ZOBODAT - www.zobodat.at

Zoologisch-Botanische Datenbank/Zoological-Botanical Database

Digitale Literatur/Digital Literature

Zeitschrift/Journal: Herpetozoa

Jahr/Year: 2018

Band/Volume: 30_3_4

Autor(en)/Author(s): Sagonas Kostas, Valakos Efstratios D., Lymberakis Petros, Pafilis Panayiotis

Artikel/Article: Traits of reproduction and feeding of the european Green , Lacertaviridis (LAURENTI, 1768), at the southern edge of its distribution (: Sauria: ) 115-129 HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 1

HeRPeTozoa 30 (3/4): 115 - 129 115 Wien, 28. februar 2018

Traits of reproduction and feeding of the european Green lizard, ­viridis (l auRenTi , 1768 ), at the southern edge of its distribution (Squamata: Sauria: lacertidae)

fortpflanzungsbiologische und nahrungsökologische Merkmale der Östlichen Smaragd- eidechse Lacerta­viridis­ (l auRenTi , 1768 ) am Südrand ihres verbreitungsgebietes (Squamata: Sauria: lacertidae)

ΚoSTaS SaGonaS & e fSTRaTioS D. v alakoS & P eTRoS lyMBeRakiS & P anayioTiS PafiliS

kuRzfaSSunG Die autoren machen angaben zur nahrungsökologie und Reproduktion der Östlichen Smaragdeidechse, Lacerta­viridis­ (l auRenTi , 1768 ) des griechischen festlandes, dem Südrand ihres verbreitungsareals. insgesamt wurden 86 exemplare aus der herpetologischen Sammlung des naturkundemuseums von kreta untersucht. Die auf - genommene nahrung wurde zu der Jahreszeit ihrer aufnahme sowie dem Geschlecht und alter der Smaragd - eidechsen in Bezug gesetzt. Die Östliche Smaragdeidechse erwies sich als ein nahrungsgeneralist, bei dem cole- optera (käfer) und orthoptera (Springschrecken) mehr als 50 % des Mageninhalts ausmachten. Während sich die Jahreszeit nicht auf die art der aufgenommenen nahrung auswirkte, bestanden diesbezüglich unterschiede zwischen den Geschlechtern und altersklassen. im laufe der ontogenese veränderte sich die nahrungspräferenz in Richtung zu größerer und härterer Beute hin. zudem waren Männchen vielseitiger in der Wahl der Beute und bevorzugten deutlich härtere Beute als Weibchen. Geschlechtsreife erlangten beide Geschlechter nicht unter einer kopf-Rumpf- länge von 70 mm. Die fortpflanzungsaktivität beider Geschlechter ersteckte sich vom frühling bis zur Mitte des Sommers. Die Gelegegröße variierte stark und korrelierte negativ mit dem mittleren eivolumen des Geleges. aBSTRacT information is provided on the feeding ecology and reproduction of the european Green lizard, Lacerta viridis (l auRenTi , 1768 ), from the very south of its distribution range. The authors analyzed the stomach contents of 86 preserved specimens originating from the Greek mainland stored at the Herpetological collection of the natural History Museum of crete. The prey items were identified and put in relation to the season when they were eaten, and the sex and age of the . in the diet of this generalist consumer, coleoptera and orthopera consti - tuted more than 50 % of the total prey items in the stomach. While season had no effect on the prey taxonomic composition of the species, sex and age clearly did. Lacerta­viridis­ changed its feeding preferences with matura - tion: adult individuals selected larger and harder prey than young, males showed a higher food niche breadth and fed on harder prey items than females. as regards to reproduction, both sexes attained sexual maturity at a snout- vent-length of more than than 70 mm. The reproductive activity of females and males lasted from early spring to mid-summer. clutch size varied greatly and was negatively correlated with the clutch’s average egg volume. key WoRDS Reptilia: Squamata: Sauria: lacertidae, Lacerta­viridis , feeding ecology, reproductive biology, phenology, diet, food niche breadth, prey spectrum, Greece

inTRoDucTion

Reproductive biology and feeding certa­viridis­ (l auRenTi , 1768 ), is common ecology are important aspects of reptilian in central eastern europe ( BlonDel & biology and their interactions largely influ - aRonSon 1999; aRnolD & ovenDen 2002). ence population dynamics and eventually The species is widespread all over the Bal - the survival of a given species in a given kans from adriatic to the Black Sea ( naul- place ( Siliceo & Díaz 2010; PafiliS et al. leau 1997). its southernmost populations 2013). The european Green lizard, La­- are found in the mainland of Greece and HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 2

116 Κ. S aGonaS & e. D. v alakoS & P. l yMBeRakiS & P. P afiliS

some few Greek islands (euboea, Thasos, in the present study, information on Samothrace and corfu) ( valakoS et al. feeding and reproductive ecology of L. 2008; PafiliS & MaRaGou 2013). viridis from Geece was obtained at the While the phylogeny of the species was species’ southern range limit. With regard studied comprehensively ( GoDinHo et al. to dietary preferences, the authors hypoth - 2005; BÖHMe et al. 2007; SaGonaS et al. esize that: (i) male and female diets differ 2014b; MaRzaHn et al. 2016), its life history due to the larger body and head size of received comparatively limited attention males that offer them access to harder and (e.g., koRSóS 1984; Mollov et al. 2012). in larger prey ( HeRRel et al. 1996; GRozDa - particular, no detailed studies regarding the nov & Tzankov 2014), (ii) juveniles feed reproduction of southern L.­viridis are avail - on softer prey, as a consequence of their able and information on the diet are based on immature head morphology and small observations made in two small Bulgarian body size ( uRošević et al. 2013; SaGonaS populations ( anGelov et al. 1972; Donev et al. 2015a), and (iii) that seasonal vari - 1984; Mollov et al. 2012) and one Hun - ation in prey abundance affects the diet garian ( koRSóS 1984). furthermore, these composition of L.­viridis (SaGonaS et al. studies, because of their small sample size, 2015a). as to reproduction, the study provide no evidence for potential ontogenet - sought to provide quantitative information ic shifts or sexual variation in the trophic on male and female body size at sexual niche breadth that would provide informa - maturity, egg, clutch, and testicle volumes tion on intraspecific competition ( aRnolD and sizes, and the length of the epididy - 1987; PReeST 1994; SaGonaS et al. 2014a, mis. 2015a).

MaTeRialS anD MeTHoDS

Diet composition.- To identify orthoptera, Haplotaxida (oligochaetan an - the diet of L.­viridis­ the authors dissected the ne lida), Homoptera, Hemiptera and chilo - digestive tracts of 86 preserved specimens poda were classified as being of intermedi - (34 males, 32 females and 20 juveniles) that ate-hardness; aranae, opiliones, Diptera, were stored at the Herpetological collection lepidoptera, Trichoptera and all larval forms of the natural History Museum of crete were characterized as soft prey. (appendix i). from each specimen, snout- Head size variation.- Since vent-length (Svl) was measured to the near - head size and shape directly affect bite force est 0.1 mm and sex and month of capture and through this the prey consumed ( HeR- were recorded. all specimens originated Rel et al. 2001, veRWaiJen et al. 2002, Sa- from mainland Greece, viz., 11 from Sterea GonaS et al. 2014a), five linear head charac - ellada, 13 from epirus, 27 from Thessaly, 28 ters were measured with a digital caliper from Mace donia and 7 from Thrace. (Silverline ® 380244, accuracy 0.01 mm): Stomach contents were analyzed under head length (Hl; measured from the tip of a binocular dissecting microscope and prey the snout to the posterior border of the col - items were identified to order level. The lar), head width (HW; measured at the number of prey items of each category and widest part of the head), head height (HH, the presence or absence of plant material measured at the highest part of the head), was noted down. in addition, prey items pileus length (Pl, measured from the tip of were classified on the basis of their hardness the snout to the posterior edge of the occip - (HeRRel et al. 2001; veRWaiJen et al. 2002; ital scale) and jaw length (Jl, measured SaGonaS et al. 2014a) using the categoriza - from the tip of the snout to the corner of the tion proposed by vanHooyDonck et al. mouth). all measurements were taken (2007). coleoptera, Gastropoda (shelled twice and the average value was used ( Sa- gastropods only), isopoda, Diplopoda, and GonaS et al. 2014a). The geometric head Hymenoptera were considered as hard prey; size (HS) was calculated as the product of HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 3

ecology and reproduction of Greek Lacerta­viridis 117

(Hl x HW x HH) ( MoSiMann 1970; SaGo- To determine male body size at sexual naS et al. 2014a). maturity i.e., an Svl threshold above which Reproduction and sexual ma- the testicle volume increased, a Pearson cor - turity.- in males, the authors measured relation analysis between both testicle vol - the longest and shortest diameter of the right ume and length on one side, and Svl on the testicle to calculate the testicular volume and other, was used. This analysis included only measured the length of the epididymis, in specimens captured during the reproductive females the numbers of vitellogenic follicles season when spermatogenesis increases the and oviductal eggs were counted and their testicular volume ( aDaMoPoulou & vala- longest and shortest axis measured to esti - koS 2000; vieiRa et al. 2001; Saveliev et al. mate their volume. The size and shape of 2006). as body size affects linear morpho - testicles and the length of the epididymis metric traits, a Pearson correlation analysis have traditionally been used to determine was conducted to examine the existence of sexual maturity in males, while the presence any relation between Svl and testicular of large oviductal eggs or vitellogenic folli - volume in reproductive males. To test for cles (more than 4 mm in diameter) are con - the effect of season on the males’ testicular sidered indices of female maturity ( Tinkle volume, a permutation analysis of variance 1967; SexTon & TuRneR 1971; aDaMo- (peranova) with 999 permutations (im- Poulou & valakoS 2000; Saveliev et al. plemented in the software PaST - HaMMeR 2006; oRTiz et al. 2016). clutch size was et al. 2001) was used to evaluate the differ - defined as the total number of oviductal ences in testicular volume between months. eggs or the total number of vitellogenic fol - To examine the relation between clutch size licles in each individual. female specimens and maternal body size, and between clutch were also screened for signs of copulation size and mean egg volume, a Pearson corre - activity (bites and scars, e.g., in the ventral lation analysis was applied. for all statisti - side). The reproductive season in females cal analyses the software package R v.3.2.3 was determined based on the presence of (R D eveloPMenT coRe TeaM 2015) was oviductal eggs and vitellogenic follicles. employed. female reproductive condition was classi - Regarding the diet, the estimates fied as vitellogenic (yellowish yolky folli - comprised the numeric percentage of each cles) or ovigenous (presence of oviductal prey category found in the stomachs (% n) eggs). Small-sized lizards without vitel - and the relative frequency of lizards having logenic follicles, oviductal eggs or enlarged eaten a given taxon (f). The numbers of testicles were considered as non-reproduc - prey items found in the stomachs of juve - tive, immature individuals. all linear mea- niles and adults were compared using a t- surements were taken using a digital caliper test. The Shannon-Wiener diversity index (Silverline ® 380244, accuracy 0.01 mm). egg (kReBS 1998) was used to calculate prey and testicle volumes were calculated by ap- diversity (food niche breadth) (H’). a t-test proximating the volume of an ellipsoid (v = was performed to test for differences in (4/3) πab 2, where a is half the long axis and food niche breadth between age classes b half the short axis ( MayHeW 1963). (adults and juveniles) and sexes (adult Statistical analyses.- Prior to males and females) ( zaR 2010), while the analyses the raw and log-transformed peranova with 999 permutations was data was examined for heteroscedasticity used to test for seasonal variation. as a and normality. Whenever assumptions for complementary ap proach, the Jaccard simi - parametric tests were not met, permutation larity index ( JaccaRD 1908) was calculat - tests were conducted, in the opposite case, ed, which is not affected by the most abun - parametric tests were used. To test for signs dant species (contrary to Shannon-Wiener of sexual dimorphism in head morphology a index), and used to search for differences in multivariate analysis of variance (Mano - food composition among groups of differ - va) was employed, using the five biometric ent age, sex and season. furthermore, variables measured. a t-test was used to Pianka’s overlap index (Q jk ) ( Pianka 1975) compare body size and head size between was calculated using the software ecoSim males and females. 7.0 ( GoTelli & enTSMinGeR 2001) to quan - HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 4

118 Κ. S aGonaS & e. D. v alakoS & P. l yMBeRakiS & P. P afiliS

, , r s t s e e s h

d d u 0 0 0 5 0 /

c 5 5 5

N

g 0 5 5 7 5 z a

. . . . 2 2 . 2 t t n − − − − − − − − − x u . . . s 5 2 2 8 2 a m e 6 6 6 % m b s a 2 1 1 1 1 o d t r - t u n t e n e s i

7 7 3 7 7 7 3 7 7 6 e u n s H 6 e 6 1 3 1 1 1 3 1 6 9 z t 6 u f − − − − − − − − − ...... a 1 h ä o J t t 0 0 0 0 0 0 0 0 2 1 r

i – P s n i

r

r – e e s e r v N i

e m 0 9 3 3 m i 1 7 7 7 6 1 6 e N t / D 0 2 4 4 t % r

. 7 5 5 5 8 7 . 8 . . m i

− − − − − − g ...... r

e

0 4 1 1 u . r n e 5 8 8 8 2 5 2 % y ) s 1 1 2 1 e m u

e 8 m , J n r

m 6 y e / p 0 0 0 0 0 0 0 0 0 0 0 0 6 m i

o a 7 5 0 3 3 3 1 2 2 3 1 1 5 1 5 2 f s u f − − − − − − ...... 1 S 3 1

e o W M S 0 0 0 0 0 0 0 0 0 0 0 3 2 ,

l -

- i i

e l n T

i n g

r o n e

a

p n e t v

n R n u 8 8 7 a

9 9 9 9 a e

J N u 3 0 7 r / . . . 6 6 6 6 h c –

− − − − − − − − − − a . . . . h r

5 3 0 S g 7 7 7 7 a % e l g 1 2 3 j n ( p n i h

i – r s 0 r ü – i 5 0 5 5 5 5 5 5 8 p

r 0 p d ’ 3 2 5 7 2 2 2 2 . 2 7 N S 4 i f − − − − − − − − − − f ......

S 1 5 r H

0 0 0 0 0 0 0 3 1 i 2

%

v .

, ­

s . n a e t e i e r t c r t e e o a c e g

h r a 0 0 0 0 / e 0 0 0 0

t

N L 0 0 0 0 G

. 0 . 0 . . 0 0 a

n t n − − − − − − − − − . . . . r c s 0 5 5 0 e e 5 5 5 5 %

m m s b 1 3 1 2 h y o u r s 0 t r c e 0 0 0 0 0 0 0 0 0 0 e e f 0 s r u 0 r

4 2 8 2 2 6 2 2 . 0 8 i 5 f − − − − − − − − − f H ...... ) p 2 0 h a e

0 0 0 0 0 0 0 0 4 1 8 f 2 c g n 6 e o e i

7

r h e 1 x i

g c 7

e ,

r 5 7 9 7 7 5 7 2 2 7 2 7 2 4 / i n N 5

d n o 2 3 9 3 3 . 2 8 1 1 3 6 8 1 7 T n r − − r ...... e n g 1 ä e n e i r 2 3 8 3 3 2 7 1 1 3 5 7 1 6 % e

4 e e t i m m M y R a t

t 2 / i k u g m m 6 3 6 1 6 2 6 6 6 7 2 6 7 4 0 1 1

s 2 e 9 8 n o a u s 1 1 0 3 0 6 0 2 0 0 0 1 2 0 1 . 9 1

r t f − − ...... 8 1 e u e S S 2 l r u l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 J ( v e 2 e

a i b s d B d i M n

m d

r u i e e 4 1 2 1

e r t 1 0 1 0 0 s N i

2 8 2 8 n n p 4 . 7 4 7 . 7 . . / r e v − − − − − − − − e . . . . .

e i ­ e 3 0 6 0 h i h 5 2 5 2 2 % g d a a S 4 1 1 1 c t j n

W i r b h – 6 - r e i e

8 4 9 8 9 7 9 8 7 6 5 ü 3 t n e p 7 h 1 c 1 6 0 1 0 2 0 1 2 . 3 7 r s f − − − − − − − − ...... o c 1 3 S a 6 f l b W 0 0 0 0 0 0 0 0 0 3 1 n

L r 3 e ,

n e n e a w l e H h i

h , , n S t c

n e s n e – v u

n u u ’ / 9 9 7 5 g j ä 2 2 6 d

N 2 2 5 0 u i H . . 5 5 . 7 . n d − − − − − − − − − − t

. . . v M , a 4 4 8 9

i s n 9 9 4 % m i - e 1 1 2 1 a d b i e u

p r n t n e b e i y 9 9 4 4 1 4 7 0 2

l u u t 1 a 2 2 1 1 7 1 5 0 8 J g

H 7 f − − − − − − − − − − − ...... a 2 n n y 0 0 0 0 0 0 0 3 1 m – e n u o

e r r e z f v t

p e h ,

e c t e s s m i l i b

n i e a / h m 7 5 0 e

e t k 7 8 8 6 9 8 7 4 r N o r 6 0 9

m e g 5 3 3 7 . 1 3 5 1 . .

m − − − − − − e e ...... S i W f 1 9 t 1

f m 3 2 2 4 1 2 3 7 % , / o m m a 1 4 1 i

u

a s 8 a m ä t n m s 7 8 6 8 6 7 1 7 3 1 1 1 1 e 7 a o 4 8 o l u u 1 1 1 1 1 2 0 7 0 1 6 . 6 8 H f M − − − − − − i ...... h S 8 1 a z t - 7 S t

i 0 0 0 0 0 0 0 0 0 0 0 4 1 l s

2 i e s m s g r l v o e n i p a p t f u u a a r l m d

h 3 7 3 i / e – o r 3 7 3 3

a

N r 3 6 8 v c r h 3 1 3 . 3 . . g i

− − − − − − − − − − . . . . n t a h 3 6 0

n d j 8 4 8 8 % – e i a 3 1 2 e n i j h r l i

6 d h ü p

a 9 4 4 7 4 9 3 3 5

f r f 8 l ü 4 n S 2 1 1 5 1 2 . 4 4 7 7 f r − − − − − − − − − − o f a ......

2 o 2

; f n 0 0 0 0 0 0 0 3 1 s

4 y n i

o

. c e a . s r s n g n a e

e a e e e b - i h i

u s S r o c

r M m l q n D o a e e e

: e e p

g t p n r : 1 a m e f y p

e a p m m t 1 s

i r o r e i i e e

r H u t a a l . e

e a o c a a r e e a r S s

m t a - k a ) r W t b b v a a

e a r v g a d

g s r e r t ’ e i - s s p r r e r a a t r d e – e p t t d a d e o t p e a e t n e

g e t i o a i t e e s T T t p H a a o o a t d

p l p y i

n a a l p o n n p ( c n i a p

t p o t m d p p d r p

y i o l o t d c e o i e o n e u i e o e

o r d s i e o t r e r o o e x m c r h t t t i x l t l n n l e r

m y h a n e i e m p n m u c i l m s h u u a r a t a p m p p t p i – e z a s t d p r y o r i e i a n o a e h o e e e i r o

r l h u n s t n o c i T f o c H l i D H f D G a H P a P N l a i S B i B n HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 5

ecology and reproduction of Greek Lacerta­viridis 119

tify the food niche similarity between sexes (males, females), age classes (adults, group. chi-square tests were run to deter - juveniles) and among seasons, i.e., spring mine if there were differences in the pro - (april-May), summer (June-august) and portion of the ingested prey taxa between autumn (Sep tember) .

ReSulTS

Diet composition, its sexual, on- items consumed also differed between juve - togenetic and seasonal variation.- niles and adults ( χ2 test, both pairwise com - The diet of L.­viridis is composed mainly of parisons P < 0.001), whereas no difference arthropods, with coleoptera, orthoptera and was found in the average number of prey various larvae being the most com - items per stomach ( t = 1.21, df = 84, P = mon prey taxa throughout the year (Table 0.23) , though the adults selected for larger 1). interestingly, 26 % of the specimens ex - preys such as orthoptera and coleoptera. amined had consumed a significant amount lastly, the niche breadth of juveniles (H’ = of plant matter (e.g., seeds, leaves). The 2.22) was similar as in males ( t = -0.03, df = comparison of diet composition between 200.88, P = 0.98), but higher than in fe- male and female lizards re vealed slight dif - males ( t = -3.11, df = 184.60, P < 0.01). ferences regarding the prey categories no seasonal divergences were detect - (Jaccard index: 0.68). These differences ed in the proportion of prey items of adults were mostly due to the fewer hard prey items (pairwise χ2 tests ; males and females all consumed by females ( χ2 = 5.80, P < 0.01 ). pairwise comparisons P > 0.05 ) or juveniles Diplopoda, Gastropoda and chilopoda (χ2 test ; all pairwise comparisons P > 0.05 ) specifically were completely absent from fe- (Table 1). However, significant seasonal male stomachs (Table 1). By contrast, fe- differences arose from plant consumption of male lizards selected softer prey compared to males, females and juveniles who all con - males ( χ2 = 5.80, P < 0.01 ). in line with this sumed more plant matter during spring and were significant differences between sexes in less in autumn ( χ2 tests ; all pairwise com - the proportion of preys items selected ( χ2 = parisons P < 0.05; Table 1). T he food niche 36.05, P < 0.001) and in niche breadth breadth was high at all seasons with no sig - (males: H’ = 2.20 and females: H’ = 1.82 ; t = nificant differences (all pairwise compar - -2.81, df = 266.99, P < 0.01). on the other isons P > 0.05; Table 1), despite the low hand, the re was a high food niche overlap Jaccard similarity index between seasons between males and females ( Qjk = 0.95 ) and (males: ~ 0.53, females ~ 0.59 and juve - plant consumption was equal in both sexes niles: ~ 0.67). The only exception was the (25 % vs. 26 %; χ2 = 0.03, P = 0.50). higher niche breadth in juveniles during The juveniles’ diet differed from the summer compared to spring (H’ = 2.26 vs. diet of adult lizards ( Jaccard index; females 1.78). Similarly, the number of preys in the vs. juveniles: 0.57 and males vs. juveniles: stomach of lizards showed non-significant 0.59 ) by the preference towards softer and variation during the year for the subsamples smaller preys such as araneae, insect larvae studied ( anova ; males: F2,31 = 0.60, P = and formicidae (Table 1). on the contrary, 0.55, females: F2,29 = 0.88, P = 0.43 and hard or intermediate hard preys such as juveniles: F2,17 = 0.46, P = 0.64; Table 1). coleoptera, orthoptera and isopoda were Head and body size varia - significantly ( χ2 test; both pairwise compar - tion.- The comparison of Svl did not re - isons P < 0.05) underrepresented (Table 1). veal any statistically significant differences furthermore, plant consumption was quite between the sexes ( t = 0.34, df = 64, P = 0.73). limited in juveniles compared to adults However, head measurements were signifi - (26 % vs. 5 %; χ2 = 16.84, P < 0.001). con - cantly larger in males than females (Mano - sequently, food niche overlap between juve - va; Wilks lambda = 0.80, F5,60 = 2.91, P = niles and adults was low ( Qjk ; females vs. 0.020; Table 2) for all morphometric vari - juveniles: 0.57 and males vs. juveniles: ables tested such as, e.g., head size ( t = -2.64, 0.48). The proportion of the different prey df = 64, P = 0.01; Table 2). as expected, HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 6

120 Κ. S aGonaS & e. D. v alakoS & P. l yMBeRakiS & P. P afiliS ) 3 m m (

n e m u l o v n e d o H

/

) 3 m m (

e m u l o v

e l c i t s e T fig. 1: Testicle volume (mm 3) of Greek Lacerta­viridis (lauRenTi , 1768) in the period from april to September. Se – Standard error, SD – Standard deviation. Sample size and range in parentheses are indicated. abb. 1: Das Hodenvolumen (mm 3) griechischer Lacerta­viridis (lauRenTi , 1768) in den Monaten april bis September. Mean – Mittelwert, Se – Standardfehler des Mittelwertes, SD – Standardabweichung. Stichprobengröße und Spannweite (in klammern) sind angegeben. ) 3 T m e s m t ( i

c l n e e

l m e n u l g o t h v

n ( e m d m o ) H

/ /

H ) 3 o m d e m n (

l ä e n m g u e l

o ( m v

m e l ) c i t s e T Snout-vent-length (cm) / kopf-Rumpf-länge (cm)

fig. 2: Scatter plot of the relations between snout-vent-length (cm) and both testicle volume (mm 3) and testicle length (mm) for 34 adult and 10 juvenile Greek specimens of Lacerta­viridis (lauRenTi , 1768), exam - ined during the reproductive season. observe the formation of two distinct size/age clusters below and above the 7-8 cm snout-vent-length threshold. )– testicle volume; + – testicle length. abb. 2: Streudiagramm der Beziehungen zwischen kopf-Rumpf-länge (cm) und Hodenvolumen (mm 3) sowie kopf-Rumpf-länge und Hodenlänge (mm) bei 34 erwachsenen und 10 Jungtieren griechischer Lacerta viridis (lauRenTi , 1768) während des fortpflanzungszeitraums. Man beachte die ausbildung zweier alters-/Größencluster unterhalb und oberhalb des 7-8 cm Schwellenwertes der kopf-Rumpf-länge, der Juvenile von geschlechtsreifen individuen trennt. )– Hodenvolumen, + – Hodenlänge. HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 7

ecology and reproduction of Greek Lacerta­viridis 121

Table 2 : Descriptive statistics including mean ± standard deviation, range (minimum-maximum in paren - theses) and sample size ( N) of five head linear measurements (cm) of Greek Lacerta­viridis (lauRenTi , 1768). Svl – Snout-vent-length, Hl – Head length, HH – Head height, HW – Head width, Pl – Pileus length, Jl – Jaw length, HS – Geometric head size (cm 3). Tab. 2: Deskriptive Statistiken von Mittelwert ± Standardabweichung, Spannweite (Minimum-Maximum in klammern) und Stichprobenumfang ( N) von fünf längenmaßen des kopfes (cm) bei griechischen Lacerta­ viridis (lauRenTi , 1768). Svl – kopf-Rumpf-länge, Hl – kopflänge, HH – kopfhöhe, HW – kopfbreite, Pl – Pileuslänge, Jl – kieferlänge, HS – Geometrisches kopfvolumen (cm 3).

Sex/age Svl Hl HH HW Pl Jl HS Geschlecht/alter females (f) 10.10 ± 1.59 2.87 ± 0.60 1.24 ± 0.28 1.44 ± 0.32 2.12 ± 0.42 1.62 ± 0.41 1.72 ± 0.36 Weibchen (f) (7.6 - 13.2) (1.7 - 4.1) (0.8 - 1.9) (1.0 - 2.2) (1.3 - 2.9) (0.9 - 2.5) (1.1 - 2.5) N = 32 n = 32 N = 32 N = 32 N = 32 N = 32 N = 32 Males (M) 10.24 ± 1.72 3.36 ± 0.57 1.40 ± 0.37 1.67 ± 0.44 2.47 ± 0.46 1.91 ± 0.42 1.99 ± 0.45 Männchen (M) (1.1 - 2.5) (2.5 - 4.9) (1.0 - 2.4) (1.1 - 3.1) (1.8 - 3.8) (1.2 - 3.4) (1.4 - 3.3) N = 34 N = 34 N = 34 N = 34 N = 34 N = 34 N = 34 Juveniles (J) 5.30 ± 1.05 1.49 ± 0.32 0.72 ± 0.13 0.84 ± 0.13 1.06 ± 0.27 0.91 ± 0.14 0.96 ± 0.16 Jungtiere (J) (3.0 - 6.6) (1.0 - 2.0) (0.5 - 0.9) (0.6 - 1.0) (0.7 - 1.6) (0.7 - 1.1) (0.7 - 1.2) N = 20 N = 20 N = 20 N = 20 N = 20 N = 20 N = 20

Statistics f2,83 = 77.03 f2,83 = 77.35 f2,83 = 34.98 f2,83 = 36.57 f2,83 = 77.94 f2,83 = 46.91 f2,83 = 50.01 Statistik P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.001 Groups / Gruppen (M, f)(J) (M)(f)(J) (M)(f)(J) (M)(f)(J) (M)(f)(J) (M)(f)(J) (M)(f)(J)

juveniles had significantly smaller head reproductive season (from april to June): measurements (Manova; Wilks lambda = one comprising individuals with Svl above 0.27, F10,158 = 14.32, P < 0.001), head size 80 mm whose testicles were well developed (anova; F2,83 = 50.01, P < 0.001) and Svl and another one below 70 mm whose testi - (anova; F2,83 = 77.03, P < 0.001) com - cles were not (fig. 2 and Table 3). also, pared to adults (Table 2). To control for considering adult males only, testicle vol - the effects of Svl on head size ( r = 0.92, ume ( r = 0.56, P < 0.001; N = 33) and testi - P < 0.001), the aforementioned analyses for cle length ( r = 0.58, P < 0.001; N = 33) were head measurements between sexes and age positively correlated with Svl. The small - groups were repeated using Svl as a co- est reproductive male identified by its well variate. although, the differences remained developed testicles and distended epi - (Manova; Wilks lambda = 0.46, F10,156 = didymes (~8-10 mm length) had an Svl of 7.52, P < 0.001), a different pattern was 82.8 mm. Males with Svl less than 70 mm revealed, with males and juveniles having had poorly developed testicles and epi - significantly larger heads than females. didymes and therefore were sexually imma - Reproduction and sexual ma- ture. turity.- Spermatogenesis (assessed The percentage of sexually mature through the increase in testicular volume) reproductive or non-reproductive females started in april and ended in June (fig. 1). from april to September is plotted in fig. 3. Testicular volume reached its maximum in out of the 32 adult females examined, 47 % May (peranova; P = 0.001). Towards the had no eggs or follicles, 40 % were ovige - end of the reproductive period (end of nous and 13 % vitellogenic, while no female June), rapid reduction of the testicular vol - carried both vitellogenic follicles and ume was observed (fig. 1). in the combined oviductal eggs. During the reproductive sample of adult and juvenile males the cor - period, females larger than 76 mm (the relations between testicle volume and Svl smallest mature female was 76.1 mm) bore and between testicle length and Svl were oviductal eggs or vitellogenic follicles and positive ( r = 0.69, P < 0.001 and r = 0.78, P had copulation signs (scars). The largest < 0.001; N­ = 44, respectively). further- immature female examined and included in more, this analysis revealed the existence of the analyses was 61.3 mm. Based on the two distinct groups of males during the sample available, the female reproductive HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 8

122 Κ. S aGonaS & e. D. v alakoS & P. l yMBeRakiS & P. P afiliS

Table 3: Mean values ± standard deviation (SD) or minima for nine male and female reproductive traits of Greek Lacerta­viridis (lauRenTi , 1768). Tab. 3: Mittelwerte ± Standardsabweichung (SD) bzw. Minima von neun fortpflanzungsbiologischen Merkmalen männlicher und weiblicher Lacerta­viridis (lauRenTi , 1768) aus Griechenland.

Mean value ± SD / variable unit / Mittelwert ± SD number of individuals einheit (Minimum) anzahl individuen Mean clutch size (number of vitellogenic follicles) - 12.25 ± 2.75 4 Mittlere Gelegegröße (anzahl dotterreiche follikel) - Mean clutch size (number of oviductal eggs) - 12.92 ± 4.82 13 Mittlere Gelegegröße (anzahl eier im ovidukt) - Mean clutch volume (oviductal eggs) mm 3 6,944.40 ± 4,137.94 13 Mittleres Gelegevolumen (eier im ovidukt) Mean oviductal egg volume mm 3 530.83 ± 259.75 13 Mittleres volumen der eier im ovidukt Minimum Svl reproductive female (mm) mm (76.1) 32 Minimale kRl reproduktiver Weibchen Minimum Svl reproductive male (mm) mm (82.8) 34 Minimale kRl reproduktiver Männchen Mean epididymis length mm 14.54 ± 4.52 34 Mittlere länge des nebenhodens Mean testicular volume mm 3 95.89 ± 67.80 34 Mittleres Hodenvolumen Mean testicular length mm 7.46 ± 2.43 34 Mittlere Hodenlänge

period seem ed to begin during april, when (r­=­ 0.22, P = 0.44; N = 13), (v) the total the first vitellogenic follicles appeared fig. clutch volume ( r­=­ 0.46, P = 0.11; N = 13). 3. The clutch size ranged from 7 to 24 eggs. a significant correlation between total no significant correlation was found to exist clutch volume ( r­=­- 0.32, P = 0.25; N = 13) between maternal Svl and (i) the number and clutch size (number of eggs) was not of oviductal eggs ( r­=­ 0.19, P = 0.53; N = detected whereas, mean oviductal egg vol - 13), (ii) the number of vitellogenic follicles ume ( r­=­- 0.56, P < 0.05; N = 13) and mean (r­=­ 0.13, P = 0.87; N = 4), (iii) the mean egg length ( r­=­- 0.72, P < 0.01; N = 13) oviductal egg volume ( r­=­ 0.33, P = 0.23; were both significantly negatively correlat - N = 13), (iv) the mean oviductal egg length ed with clutch size.

DiScuSSion

feeding ecology.- Lacerta­viridis is and juveniles. These results are in agree - an actively foraging predator with wide ment with previous studies ( anGelov et al. food niche breadth ( neTTMann & Rykena 1966; Donev 1984; koRSóS 1984; Mollov 1984; aRnolD 1987). The presence of 17 et al. 2012), which identified coleoptera, prey categories in the diet (Table 1) reveals ortho ptera, larvae of lepidoptera and the lizard’s opportunistic alimentary behav - araneae as the main prey taxa of the ior, which is typical to Mediterranean lacer - european Green lizard. Hymenoptera tids ( aveRy 1978; MaRaGou et al. 1997; were also mentioned as an important prey valakoS et al. 1997; SaGonaS et al. of L.­viridis (anGelov et al. 1966; Mollov 2015a). independent of age class and sex, et al. 2012), which is in line with the pres - the predominant food categories were fully ent study in which formicidae (5 %) were developed coleoptera (34 %), orthoptera singled out of the rest of Hymenoptera (4 (14 %), insect larvae (10 %) and araneae (8 %). %). However, the order of preference of Sex had a significant effect on L. the four prey taxa differed between adults viridis head size (Table 2), corroborating the HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 9

ecology and reproduction of Greek Lacerta­viridis 123 t i e k g i f u ä H

e v i t a l e R

/

y c n e u q e r f

e v i t a l e R

fig. 3: The percentage of Greek Lacerta­viridis (lauRenTi , 1768), holding vitellogenic follicles or oviductal eggs (= reproductive females) in the period from april to September. Dark gray – females holding neither oviductal eggs nor vitellogenic follicles, medium gray – females with oviductal eggs, light gray – females with vitellogenic follicles. The synchronous presence of oviductal eggs and vitellogenic follicles was not observed. abb. 3 : Der anteil griechischer Lacerta­viridis (lauRenTi , 1768), die vitellogene follikel oder eier enthielten (= reproduktive Weibchen) in den Monaten april bis September. Dunkelgrau – Weibchen ohne vitellogene follikel oder eier, mittelgrau – Weibchen mit reifen eiern im eileiter, hellgrau – Weibchen mit vitellogenen follikeln. Gleichzeitige anwesenheit von eiern im eileiter und vitellogenen follikeln wurde nicht beobachtet.

typical pattern of sexual size dimorphism their niche breadth ( HeRRel et al. 2001; veR- observed in other congeners such as L. WaiJen et al. 2002; SaGonaS et al. 2014a). agilis­ linnaeuS , 1758, L.­trilineata­ BeDRi - The present study found a relatively low aGa , 1886, and L.­bilineata­ DauDin , 1802 , value of Jaccard’s similarity index (0.68) with males having larger heads and jaw between the preys of the sexes throughout lengths than females of similar size ( BRu- the year. Males included in their diet hard - neR et al. 2005; uRošević et al. 2013; er prey (e.g., chilopoda, Diplopoda, Gastro- GRozDanov & Tzankov 2014; SaGonaS et poda) and had a higher food niche breadth al. 2014a). in lizards, head size is suscepti - than females, indicating a less selective ble to various sexual selective pressures as it feeding of the former (Table 1). is associated with intraspecific competition, Despite the sexual differences in the territorial behavior and mate success proportion of the consumed prey items, (aBouHeif & faiRBaiRn 1997; kWiaT- food niche overlap (Qjk = 0.95 ) was high. koWSki & Sullivan 2002; laPPin & HuSak Pianka’s overlap index is strongly affected 2005; HeRRel et al. 2010). Moreover, head by the most abundant prey category and dimensions and especially head height and small sample size ( kReBS 1998). Thus, the width are strongly associated with bite authors presume that the small sample size force, which in turn is linked to food choice and the high proportion (70 %) of cole- (HeRRel et al. 1999; kalionTzoPoulou et optera, orthoptera and larvae in the diet are al. 2012; SaGonaS et al. 2014a). By in- the reasons for this discrepancy. creasing head height and width males devel - Juveniles showed a clearly different op stronger jaw adductor muscles and thus dietary pattern from adults. food niche can bite stronger compared to females overlap (Qjk ~ 0.52 ) and Jaccard’s index (~ (HeRRel et al. 2001; laPPin & HuSak 2005) 0.58) of dietary similarity between adults which is why they can include greater pro - and juveniles were very low, demonstrating portions of hard prey in their diet increasing the ontogenetic shift in this species’ feeding HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 10

124 Κ. S aGonaS & e. D. v alakoS & P. l yMBeRakiS & P. P afiliS

preference. Juveniles exhibited a wider tro- al. 2014), and most important, results in the phic spectrum than adult females but not separation of the trophic niches ( anGelici et wider than males. females showed a clear al. 1997; viTT et al. 1997; SaGonaS et al. preference for coleoptera, orthoptera and in - 2015a). another explanation for the ob- sect larvae which together represented 70 % served age-related differences in diet com - of their diet, but avoided small and hard position takes into account the significant preys. in contrast to adults, juveniles in- ontogenetic alterations in performance and cluded in their diet softer (i.e., araneae, morphology of the feeding apparatus (e.g., Trichoptera, insect larvae) and smaller (e.g., length and digestive capability of the diges - araneae, formicidae) preys and less plant tive tract, head size and bite force) that matter (5 %). Such an ontogenetic shift in lizards undergo during growth ( DuRTScHe dietary preferences is common among 2000; uRošević et al. 2013). Since the con - lizards and results from the small head size sumption and digestion of plant material and thus weaker bite force of juveniles requires considerable bite force and a long (HeRRel et al. 2006; HeRRel & o’R eilly digestive tract ( HeRRel et al. 2001; SaGo- 2006). By contrast, adult males and females naS et al. 2014a; SaGonaS et al. 2015b), the showed an avoidance of small prey such as low proportion of hard preys and plant mat - formicidae and araneae (Table 1) and ter in juvenile stomachs can be attributed to ingested plant material in considerable quan - the juveniles’ weaker bite force and shorter tities (26 %). Herbivory and the accessory digestive tract. consumption of plant material in lizards are The seasonal differences in the diet of well-documented and represent an adapta - L.­viridis­ were not significant, regardless of tion to food-scarce environments such as age class and sex, so that the subsamples’ islands ( van DaMMe , 1999; veRvuST et al. dietary preferences remained rather stable 2010; DuTRa et al. 2011; BRock et al. 2014; throughout the year. in Mediterranean low SaGonaS et al. 2015a). However, also the altitude ecosystems, the summer is charac - mainland populations of L.­viridis studied terized by dry conditions that decrease here consumed significant amounts of plant arthropod availability (c aRReTeRo 2004) material, especially seeds. To the authors’ leaving fewer prey choices to lizards. as knowledge this is the first record of plant such, one would expect a decrease in food consumption for L.­viridis , which is never niche breadth during summer. Surprisingly, reported in previous food studies ( anGelov the niche breadth increased, which was sta - et al. 1966; Donev 1984; koRSóS 1984; tistically significant in juveniles (Table 1). Mollov et al. 2012). Though plant material in contrast to other Green lizards which can accidentally be ingested while feeding occupy dry habitats, Greek L.­viridis live in on prey, the high proportion of adult humid places at comparatively high alti - lizards that had consumed plant material tudes ( valakoS et al. 2008 ) with more throughout the year, along with the absence benign summers that sustains high arthro - of plant material in most juveniles, suggests pod abundance. alter natively, one can intentional ingestion of plants. hypothesize that the unexpectedly high food Juveniles of the genus Lacerta differ niche breadth is due to small sample size from adults in their physiology, morphology and, thus, potential underrepresentation of and behavior, including diet ( L.­bilineata : less common prey taxa (leaving aside the anGelici et al. 1997; L.­agilis : cRoveTTo & highly represented coleoptera, orthoptera SalviDio 2013; L.­trilineata : SaGonaS et al. and insect larvae that consist 70 % of the 2015a) and habitat use. They typically adults’ diet). in agreement with the foraging occur in open areas with low vegetation, theory by STePHenS & kReBS (1986), the whereas adults prefer wetter sites with constantly high niche breadth suggests that dense vegetation cover ( aRnolD 1987; L.­viridis is an opportunistic predator with anGelici et al. 1997; valakoS et al. 2008). low food specialization . However, the pat - Habitat partitioning between adults and terns of plant and insect consumption were juveniles serves to reduce intraspecific com - significantly different within the year: the petition, including aggressive behavior or frequency of plant material in stomachs de- cannibalism ( PafiliS et al. 2009; cooPeR et creased gradually from spring and summer HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 11

ecology and reproduction of Greek Lacerta­viridis 125

when seeds are abundant to autumn (Table (BRaDSHaW et al. 1991; PafiliS et al. 2011; 1). The above results corroborate those of RaMoS -P allaReS et al. 2015) since sper - previous researchers (e.g., anGelov et al. matogenesis and courtship in males and 1972; neTTMann & Rykena 1984; Mollov oogenesis in females are energy-consuming et al. 2012) and provide further information processes that require significant amounts on the impact of season, sex and age on the of nutrients ( BRaDSHaW et al. 1991; viTT & diet of the species. calDWell 2014). The observed increase in Reproductive traits.- Body food niche breadth during June and July size (Svl) is frequently used as a reliable may be associated with the increased energy indicator of sexual maturity in lizards ( Ru- required. By & DunHaM 1985; Galán , 1996; in Den The variation in the reproductive out - BoScH & BouT 1998; viTT & calDWell put of female L.­viridis­ was considerable. 2014), Green lizards included ( aRnolD The number of eggs per clutch ranged from 1987; anGelici et al. 1997; aMaT et al. 2000; 7 to 24 (Table 3). although no female was PafiliS & valakoS 2008). in the present found which carried both oviductal eggs and study Greek L.­viridis with Svl below 70 vitellogenic follicles at the same time, pre - mm were clearly sexually immature and the vious studies have reported that the species minimum size for the initiation of reproduc - can produce as much as two clutches per tive activity was 76.1 mm Svl for females year: the first in June and the second in July and 82.8 mm for males (Table 2). These (ReHák 2015). The small sample size of results are in agreement with the 70-80 mm reproductive females examined may ac - threshold that has been set to distinguish count for the absence of evidence. inter- adults from juveniles in L.­bilineata , sister estingly, a significant correlation between species of L.­viridis (SainT GiRonS et al. egg number (clutch size) or clutch volume 1989; BÖHMe et al. 2007; SaGonaS et al. and maternal body size was not established, 2014b), L.­trilineata (aRnolD 1987; PafiliS which might be due to small sample effects & valakoS 2008), L.­agilis (aMaT et al. as the correlation coefficient in both cases 2000; RoiTBeRG & SMiRina 2006; but see was relative high. However, egg volume, DuDek et al. 2014) and L.­strigata eicH- but not total clutch volume, was negatively WalD , 1831 (RoiTBeRG & SMiRina 2006). correlated with clutch size. The latter find - Lacerta­viridis emerges from hiberna - ing suggests that L.­viridis has reached a tion in March/april and ends the active physiologically maximum clutch volume, phase in october/november ( vaclav et al. but not in egg number (clutch size), proba - 2007; ReHák 2015), its reproductive period bly as a result of the limitations of the space beginning in april with spermatogenesis in available in the females’ abdominal cavity males and the formation of vitellogenic fol - (aDaMoPoulou & valakoS 2000; PafiliS licles in females and ending in early august et al. 2011). The negative correlation with oviposition. During this time, food observed between clutch size and clutch availability can be an important factor influ - volume is likely another evidence of this encing the reproductive success of lizards space limitation.

acknoWleDGMenTS

The authors thank Dominik Werner Schmid lating parts of the manuscript to German. (Queen Mary university of london) for kindly trans -

RefeRenceS

aBouHeif , e. & faiRBaiRn , D. J. (1997): a com - (Podarcis­milensis ).- copeia, Washington; 2000: 610- parative analysis of allometry for sexual size dimor - 614. phism: assessing Rensch’s rule.- The american aMaT , f. o. & lloRenTe , G. a. & caRReTeRo , naturalist, chicago; 149: 540-562. M. a. (2000): Reproductive cycle of the sand lizard aDaMoPoulou , c. & valakoS , e. (2000): (Lacerta­agilis ) in its southwestern range.- amphibia- Small clutch size in a Mediterranean endemic lacertid Reptilia, leiden; 21: 463-476. HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 12

126 Κ. S aGonaS & e. D. v alakoS & P. l yMBeRakiS & P. P afiliS

anGelici , f. M. & luiSelli , l. & RuGieRo , l. DuDek , k. & SaJkoWSka , z. & GaWałek , M. & (1997): food habits of the green lizard, Lacerta­biline-­ ekneR -G RzyB , a. (2014): using body condition index ata , in central italy and a reliability test of faecal pellet can be an unreliable indicator of fitness: a case of sand analysis.- italian Journal of zoology, london; 64: 267- lizard Lacerta­agilis­ linnaeuS , 1758 (Sauria: 272. lacertidae).- Turkish Journal of zoology, ankara; 39: anGelov , P. & GRuev , B. & ToMov , v. (1972): 182-184. Studies on the food of the Green lizard Lacerta­viridis DuRTScHe , R. D. (2000): ontogenetic plasticity lauR . in .- naucni trudove / Biologija / of food habits in the Mexican spiny-tailed iguana, Plovdivski universitet Paisij chilendarski, Plovdiv; 10 Ctenosaura­pectinata .- oecologia, Heidelberg; 124: (1): 155-161. [in Bulgarian] 185-195. anGelov , P. & T oMov , v. & G Ruev , B. (1966): DuTRa , G. f. & SiQueiRa , c. c. & vRciBRaDic , izsledvaniia vyrhu hranata na niakoi vidove gushteri v D. & kiefeR , M. c. & RocHa , c. f. D. (2011): Plant Bulgaria [a study on the diet of some lizards in consumption of insular and mainland pop ulations of a Bulgaria].- nauchni Trudove na visshiia Pedagogi- tropical lizard.- Herpetologica, lawrence; 67 (1): 32-45. cheski institut Plovdiv - Biologija, Plovdiv; 4 (3): 99- Galán , P. (1996): Sexual maturity in a popula - 105. [in Bulgarian, Russian summary] tion of the lacertid lizard Podacis­bocagei .- aRnolD , e. n. (1987): Resource partition Herpetological Journal, london; 6: 87-93. among lacertid lizards in southern europe.- Journal of GoDinHo , R. & cReSPo , e. G. & feRRanD , n. & zoology, london; 1: 739-782. HaRRiS , D. J. (2005): Phylogeny and evolution of the aRnolD , e. n. & ovenDen , D. W. (2002): green lizards, Lacerta­ spp. (Squamata: lacertidae) and amphibians of europe. Princeton based on mitochondrial and nuclear Dna sequences.- (Princeton university Press), pp. 288. amphibia-Reptilia, leiden; 26: 271-285. aveRy , R. a. (1978): activity patterns, ther - GoTelli , n. J. & enTSMinGeR , G. l. (2001): moregulation and food consumption in two sympatric ecoSim: null Models Software for ecology, version lizard species ( Podarcis­muralis­ and P.­sicula ) from 7.0. Montrose. WWW document and software avail - central italy.- Journal of animal ecology, london; 47: able at < http://homepages.together.net/~gentsmin/ 143-158. ecosim.htm> (acquired intelligence inc. & kesey- BlonDel , J. & aRonSon , J. (1999): Biology and Bear). wildlife of the Mediterranean region. new york GRozDanov , a. P. & Tzankov , n. D. (2014): (oxford university Press), pp. 328. analysis and comparison of sexual size dimorphism in BÖHMe , M. u. & fRiTz , u. & koTenko , T. & two lacertid species in Bulgaria.- Bulgarian Journal of DŽukić , G. & lJuBiSavlJević , k. & Tzankov , n. & agricultural Science, Sofia; 20: 139-142. BeRenDonk , T. u. (2007): Phylogeography and cryptic HaMMeR , Ø. & HaRPeR , D. a. T. & Ryan , P. D. variation within the Lacerta­viridis complex (2001): PaST: Paleontological Statistics software (lacertidae, Reptilia).- zoologica Scripta, oslo; 36: package for education and data analysis.- Palae - 119-131. ontologia electronica, california; 4: 1-9. WWW docu - BRaDSHaW , S. D. & SainT GiRonS , H. & ment and software available at < https://folk.uio.no/ BRaDSHaW , f. J. (1991): Seasonal changes in material ohammer/past/ >. and energy balance associated with reproduction in the HeRRel , a. & JoacHiM , R. & vanHooyDonck , green lizard, Lacerta­viridis , in western france.- B. & iRScHick , D. J. (2006): ecological consequences amphibia-Reptilia, leiden; 12: 21-32. of ontogenetic changes in head shape and bite per - BRock , k. M. & DoniHue , c. M. & PafiliS , P. formance in the Jamaican lizard Anolis­lineatopus .- (2014): new records of frugivory and ovophagy in Biological Journal of the linnean Society, london; 89: Podarcis­ (lacertidae) lizards from east Mediterranean 443-454. islands.- north-Western Journal of zoology, oradea; HeRRel , a. & MooRe , J. a. & BReDeWeG , e. M. 10: 223-225. & nelSon , n. J. (2010): Sexual dimorphism, body BRuneR , e. & coSTanTini , D. & fanfani , a. size, bite force and male mating success in tuatara.- & Dell ’o Mo , G. (2005): Morphological variation Biological Journal of the linnean Society, london; and sexual dimorphism of the cephalic scales in 100: 287-292. Lacerta­bilineata .- acta zoologica, Stockholm; 86: HeRRel , a. & o’R eilly , J. c. (2006): ontoge- 245-254. netic scaling of bite force in lizards and turtles.- Physio- caRReTeRo , M. a. (2004): from set menu to à logical and Biochemical zoology, chicago; 79: 31-42. la carte. linking issues in trophic ecology of HeRRel , a. & SPiTHoven , l. & van DaMMe , R. Mediterranean lacertids.- italian Journal of zoology, & De vRee , f. (1999): Sexual dimorphism of head size london; 2: 121-133. in Gallotia­galloti : testing the niche divergence cooPeR , J. W. e. & DiMoPouloS , i. & PafiliS , P. hypothesis by functional analyses.- functional eco- (2014): Sex, age and population density affect aggres - logy, london; 13: 289-297. sive behaviors in island lizards promoting cannibal - HeRRel , a. & van DaMMe , R. & De vRee , f. ism.- ethology, Berlin; 121: 260-269. (1996): Sexual dimorphism of head size in Podarcis cRoveTTo , f. & SalviDio , S. (2013): feeding hispanica­atrata : Testing the dietary divergence habits of the sand lizard, Lacerta­agilis , from north- hypothesis by bite force analysis.- netherlands Journal Western italian alps.- folia zoologica, Brno; 62: 264- of zoology, leiden; 46: 253-262. 268. HeRRel , a. & van DaMMe , R. & vanHooy - Donev , a. (1984): Studies on the food of the Donck , B. & De vRee , f. (2001): The implications of Green lizard Lacerta­viridis laur.- naucni trudove / bite performance for diet in two species of lacertid Biologija / Plovdivski universitet Paisij chilendarski, lizards.- canadian Journal of zoology, ottawa; 79: Plovdiv; 22: 121-126. [in Bulgarian]. 662-670. HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 13

ecology and reproduction of Greek Lacerta­viridis 127

in Den BoScH , H. a. J. & BouT , R. G. (1998): H. & MaRTinez -R ica , J. P. & MauRin , H. & oliveiRa , Relationships between maternal size, egg size, clutch M. e. & SofianiDou , T. S. & veiTH , M. & zuiDeRWiJk , size, and hatchling size in european lacertid lizards.- a. (eds.): atlas of amphibians and reptiles in europe; Journal of Herpetology, Houston etc.; 32: 410-417. Paris (Societas europaea Herpetologica / Muséum JaccaRD , P. (1908): nouvelles recherches sur la national d’Histoire naturelle). distribution florale.- Bulletin de la Société vaudoise neTTMann , H. k. & Rykena , S. (1984): La­- des Sciences naturelles, lausanne; 44: 223-270. certa­viridis (lauRenTi , 1768) - Smaragdeidechse; pp. kalionTzoPoulou , a. & aDaMS , D. c. & van 129-180. Ιn: BÖHMe , W. (ed.): Handbuch der Reptilien DeR MeiJDen , a. & PeReRa , a. & caRReTeRo , M. a. und amphibien europas, echsen (Sauria) ii; Wies- (2012): Relationships between head morphology, bite baden (aula-verlag). performance and ecology in two species of Podarcis oRTiz , M. a. & BoReTTo , J. M. & iBaRGüen - wall lizards.- evolutionary ecology, london; 26: 825- GoyTía , n. R. (2016): Reproductive biology of the 845. southernmost Kentropyx­ lizard from the Wet chaco of kReBS , c. J. (1998): ecological Methodology. corrientes, argentina.- Herpetological Journal, lon- new york (Harper collins), pp. 620. don; 26: 119-130. koRSóS , z. (1984): comparative niche analysis PafiliS , P. & anaSTaSiou , i. & SaGonaS , k. of two sympatric lizard species ( Lacerta­viridis and & valakoS , e. D. (2013): Grazing by goats on Lacerta­agilis ).- vertebrata hungarica, Budapest; 22: 5- islands affects the populations of an endemic 14. Mediterranean lizard.- Journal of zoology, london; kWiaTkoWSki , M. a. & Sullivan , B. k. (2002): 290: 255-264. Geographic variation in sexual selection among popu - PafiliS , P. & foufoPouloS , J. & SaGonaS , k. & lations of an iguanid lizard, Sauromalus­obesus RuneMaRk , a. & SvenSSon , e. & valakoS , e. D. (= ater ).- evolution, Hoboken; 56: 2039-2051. (2011): Reproductive biology of insular reptiles: laPPin , a. k. & HuSak , J. f. (2005): Weapon Marine subsidies modulate expression of the “island performance, not size, determines mating success and Syndrome”.- copeia, Washington; 2011: 545-552. potential reproductive output in the collared lizard PafiliS , P. & MaRaGou , P. (2013): one more (Crotaphytus­collaris ).- The american naturalist, record of Lacerta­viridis­ (lauRenTi , 1768), from chicago; 166: 426-436. Macedonia.- Herpetozoa, Wien; 26: 101-102. MaRaGou , P. & valakoS , e. D. & cHonDRo - PafiliS , P. & MeiRi , S. & foufoPouloS , J. & PouloS , B. (1997): comparative ecology of two valakoS , e. (2009): intraspecific competition and high sympatric lizard species, Lacerta­graeca­ and Pod-­ food availability are associated with insular gigantism arcis­peloponnesiaca­ (Sauria: lacertidae) endemic in a lizard.- naturwissenschaften, Heidelberg; 96: to Pelo ponnisos (Greece); pp. 265-271. Ιn: BÖHMe , 1107-1113. W. & BiScHoff , W. & zieGleR , T. (eds.): Herpe- PafiliS , P. & valakoS , e. D. (2008): loss of tologia Bonnensis, Proceedings of the 8th ordinary caudal autotomy during ontogeny of Balkan green General Meeting of the Societas europaea Herpeto- lizard, Lacerta­trilineata .- Journal of natural History, logica, 23-27 august 1995 in Bonn, Germany. Bonn london; 42: 409-419. (SeH). Pianka , e. R. (1975): niche relation of desert MaRco , a. & PéRez -M ellaDo , v. & Gil - lizards; pp. 292-314. Ιn: GoDy , M. & DiaMonD , J. coSTa , M. J. (1994): Reproductive strategy in a mon - (eds.): ecology and evolution of communities; tane population of the lizard Lacerta­schreiberi Harvard university Press (cambridge). (Sauria: lacertidae).- Herpetological Journal, london; PReeST , M. R. (1994): Sexual size dimorphism 4: 49-55. and feeding energetics in Anolis­carolinensis : Why do MaRzaHn , e. & MayeR , W. & JoGeR , u. & females take smaller prey than males?- Journal of ilGaz , c. & JaBlonSki , D. & kinDleR , c. & kuM- Herpetology, Houston etc.; 28: 292-294. luTaş , y. & niSTRi , a. & ScHneeWeiSS , n. & vaM- R D eveloPMenT coRe TeaM (2015): R: a lan - BeRGeR , M. & ŽaGaR , a. & fRiTz , u. (2016): Phylo- guage and environment for statistical computing. geography of the Lacerta­viridis complex: Mito- vienna (R foundation for Statistical computing). chondrial and nuclear markers provide taxonomic WWW document and software available at < https:// insights.- Journal of zoological Systematics and www.r-project.org >. evolutionary Research, Berlin; 54: 85-105. RaMoS -P allaReS , e. & anaya -R oJaS , J. M. & MayHeW , W. W. (1963): Reproduction in the SeRRano -c aRDozo , v. H. & RaMíRez -P inilla , M. P. granite spiny lizard, Sceloporus­orcutti .- copeia, (2015): feeding and reproductive ecology of Bachia Washington; 1963: 144-152. bicolor­ (Squamata: Gymnophthalmidae) in urban Mollov , i. & BoyaDzHiev , P. & Donev , a. ecosystems from colombia.- Journal of Herpetology, (2012): Trophic niche breadth and niche overlap Houston etc.; 49: 108-117. between two lacertid lizards (Reptilia: lacertidae) ReHák , i. (2015): Protecting and managing a from south Bulgaria.- acta zoologica Bulgarica, Sofia; local population of the european Green lizard Lacerta Suppl. 4: 129-136. viridis at the Prague zoo, czech Republic.- inter- MoSiMann , J. e. (1970): Size and shape vari - national zoo yearbook, london; 49: 56-66. ables with characterizations of the lognormal and gen - RoiTBeRG , e. S. & SMiRina , e. M. (2006): age, eralized gamma distributions.- Journal of the american body size and growth of Lacerta­agilis­boemica and L. Statistical association, Washington; 65: 930-945. strigata : a comparative study of two closely related naulleau , G. (1997): Lacerta­viridis (lauRen- lizard species based on skeletochronology.- Herpeto- Ti , 1768); pp. 266–267. Ιn: GaSc , J. P. & caBela , a. & logical Journal, london; 16: 133-148. cRnoBRnJa -i Sailovic , J. & DolMen , D. & GRoSSen - RuBy , D. e. & DunHaM , a. e. (1985): a popu - BacHeR , k. & HaffneR , P. & leScuRe , J. & MaRTenS , lation analysis of the ovoviviparous lizard Sceloporus HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 14

128 Κ. S aGonaS & e. D. v alakoS & P. l yMBeRakiS & P. P afiliS

jarrovi in the Pifialeño mountains of southeastern Podarcis­milensis and Podarcis­erhardii in the insu - arizona.- Herpetologica, lawrence; 40: 425-436. lar ecosystems of the aegean; pp. 373-381 .Ιn: SaGonaS , k. & PafiliS , P. & lyMBeRakiS , P. & BÖHMe , W. & BiScHoff , W. & zieGleR , T. (eds.): DoniHue , c. M. & HeRRel , a. & valakoS , e. D. Herpetologia Bonnensis, Proceedings of the 8th (2014a): insularity affects head morphology, bite force ordinary General Meeting of the Societas europaea and diet in a Mediterranean lizard.- Biological Journal Herpetologica, 23-27 august 1995 in Bonn, of the linnean Society, london; 112: 469-484. Germany. Bonn (SeH). SaGonaS , k. & PafiliS , P. & lyMBeRakiS , P. & valakoS , e. D. & PafiliS , P. & SoTiRoPouloS , valakoS , e. D. (2015a): Trends and patterns in the k. & lyMBeRakiS , P. & MaRaGou , P. & foufoPouloS , feeding ecology of the widespread Balkan lizard J. (2008): The amphibians and Reptiles of Greece. Lacerta­trilineata­ (Squamata: lacertidae) in insular frankfurt am Main (chimaira), pp. 465. [frankfurt and continental Greece.- north-Western Journal of contributions to natural History no. 32] zoology, oradea; 11: 117-126. vancea , S T. & f uHn , i. e. (1959): contri bu- SaGonaS , k. & PafiliS , P. & valakoS , e. D. tions à la systématique et à l’écologie des lacertides de (2015b): effects of insularity on digestive perform - la R.P.R. ii. le lézard vert de bois - Lacerta­viridis ance: living in islands induces shifts in physiological viridis lauRenTiuS [sic].- annales Scientifiques de and morphological traits in a Mediterranean lizard?- l’u ni versité de Jassy, Jassy; (n. S., Sec. 2): 5 (1): 61-80. The Science of nature, Heidelberg; 102: 55-62. van DaMMe , R. (1999): evolution of herbivory SaGonaS , k. & PoulakakiS , n. & lyMBeRakiS , in lacertid lizards: effects of insularity and body size.- P. & PaRMakeliS , a. & PafiliS , P. & valakoS , e. D. Journal of Herpetology, Houston etc.; 33: 663-674. (2 014b): Molecular systematics and historical biogeog - vanHooyDonck , B. & HeRRel , a. & van raphy of the green lizards ( Lacerta ) in Greece: insights DaMMe , R. (2007): interactions between habitat use, from mitochondrial and nuclear Dna.- Molecular behavior and the trophic niche of lacertid lizards; pp. Phylogenetics and evolution, amsterdam; 76: 144-154. 427-449. Ιn: Reilly , S. M. & McBRayeR , l. D. & SainT GiRonS , H. & caSTaneT , J. & BRaDSHaW , MileS , D. B. (eds.): lizard ecology: The evolutionary S. D. & BaRon , J. P. (1989): Démographie comparée consequences of foraging mode; cambridge (cam- de deux populations françaises de Lacerta­viridis­ (lau- bridge university Press). RenTi , 1768).- Revue d’écologie, Paris; 44: 361-386. veRvuST , B. & PafiliS , P. & valakoS , e. D. & SexTon , o. J. & TuRneR , o. (1971): The repro - van DaMMe , R. (2010): anatomical and physiological ductive cycle of a neotropical lizard.- ecology, changes associated with a recent dietary shift in the Washington; 52: 159-164. lizard Podarcis­sicula .- Physiological and Biochemical Siliceo , i. & Díaz , J. a. (2010): a comparative zoology, chicago; 83: 632-642. study of clutch size, range size, and the conservation veRWaiJen , D. & van DaMMe , R. & HeRRel , a. status of island vs. mainland lacertid lizards.- Bio- (2002): Relationships between head size, bite force, logical conservation, Barking; 143: 2601-2608. prey handling efficiency and diet in two sympatric lac - STePHenS , D. W. & kReBS , J. R. (1986): for- ertid lizards.- functional ecology, london; 16: 842-850. aging Theory; Princeton (Princeton university Press), vieiRa , G. H. c. & WieDeRHeckeR , H. & colli , pp. 262. G. & Báo , S. (2001): Spermiogenesis and testicular Tinkle , D. W. (1967): The life and demography cycle of the lizard Tropidurus­torquatus (Squamata, of the side blotched lizard, Uta­stansburiana . ann Tropiduridae) in the cerrado of central Brazil.- am- arbor (Museum of zoology, university of Michigan), phibia-Reptilia, leiden; 22: 217-233. pp. 188. viTT , l. J. & calDWell , J. P. (2014): Herpe- uRošević , a. & lJuBiSavlJević , k. & ivano- tology: an introductory biology of amphibians and rep - vić , a. (2013): Patterns of cranial ontogeny in lacertid tiles, fourth edition. london, uk (academic Press), lizards: Morphological and allometric disparity.- pp. 713. Journal of evolutionary Biology, oxford; 26: 399-415. viTT , l. J. & zani , P. a. & MonTeiRo De vaclav , R. & PRokoP , P. & fekia , v. (2007): BaRRoS , a. a. (1997): ecological variation among expression of breeding coloration in european Green populations of the gekkonid lizard Gonatodes­humera-­ lizards ( Lacerta­viridis ): variation with morphology lis­ in the amazon basin.- copeia, Washington; 1997: and tick infestation.- canadian Journal of zoology, 32-43. ottawa; 85: 1199-1206. zaR , J. H. (2010): Biostatistical analysis. upper valakoS , e. D. & aDaMoPoulou , c. & Saddle River (Prentice Hall inc.), pp. 947. MaRaGou , P. & MylonaS , M. (1997): The food of

appendix i

Museum specimens of Lacerta­viridis (lauRenTi , 1768) from Greece used in this study. origin, age class, sex and date of collection are indicated. nHMc - natural History Museum of crete, a - adult, j - juvenile, M - male, f - female. / in der vorliegenden untersuchung verwendete Museumsexemplare von Lacerta­viridis (lauRenTi , 1768) aus Griechenland. Herkunft, altersklasse, Geschlecht und Sammeldatum sind angegeben. nHMc - natural History Museum of crete, a - adult, j - juvenil, M - Männchen, f - Weibchen.

Museum number / age, sex Date Museum number / age, sex Date inventarnummer Region alter, Sex Datum inventarnummer Region alter, Sex Datum nHMc80.3.61.1 Macedonia a, f 95-07-08 nHMc80.3.61.2 Sterea ellada a, f 95-07-04 HG_Sagonas_etal_Lacerta_viridis_feeding_ecology_life_history_revised:HERPETOZOA.qxd 02.03.2018 16:37 Seite 15

ecology and reproduction of Greek Lacerta­viridis 129

Museum number / age, sex / Date Museum number / age, sex / Date inventarnummer Region alter, Sex Datum inventarnummer Region alter, Sex Datum nHMc80.3.61.3 Thessaly a, M 02-07-06 nHMc80.3.61.61 Thrace j, M 08-06-01 nHMc80.3.61.4 Macedonia j, f 99-09-30 nHMc80.3.61.62 Thrace j, f 09-04-14 nHMc80.3.61.5 Macedonia j, f 96-07-07 nHMc80.3.61.63 Thrace a, f 09-04-14 nHMc80.3.61.6 Macedonia j, M 99-09-30 nHMc80.3.61.64 Thessaly a, f 10-09-18 nHMc80.3.61.13 Thessaly a, f 01-07-29 nHMc80.3.61.65 Macedonia a, M 09-04-13 nHMc80.3.61.14 Thessaly a, M 01-07-28 nHMc80.3.61.67 Thrace a, M 09-05-22 nHMc80.3.61.15 Thessaly a, M 01-07-30 nHMc80.3.61.71 Sterea ellada a, M 08-07-03 nHMc80.3.61.16 Macedonia a, f 96-07-07 nHMc80.3.61.72 Sterea ellada a, f 08-07-03 nHMc80.3.61.20 Thessaly a, f 01-07-30 nHMc80.3.61.75 Thessaly a, M 10-04-05 nHMc80.3.61.21 Thessaly a, M 01-07-30 nHMc80.3.61.78 Macedonia a, M 10-05-23 nHMc80.3.61.22 Sterea ellada a, M 98-07-04 nHMc80.3.61.79 epirus j, M 10-09-11 nHMc80.3.61.23 Macedonia j, f 99-06-21 nHMc80.3.61.80 epirus j, f 10-09-14 nHMc80.3.61.24 Macedonia a, f 01-04-15 nHMc80.3.61.81 epirus a, M 10-05-29 nHMc80.3.61.25 Macedonia a, f 93-05-07 nHMc80.3.61.82 epirus a, M 10-06-26 nHMc80.3.61.26 epirus a, f 01-06-13 nHMc80.3.61.83 epirus a, M 10-09-14 nHMc80.3.61.27 Thrace a, f 99-09-13 nHMc80.3.61.84 Thessaly a, f 10-09-15 nHMc80.3.61.28 Thrace a, f 99-09-13 nHMc80.3.61.85 Thessaly a, f 10-07-19 nHMc80.3.61.29 Macedonia a, f 99-06-18 nHMc80.3.61.86 Macedonia j, M 10-06-20 nHMc80.3.61.30 Macedonia a, M 99-06-18 nHMc80.3.61.87 Sterea ellada a, M 10-09-11 nHMc80.3.61.31 Macedonia a, M 99-05-23 nHMc80.3.61.90 Thessaly a, M 11-05-16 nHMc80.3.61.32 Macedonia a, f 99-09-12 nHMc80.3.61.91 Macedonia a, M 11-06-22 nHMc80.3.61.33 Macedonia a, f 99-05-23 nHMc80.3.61.92 Sterea ellada a, M 11-06-15 nHMc80.3.61.35 Macedonia j, M 99-09-12 nHMc80.3.61.94 epirus a, M 11-06-08 nHMc80.3.61.36 Macedonia a, M 99-09-12 nHMc80.3.61.95 epirus a, f 11-07-08 nHMc80.3.61.37 Macedonia j, f 82-05-28 nHMc80.3.61.96 Macedonia a, M 11-09-19 nHMc80.3.61.38 Thessaly j, M 04-06-27 nHMc80.3.61.97 Macedonia j, M 11-06-01 nHMc80.3.61.40 Thessaly a, M 04-06-28 nHMc80.3.61.98 Macedonia a, f 11-05-31 nHMc80.3.61.43 Sterea ellada a, M 04-05-20 nHMc80.3.61.99 Thessaly a, f 11-06-10 nHMc80.3.61.44 epirus a, f 05-07-05 nHMc80.3.61.100 Macedonia a, f 11-06-24 nHMc80.3.61.45 epirus a, f 05-07-05 nHMc80.3.61.101 Macedonia a, f 11-06-24 nHMc80.3.61.46 epirus a, M 05-07-05 nHMc80.3.61.105 Macedonia j, M 11-06-23 nHMc80.3.61.48 epirus a, f 05-07-06 nHMc80.3.61.106 Thessaly a, M 11-06-06 nHMc80.3.61.49 epirus a, M 05-07-04 nHMc80.3.61.107 Thessaly a, f 11-05-06 nHMc80.3.61.50 Sterea ellada a, M 05-05-20 nHMc80.3.61.111 Thessaly j, f 11-07-14 nHMc80.3.61.51 Thrace j, f 05-09-20 nHMc80.3.61.112 Thessaly j, f 11-06-13 nHMc80.3.61.52 Sterea ellada a, M 06-04-14 nHMc80.3.61.113 Thessaly a, M 11-06-13 nHMc80.3.61.53 Thessaly j, f 06-04-14 nHMc80.3.61.114 Thessaly a, M 11-07-14 nHMc80.3.61.54 Sterea ellada a, M 05-06-20 nHMc80.3.61.118 Thessaly j, M 11-07-10 nHMc80.3.61.55 Thessaly a, M 06-09-03 nHMc80.3.61.119 Macedonia a, f 11-09-05 nHMc80.3.61.57 Thessaly a, f 06-09-17 nHMc80.3.61.120 Macedonia a, f 11-07-09 nHMc80.3.61.58 Thessaly j, M 06-05-30 nHMc80.3.61.136 Sterea ellada a, f 11-05-08 nHMc80.3.61.60 Thessaly a, f 07-06-03 nHMc80.3.61.137 Thessaly a, M 11-05-06 ______

DaTe of SuBMiSSion: november 21, 2016 corresponding editor: andreas Maletzky

auTHoRS: Κostas SaGonaS (corresponding author < [email protected] > ) 1, 2) , efstratios D. valakoS 2) , Petros lyMBeRakiS 3) & Panayiotis PafiliS 4) 1) . School of Biological and chemical Sciences, Queen Mary university of london, e1 4nS london, uk. 2) Department of Human and animal Physiology, faculty of Biology, national and kapodistrian university of athens, Panepistimioupolis zografou, 15784 athens, Greece. 3) natural History Museum of crete, university of crete, knossos ave, P.o. Box 2208, 71409 irakleio, crete, Greece. 4) Department of zoology and Marine Biology, faculty of Biology, national and kapodistrian university of athens, Panepistimioupolis zografou, 15784 athens, Greece.