof. Hand Hinrich Kaatz, here just two examples of his earlier scientific work on bees: (Kaatz et al., 1985; Kaatz et al., 1992). Nevertheless, bad news always finds the way into the journals, whether proven or not, is not important, a typical alarmist publication
Recommended publications
  • A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management
    sustainability Review A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management Lauren Brzozowski 1 and Michael Mazourek 1,2,* ID 1 Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; [email protected] 2 David R. Atkinson Center for Sustainable Future, Cornell University, Ithaca, NY 14853, USA * Correspondence: [email protected] Received: 21 April 2018; Accepted: 11 June 2018; Published: 15 June 2018 Abstract: The need to improve agricultural sustainability to secure yields, minimize environmental impacts and buffer environmental change is widely recognized. Investment in conventional agriculture has supported its present yield advantage. However, organic agriculture with agroecological management has nascent capacity for sustainable production and for increasing yields in the future. Conventional systems have leveraged reductionist approaches to address pests, primarily through pesticides that seek to eliminate biological factors that reduce yield, but come at a cost to human and ecosystem health, and leave production systems vulnerable to the development of pest resistance to these chemicals or traits. Alternatives are needed, and are found in organic production approaches. Although both organic and agroecology approaches encompass more than pest management, this aspect is a pivotal element of our agricultural future. Through increased investment and application of emerging analytical approaches to improve plant breeding for and management of these systems, yields and resilience will surpass approaches that address components alone. Keywords: organic agriculture; agroecology; pest management; plant breeding; biodiversity; sustainability; host plant resistance; pesticides 1. Achieving Needs for Agricultural Productivity and Pest Management Sustainably There is broad recognition among agricultural scientists that a growing world population will consume greater amounts of food and fiber with fewer resources available for production [1].
    [Show full text]
  • Bumble Bee Pollen Foraging on Lupine (Lupinus: Fabaceae)
    BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Arts In Biology May 2000 BUMBLE BEE POLLEN FORAGING ON LUPINE (LUPINUS: FABACEAE): WITHIN-WHORL DECISIONS by Birgit Semsrott We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Arts. Approved by the Master's Thesis Committee: Michael R. Mesler, Major Professor Michael &mann, Committee Member P. Dawn Goley, Committee Member Casey Lu, Committee Member Milton J. Boyd, Graduate Coordinator Ronald Fritzsche, Dean for Research and Graduate Studies ABSTRACT Bumble bee pollen foraging on lupine (Lupinus: Fabaceae): within-whorl decisions Birgit Semsrott Bumble bees (Bombus: Apidae) can maximize foraging efficiency in a resource-patchy environment by visiting mainly rewarding flowers and avoiding those that are either empty or less rewarding. This study investigated how bumble bees avoid unrewarding flowers of lupine (Lupinus: Fabaceae), a plant in which the pollen is hidden from view. I recorded whether bees left a whorl upon encountering various situations. Bumble bees clearly discriminated against flowers that showed unambiguous visual signs of being unrewarding. In the absence of any visual cues, bees made use of a presumably predictable spatial distribution of pollen within whorls. They were able to assess the amount of pollen collected per flower, and they departed upon encountering one or more unrewarding flowers.
    [Show full text]
  • Rules and Regulations Federal Register Vol
    61735 Rules and Regulations Federal Register Vol. 69, No. 203 Thursday, October 21, 2004 This section of the FEDERAL REGISTER Background authorized by the Plant Protection Act contains regulatory documents having general Under the Honeybee Act (7 U.S.C. concerning the importation of certain applicability and legal effect, most of which bees, beekeeping byproducts, and used are keyed to and codified in the Code of 281–286), the Secretary of Agriculture is authorized to prohibit or restrict the beekeeping equipment are contained in Federal Regulations, which is published under 7 CFR part 319, §§ 319.76 through 50 titles pursuant to 44 U.S.C. 1510. importation of honeybees and honeybee semen to prevent the introduction into 319.76–8 (referred to below as the The Code of Federal Regulations is sold by the United States of diseases and ‘‘pollinator regulations’’). the Superintendent of Documents. Prices of parasites harmful to honeybees and of The pollinator regulations have new books are listed in the first FEDERAL undesirable species such as the African governed the importation of live bees REGISTER issue of each week. honeybee. The Secretary has delegated other than honeybees, dead bees of the responsibility for administering the superfamily Apoidea, certain Honeybee Act to the Administrator of beekeeping byproducts, and beekeeping DEPARTMENT OF AGRICULTURE the Animal and Plant Health Inspection equipment. These regulations have been intended to prevent the introduction of Animal and Plant Health Inspection Service (APHIS) of the U.S. Department exotic bee diseases and parasites that, if Service of Agriculture (USDA). Regulations established under the Honeybee Act are introduced into the United States, could cause substantial reductions in 7 CFR Parts 319 and 322 contained in the Code of Federal Regulations (CFR), Title 7, part 322 pollination by bees.
    [Show full text]
  • How to Process Raw Honeybee Pollen Into Food for Humans, Argentina
    How to process raw honeybee pollen into food for humans, Argentina Source Food and Agriculture Organization of the United Nations (FAO) Keywords Beekeeping, value added product, pollen, pollen grains, human nutrition Country of first practice Argentina ID and publishing year 8755 and 2016 Sustainable Development Goals No poverty, good health and well-being, and decent work and economic growth Summary Bee pollen is one of the most sources rich in To avoid spoilage, fresh pollen should be protein, it has a wide range of applications dried or frozen within few days of collection. in medicine making it an attractive product A simple drying method uses a regular light for processing and commercializing. This bulb (20 W). practice describes how to dry and store • Spread the pollen evenly in one layer on a pollen, and recommendations on when to carton or a tray. collect pollen granting the highest quality. • Remove any visible debris (parts of bees, Description little stones, etc.). • Suspend the light bulb high enough above Pollen is composed of 40 to 60 percent the pollen so that the pollen does not heat simple sugars (fructose and glucose), 2 to to more than 40°C or 45°C. 60 percent proteins, 3 percent minerals and vitamins, 1 to 32 percent fatty acids, and Pollen can also be dried using a solar drying 5 percent diverse other components. Bee system. The pollen itself should be covered pollen is a complete food and contains many to avoid direct sunlight and overheating. A elements that products of animal origin do simple way to make a pollen solar dryer is not possess.
    [Show full text]
  • Efficacy of Electrolyzed Water in Degrading and Removing
    EFFICACY OF ELECTROLYZED WATER IN DEGRADING AND REMOVING PESTICIDE RESIDUES ON FRESH PRODUCE By HANG QI (Under the Direction of Yen-Con Hung) ABSTRACT Pure solution of diazinon, cyprodinil, and phosmet were treated with electrolyzed oxidizing (EO) water and electrolyzed reduced (ER) water. Lower pH, higher available chlorine content (ACC), and longer treatment time of EO water resulted in higher reductions of the three pesticides. ER water was effective in degrading phosmet, slightly effective in reducing diazinon, and ineffective in degrading cyprodinil. Soaking grapes in 12 mg/L mixed pesticide solution for 10 min was found to be the appropriate method for pesticide inoculation. EO water at 500 mL combined with 100 rpm shaking was determined to be the most effective way to wash 200 g contaminated grapes. Then, fresh grapes, spinach, and snap peas contaminated with the three pesticides were washed with EO water at different ACC and treatment time. The results showed both ACC and treatment time were significant (P ≤ 0.05) factors for EO water in removing the three pesticide residues on produce samples. EO water was more effective than ER water, diluted bleach, Vegwash and DI water. Finally, the effect of EO water treatment on produce quality was evaluated. No significant (P > 0.05) color and texture degradation was found for EO water treated produce samples. INDEX WORDS: Electrolyzed water, fresh produce, diazinon, cyprodinil, phosmet EFFICACY OF ELECTROLYZED WATER IN DEGRADING AND REMOVING PESTICIDE RESIDUES ON FRESH PRODUCE by HANG
    [Show full text]
  • Bee Nutrition and Floral Resource Restoration Vaudo Et Al
    Available online at www.sciencedirect.com ScienceDirect Bee nutrition and floral resource restoration Anthony D Vaudo, John F Tooker, Christina M Grozinger and Harland M Patch Bee-population declines are linked to nutritional shortages [1–5,6 ,7 ]. We propose a rational approach for restoring caused by land-use intensification, which reduces diversity and and conserving pollinator habitat that focuses on bee abundance of host-plant species. Bees require nectar and nutrition by firstly, determining the specific nutritional pollen floral resources that provide necessary carbohydrates, requirements of different bee species and how nutrition proteins, lipids, and micronutrients for survival, reproduction, influences foraging behavior and host-plant species and resilience to stress. However, nectar and pollen nutritional choice, and secondly, determining the nutritional quality quality varies widely among host-plant species, which in turn of pollen and nectar of host-plant species. Utilizing this influences how bees forage to obtain their nutritionally information, we can then thirdly, generate targeted plant appropriate diets. Unfortunately, we know little about the communities that are nutritionally optimized for pollina- nutritional requirements of different bee species. Research tor resource restoration and conservation. Here, we re- must be conducted on bee species nutritional needs and view recent literature and knowledge gaps on how floral host-plant species resource quality to develop diverse and resource nutrition and diversity influences bee health and nutritionally balanced plant communities. Restoring foraging behavior. We discuss how basic research can be appropriate suites of plant species to landscapes can support applied to develop rationally designed conservation pro- diverse bee species populations and their associated tocols that support bee populations.
    [Show full text]
  • Crucifer Insect Pest Problems: Trends, Issues and Management Strategies
    Crucifer insect pest problems: trends, issues and management strategies G.S. Lim1, A. Sivapragasam2 and W.H. Loke2 1IIBC Station Malaysia, P.O. Box 210, 43409 UPM Serdang 2Strategic, Environment and Natural Resources Center, MARDI, P.O. Box 12301, 50774, Kuala Lumpur Abstract Crucifer vegetables are important cultivated crops and are widely grown in many parts of the world, including the highlands in most tropical countries. They are frequently attacked by a number of important insect pests. Some have been a problem for a long time while others have become important only recently. For many, trends are apparent pertaining to their changing status, including other aspects and strategies associated with efforts to counter them. In some cases, they are also closely associated with other agricultural developments and agronomic practices which are driven by commercial interests in vegetable production. Among the major trends recognised are: (1) A number of pests persisting to be important (e.g., Plutella xylostella or diamondback moth (DBM), Pieris rapae, Hellula undalis), (2) Negative impacts of pesticides continuing to be of major concern where DBM remains a serious problem, (3) Some pests becoming more important, either independently of DBM suppression (e.g., leafminer and Spodoptera exigua) or as a consequence of effective DBM control (e.g., aphid and Crocidolomia binotalis), (4) DBM becoming increasingly resistant to Bacillus thuringiensis, and (5) New cultivation practices emerging, such as rain shelter and hydroponic systems. All these have generated new concerns, additional issues and challenges, and have demanded a review of crucifer cultivation and the associated pest problems, including their management practices and approach.
    [Show full text]
  • Pollinator News Oct
    Pollinator News Oct. 3, 2014 Pictorial of abnormal bee mortality from Minnesota systemic pesticide exposure The top picture was taken Sept. 23rd as Jeff Anderson was preparing to take honey off and cull dead and dying hives. This particular bee yard has more than the normal number of skips, but is fairly representative of 2014. He starts his bee yards with 9 pallets / 36 beehives. The picture above was taken Sept. 24th part-way through pulling honey off a bee yard. They are working right to left, note the first pallet has only one hive still on it containing a queen and some bees, the other 3 have been removed as dead. There is quite a bit of honey in the supers. Jeff estimates the hives, including the ones pulled out as dead averaged close to 100 pounds of surplus honey. It takes a robust hive of bees to make honey; dead bees are not efficient collectors. He always combines the hives on the pallets before leaving the bee yard. We took the picture above just before picking up the empty pallets on half of the bee yard. These two photos are from one half of the bee yard which started with 36 hives. The total number of hives alive on pallets when we finished was 10. USDA estimates an additional 30% will die during the winter. Honey bees are an excellent environmental1 indicator species. If something is amiss within their forage range, it will show up here. High Speed Photography Captures Honey bees Filming for a documentary, Jeremy Dunbar captured various frame rates from 16,000 frames per second to 150,000 frames per second.
    [Show full text]
  • Different but the Same: Bumblebee Species Collect Pollen of Different Plant Sources but Similar Amino Acid Profiles Linda Kriesell, Andrea Hilpert, Sara D
    Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles Linda Kriesell, Andrea Hilpert, Sara D. Leonhardt To cite this version: Linda Kriesell, Andrea Hilpert, Sara D. Leonhardt. Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles. Apidologie, Springer Verlag, 2017,48 (1), pp.102-116. 10.1007/s13592-016-0454-6. hal-01538639 HAL Id: hal-01538639 https://hal.archives-ouvertes.fr/hal-01538639 Submitted on 13 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:102–116 Original article * INRA, DIB and Springer-Verlag France, 2016 DOI: 10.1007/s13592-016-0454-6 Different but the same: bumblebee species collect pollen of different plant sources but similar amino acid profiles 1 2 1 Linda KRIESELL , Andrea HILPERT , Sara D. LEONHARDT 1Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074, Würzburg, Germany 2Institute of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany Received 18 December 2015 – Revised 11 May 2016 – Accepted 25 May 2016 Abstract – Access to abundant and diverse floral plant sources is essential for generalist bees as they obtain all energy and nutrients required from pollen and nectar.
    [Show full text]
  • Pesticides and You News from Beyond Pesticides / National Coalition Against the Misuse of Pesticides (NCAMP)
    Volume 21 , Number 1 Spring 2001 Pesticides and You News from Beyond Pesticides / National Coalition Against the Misuse of Pesticides (NCAMP) Healthy Ecosystems, Healthy Children Weather and the West Nile Virus O Economic and Environmental lmpacts of lnvasive Species and Their Management O Planning for Planting: How to Plan Your Organic Garden O ChemicalWATCH Factsheet: Glyphosate O Fluoride: The Hidden Poison in the National Organic Standards Letter from Washington Fighting Fluoride the Organic Way hile we are enjoying winter and the snow storms on Let there be no mistake, chemical-intensive practices in the east coast, thoughts of Spring are not far off. conventional agricultural systems incorporate polluting prac- WWhat better way to plan for the glorious rebirth of tices that also result in fluoride contamination and other pol- Spring then to start planning a garden. This issue contains a lution problems of a magnitude that far exceeds organic prac- piece that gets us thinking about steps in the preparation of an tices. Nevertheless, as consumers and farmers seek to improve organic garden. Gardens are hopeful and positive, especially and purify organic practices, we must face the challenges raised when they are planned to prevent pest problems. by Ellen and Paul Connett’s article and others. Organic and Fluoride War on Weeds However, this would not be Pesticides and You if we did not This issue also provides the background for a problem that illustrate some of the challenges that we face in making our is taking on greater seriousness as pressure builds to use pes- environment safer for all its inhabitants.
    [Show full text]
  • Honey Bee Nutritional Health in Agricultural Landscapes: Relationships to Pollen and Habitat Diversity
    Honey bee nutritional health in agricultural landscapes: Relationships to pollen and habitat diversity by Ge Zhang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Entomology Program of Study Committee: Matthew O’Neal, Co-major Professor Amy Toth, Co-major Professor Joel Coats Russell Jurenka Matthew Liebman The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Ge Zhang, 2020. All rights reserved. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS .............................................................................................................. v ABSTRACT .................................................................................................................................. vii CHAPTER 1. GENERAL INTRODUCTION ............................................................................... 1 Literature review ........................................................................................................................ 1 Dissertation Objectives ............................................................................................................ 13 Dissertation Organization ........................................................................................................ 14
    [Show full text]
  • Earthscan Publications the Pesticide Detox Towards a More Sustainable
    The Pesticide Detox Towards a More Sustainable Agriculture Edited by Jules Pretty London • Sterling, VA First published by Earthscan in the UK and USA in 2005 Copyright © Jules Pretty, 2005 All rights reserved ISBN: 1-84407-142-1 paperback 1-84407-141-3 hardback Typesetting by JS Typesetting Ltd, Porthcawl, Mid Glamorgan Printed and bound in the UK by Cromwell Press Ltd, Trowbridge Cover design by Andrew Corbett For a full list of publications please contact: Earthscan 8–12 Camden High Street, London, NW1 0JH, UK Tel: +44 (0)20 7387 8558 Fax: +44 (0)20 7387 8998 Email: [email protected] Web: www.earthscan.co.uk 22883 Quicksilver Drive, Sterling, VA 20166-2012, USA Earthscan is an imprint of James & James (Science Publishers) Ltd and publishes in association with the International Institute for Environment and Development A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data Pretty, Jules N. The pesticide detox : towards a more sustainable agriculture / Jules Pretty. p. cm. Includes bibliographical references and index. ISBN 1-84407-142-1 (pbk.) – ISBN 1-84407-141-3 (hardback) 1. Agricultural pests–Biological control. 2. Pesticides–Environmental aspects. 3. Organic farming. I. Title. SB975.P75 2005 632’.96–dc22 2004024815 Printed on elemental chlorine-free paper Contents List of Contributors vii Preface x Acknowledgements xix List of Terms, Acronyms and Abbreviations xxii 1 Pesticide Use and the Environment 1 Jules Pretty and Rachel Hine 2 The Health Impacts of
    [Show full text]