6 Powerline-Based Home Networks

Total Page:16

File Type:pdf, Size:1020Kb

6 Powerline-Based Home Networks 6 Powerline-Based Home Networks In this chapter... I Introduction to Powerline Communications 88 I Powerline Modem Technology 89 I Technical Obstacles of In-Home Powerline Networks 91 I The Criteria for Testing Powerline Solutions 96 I Remote Management Features 98 I In-Field Product Testing 99 I Enikia Incorporated 100 I X-10 107 I Intellon CEBus 108 I Inari Powerline Networking Technology 109 I Summary 114 87 88 6 I Powerline-Based Home Networks Powerline-based home networking is an emerging technology that allows consum- ers to use their existing electrical wiring system to link appliances to each other and to the Internet. Home networks that use high-speed powerline technology can control anything that plugs into an outlet, including lights, televisions, thermostats, and alarms. The most popular powerline technologies are explained in this chapter. INTRODUCTION TO POWERLINE COMMUNICATIONS ............................................... For several decades, researchers have attempted to use AC powerlines to create a com- munications network. Since almost all electronic devices already connect to AC pow- erlines for the electricity they need to operate, it seems only logical to develop a technology that would send data signals over the same wires. Considering that a vast majority of people in the world, even in developing areas, already live in homes with pervasive access to electrical outlets, such a technology would provide a quantum leap forward in the mass-market proliferation of IT and communications products. Using electrical wires seems logical and efficient. Traditional communications networks, such as phone lines, cable television, and computer data networks, use dedicated wir- ing designed specifically for communicating information. Powerline networks, on the other hand, were designed to deliver electricity, not data signals. This difference is not trivial. The highly variable and unpredictable levels of impedance, signal attenuation, and noise combine to create an extremely harsh environment that make high-speed data transmissions over powerlines very challenging. The following sections provide an overview of these technical obstacles and present some of the strategies that different developers are using to overcome them. But first, we will define the powerline network and present a background of how this industry has developed. Industry Background The powerline is not an ideal environment for data communications. Historically, it has proven much easier to modify the existing phone-line and cable networks for the modern needs of a digital economy. By upgrading portions of those networks with new digital communications equipment, the same copper phone lines and coaxial ca- ble lines can be used for transmitting high-speed data traffic. Although it is easier for companies to upgrade existing wiring, phone and cable wiring is not as widespread as electrical networks, especially outside of the United States. And while phone and ca- ble networks might be effective at bringing Internet access to the home, they do not provide networks within the home. In the near future, having ubiquitous access points Powerline Modem Technology 89 within the home will be increasingly important, especially with the proliferation of non-PC devices, or information appliances. And although wireless technology will be needed for battery-powered mobile devices, the majority of devices in the home re- main stationary and connected to the AC powerline network. It is for these reasons that high-speed powerline technology represents one of the most important hurdles in the world of communications and computing. But why weren’t powerline technolo- gies available earlier? The next sections explore the powerline network and the inher- ent obstacles that the medium presents. Defining the Powerline Data Network In conventional terms, the powerline connects the home to the electric utility company in order to supply power to the building. But powerline communications falls into two distinct categories: access and in-home. Access powerline technologies send data over the low-voltage electric networks that connect the home to the electric utility provider. The powerline access technologies enable a “last mile” local loop solution that pro- vides individual homes with broadband connectivity to the Internet. In-home power- line technology communicates data exclusively within the consumer’s premises and extends to all of the electrical outlets within the home. The same electric outlets that provide power will also serve as access points for the network devices. Although the access and in-home solutions both send data signals over the powerlines, they are fun- damentally different technologies. Whereas the access technologies discussed in Chapter 3 focus on delivering a long-distance solution, competing with xDSL and broadband cable technologies, the in-home powerline technologies focus on deliver- ing a short-distance high-bandwidth solution (10 Mbps) that would compete against other in-home LAN technologies, such as phone line and wireless. We will limit the discussion of powerline technology to the following definition of the in-home powerline network. The in-home powerline network, shown in Figure 6.1, consists of everything interconnecting through power outlets, including: • House wiring inside of the building • Appliance wiring (power cords) • The appliances themselves (load devices) • The circuit breaker POWERLINE MODEM TECHNOLOGY....................... Communicating data over the powerline, just like in any other analog medium, re- quires some type of modulation device, or modem, that can transmit and receive data 90 6 I Powerline-Based Home Networks Medium Low voltage voltage Electric Local distribution utility transmitter Access network In-home network e AC powe m r li o ne -h s In breakers Meter Circuit Appliance (load device) Line of demarcation Figure 6.1 In-home powerline network signals. In order to turn a powerline electric network into a data communications net- work, a transceiver must be used to transmit the data from the device across the pow- erline medium. Thus the transceiver sends and receives digital data in analog form using the electrical outlets that it is connected to. Similar to other home network technologies, such as phone line and wireless, these transceiver nodes will take the form of microchips that will be embedded direct- ly into next-generation computers and smart devices. But first generation powerline network products will have to provide backward compatibility for devices that were not originally designed for powerline communications. Wall modules containing powerline transceivers will likely be the first products on the market. These small devices could plug into an electrical outlet and replicate the sockets, similar to a power strip, but with an embedded powerline transceiver. The wall modules couple the device to the electrical network using a standardized commu- Technical Obstacles of In-Home Powerline Networks 91 nications input interface, like a USB or Ethernet port. This way even traditional devic- es, like desktop PCs with Ethernet cards, will communicate with one another over the powerline.1 In such a configuration, different network devices could share data, con- trol one another, and access each other’s resources. But to facilitate these applications, the network’s communication throughput must be high enough to reduce noticeable time delays, especially when the network environment is noisy. The following section addresses some of the key technical obstacles that have made powerline communica- tions so difficult. TECHNICAL OBSTACLES OF IN-HOME POWERLINE NETWORKS ........................................ Typical data and communications networks (like corporate LANs) use dedicated wiring to interconnect devices. But powerline networks, from their inception, were never in- tended for transmitting data. Instead the networks were optimized to efficiently distrib- ute power to all the electrical outlets throughout a building at frequencies typically between 50 to 60 Hz. Thus, the original designs of electrical networks never considered using the powerline medium for communicating data signals at other frequencies. For this reason, the powerline is a more difficult communications medium than other types of isolated wiring like the Category 5 cabling used in Ethernet data networks. The physical topology of the electrical network, the physical properties of the electrical cabling, the appliances connected, and the behavioral characteristics of the electric current itself all combine to create technical obstacles. Signal Attenuation, Impedance, and Appliance Loading Attenuation describes how the signal strength decreases and loses energy as it trans- mits across a medium. In the powerline environment, the amount of attenuation that a signal experiences is primarily a function of the signal frequency and the distance it must travel on the wire. However, recent field studies show that attenuation is also af- fected by other factors, including appliance loading and impedance discontinuities. 1. In this case, two computers in a home could be networked together connecting their RJ45 cables from the Ethernet card into two wall modules that would then stream the Ethernet data across the powerline. Later versions would most likely involve embedding the powerline transceiver directly onto the motherboard of the PC, effectively eliminating the need for an Ethernet card and Cat5 cabling altogether. Instead the data would stream over
Recommended publications
  • PLCBUS-3160M Manuel US
    PLCBUS-R 3160M Shutter In-Line Module How does PLCBUS work ? Power line Communication Bus (PLCBUS) is a highly reliable, cost effective, 2-way communications technology which enables control products to utilize existing power lines for both residential and commercial applications. The most main feature of PLCBUS Technology is no any Filter and block necessary. • Modules : These components will receive PLCBUS signals and will switch or dim the attached lamp or appliance, and then feedback current status. • Controllers : These components will transmit PLC BUS signals and thus will control the Modules ; 2-way Communications. • Transceivers : Wireless components like remotes (433.92MHz). The signals of these components will be received by a controller wit h transceiver functionally (PLCBUS- T4023UK ). The Transceiver will translate the signals into PLCBUS signals on the power line. Addresses You can select up to 256 addresses by code set electronically. Each address is dividing into a House Code (A – P) and a Unit Code (1 – 16). On control the House code is also selectable. When Modules and Controllers are set to the same House Code, they will work together. The PLCBUS System contains many standardized commands where by modules set to the same House Code will respond simultaneously (e. g. All Lights On, All Units Off). For installer : To different families , PLC US also provide additional 250 User Codes (1 – 250 ). When you install for many houses in the same building, for each family, you should set a different User Code. Thus, 250User Codes x 256 Addresses = 64000 Addresses totally. 250 User Codes x 256 (House/Unit Codes) (1…250) (A…P / 1…16) (For 250 different families) (In each family) Signal Range I.
    [Show full text]
  • Americas Smart Homes Market – by Products, Services & Geography
    MarketsandMarkets http://www.marketresearch.com/MarketsandMarkets-v3719/ Publisher Sample Phone: 800.298.5699 (US) or +1.240.747.3093 or +1.240.747.3093 (Int'l) Hours: Monday - Thursday: 5:30am - 6:30pm EST Fridays: 5:30am - 5:30pm EST Email: [email protected] MarketResearch.com AMERICAS SMART HOME MARKET By Products (Security, Access, Lighting, Entertainment, Energy Management, HVAC, and Ballast & Battery Pack), Services (Installation & Repair, Renovation & Customization) & Geography Analysis & Forecasts (2013 – 2020) MarketsandMarkets [email protected] www.marketsandmarkets.com Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) MarketsandMarkets is a global market research and consulting company based in the U.S. We publish strategically analyzed market research reports and serve as a business intelligence partner to Fortune 500 companies across the world. MarketsandMarkets also provides multi-client reports, company profiles, databases, and custom research services. MarketsandMarkets covers thirteen industry verticals, including advanced materials, automotive and transportation, banking and financial services, biotechnology, chemicals, consumer goods, energy and power, food and beverages, industrial automation, medical devices, pharmaceuticals, semiconductor and electronics, and telecommunications and IT. Copyright © 2013 MarketsandMarkets All Rights Reserved. This document contains highly confidential information and is the sole property of MarketsandMarkets. No part of it may be circulated, copied, quoted, or otherwise reproduced without the approval of MarketsandMarkets. MarketsandMarkets Sample Pages | 1 Americas Smart Homes Market – By Products, Services & Geography - Analysis & Forecast (2013 – 2020) 1 INTRODUCTION 1.1 KEY TAKE-AWAY • Americas Smart Homes Market by products, services, and geography market statistics with detailed classifications and splits by revenue. • Analysis of the Americas Smart Homes market by products with a special focus on high growth areas.
    [Show full text]
  • Communication Platforms for Industrial and Residential Gateways (I) Outline
    Communication platforms for industrial and residential gateways (I) Prof. Dr. Ralf E.D. Seepold Departamento de Ingeniería Telemática Universidad Carlos III de Madrid [email protected] Outline Home and industrial Networking z Powerline z Phoneline z Wireless z Others Service platforms Ralf E.D. Seepold 2 1 Home Automation: A definition The automatic operation or control of equipment, a process, or a system without conscious thought. [Fow78] [Fow78] Fowler, F.G. and Fowler. H.W., Oxford Concise Dictionary, 6th ed, Clarendon Press, Oxford,1978. Ralf E.D. Seepold 3 Smart Home: A definition Home or building [Red01] Usually a new one Equipped with structured wiring Enable remote control or programme an array of electronic devices via commands [Red01] Vendela Redriksson, “Smart home or building”, http://whatis.techtarget.com, 2001. Ralf E.D. Seepold 4 2 Application areas Communication Entertainment Security Convenience Information systems Etc. Ralf E.D. Seepold 5 Smart Home: Applications Examples z Phone to arm home security z Control temperature z Switch appliances on/off z Control lightning z Program home theatre/entertainment system z … and many more Ralf E.D. Seepold 6 3 Push for Home Networking Rapid growth in multiple-PC household penetration z PC penetration exceeds 50% in US households z Multi-PC/household growth (U.S.): 15M (1998) to 26M (2003) * Increasing Internet usage z Nearly 90% of PC households will be online by 2001 z Internet usage growth (U.S.): 20% (1997) to 47% (2001) ** Broadband Internet access z Broadband penetration growth (U.S.): less than 1M (1998) to more than 15M (2002) *** z % Penetration of online households (U.S.): increases from 2% (1998) to 26% (2002) *** * - Dataquest, ** - Yankee Group, *** - Forrester Research Ralf E.D.
    [Show full text]
  • Data Communications Via Powerlines II (B) (3)-P.L
    UNCLASSIFIED Cryptologic Quarterly Data Communications Via Powerlines II (b) (3)-P.L. 86-36 The author is a member ofNSA Cohort 11 at bine, such as in nuclear- or coal-powered electric the Joint Military Intelligence College. Many of power plants, or a low-speed turbine, such as is the ideas presented in this paper were developed used in hydroelectric power plants). The power is as a class research paper at the Joint Military transferred to the transmission system via a volt­ Intelligence College. age step-up transformer.3 Typical voltages in this The views expressed in this paper are those of stage range from 138 kV to 500 kV or more. Bulk the author and do not reflect the official policy power is delivered from the generating plants via or position ofthe Department ofDefense or the this intercity transmission system (which can u.s. government. span several states) to the transmission substa­ tions where the power is transferred to a sub­ The hunger for increased bandwidth is driv­ transmission system whose voltages range from ing individuals, corporations, and organizations 38 kV to 138 kV; power transference is made via to seek new methods for delivering Internet serv­ a step-down transformer. The subtransmission ice to customers. Many of these methods are well system delivers the high voltage throughout a city known: radio-frequency (or wireless) communi­ or large region. Power is delivered to the con­ cations (such as the IEEE 802.11 Wireless LAN, sumers via the distribution system. Transference Bluetooth, and the HomeRF and SWAP from the subtransmission system to the distribu­ Protocols), infrared communications (IrDA), tion system is made within regions called distri­ fiber-optic channels, high-speed telephone con­ bution substations, likewise using step-down nections (such as DSL and ISDN or the more transformers.
    [Show full text]
  • Zigbee-Based System for Remote Monitoring and Control of Switches
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ZigBee-Based System for Remote Monitoring and Control of Switches A thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering at Massey University, Albany, New Zealand. © Matthew Lyon October 2010 1 Abstract Home automation technology has existed for nearly four decades, but is nonetheless mostly absent in the average home today. The systems that do exist are often highly customised and expensive, catering to a very niche market, or overly sophisticated and complicated. Many of these also require extensive, dedicated cabling as their communications backbone and as such are only practical to install during the construction of a new house. The core aims of this project are to develop a cheap and simple home automation system that can be easily installed in new and existing houses. These aims are achieved by creating a centralised system where most of the intelligence is managed by a PC server and the end nodes are kept as simple as possible. The server is responsible for basic security, maintaining awareness of the current system state and providing the user interface. At the outer edge of the system is a ZigBee network of wall switches and, in between, a home gateway provides a protocol translation service between the two. The new, “smart” switches are designed to be entirely compatible with existing wall switches in terms of their mounting and wiring requirements, and so ZigBee is chosen to provide a reliable wireless communication channel between the end nodes and the gateway.
    [Show full text]
  • Data Communications Via Powerlines I I (B) (3)-P.L
    UNCLASSIFIED Cryptologic Quarterly Data Communications Via Powerlines I I (b) (3)-P.L. 86-36 The author is a member ofNSA Cohort 11 at bine, such as in nuclear- or coal-powered electric the Joint Military Intelligence College. Many of power plants, or a low-speed turbine, such as is the ideas presented in this paper were developed used in hydroelectric power plants). The power is as a class research paper at the Joint Military transferred to the transmission system via a volt­ Intelligence College. age step-up transformer.3 Typical voltages in this The views expressed in this paper are those of stage range from 138 kV to 500 kV or more. Bulk the author and do not reflect the official policy power is delivered from the generating plants via or position of the Department of Defense or the this intercity transmission system (which can U.S. government. span several states) to the transmission substa­ tions where the power is transferred to a sub­ The hunger for increased bandwidth is driv­ transmission system whose voltages range from ing individuals, corporations, and organizations 38 kV to 138 kV; power transference is made via to seek new methods for delivering Internet serv­ a step-down transformer. The subtransmission ice to customers. Many of these methods are well system delivers the high voltage throughout a city known: radio-frequency (or wireless) communi­ or large region. Power is delivered to the con­ cations (such as the IEEE 802.11 Wireless LAN, sumers via the distribution system. Transference Bluetooth, and the HomeRF and SWAP from the subtransmission system to the distribu­ Protocols), infrared communications (IrDA), tion system is made within regions called distri­ fiber-optic channels, high-speed telephone con­ bution substations, likewise using step-down nections (such as DSL and ISDN or the more transformers.
    [Show full text]
  • Smart Home Automation System Based on Zigbee Network Using
    Journal of Advanced Research in Computer Technology & Software Applications Volume 2, Issue 2 - 2018, Pg. No. 12-17 Peer Reviewed Journal Research Article Smart Home Automation System Based on Zigbee Network using Voice Signals P Elechi1, CC Onwuka2, CE Ikpo3, B Armiyau4 1,2,3,4Department of Electrical Engineering, Rivers State University, Port Harcourt, Nigeria. Abstract In this paper, a voice controlled home automation system based on a wireless network protocol known as Zigbee was applied in achieving a smart home. The design was accomplished using the HM2007 voice recognition chip and 8051 microcontroller kit and relays. Simulations were carried out using Proteus 8 and the programming of the microcontroller using C++. The system was initially in standby mode waiting for an input from the user and once an input is detected, it is analyzed by the speech recognition module. If a known command is detected, the speech recognition system sends respective digital representations to the microcontroller. The microcontroller then interprets these data signals, compares them with a database of stored commands and thus identifies the referred load and its desired state. The processing results are then displayed on the LCD which is primarily used to display the system states. Based on the load state identified, control signals are sent to respective relay circuits, thus actuating the appropriate loads. The simulation results showed that the voice amplitude was directly proportional to the load supply current while at a constant amplitude of 10Volts, the frequency varied between 900Hz and 1200Hz. Keywords: Zigbee, Microcontroller, Home, Wireless, Automation Introduction sent to remote station through the Zigbee transceiver.
    [Show full text]
  • Bachelor Thesis Powerline in Building Automation
    Bachelor thesis Powerline in Building Automation J¨urgenMaier MatrNr.: 0825749 Stud.Kennzahl: 033 535 mail: [email protected] September 24, 2011 1 Erkl¨arungzur Verfassung der Arbeit J¨urgenMaier Eschenweg 1, 2223 Martinsdorf Hiermit erkl¨areich, dass ich diese Arbeit selbst¨andigverfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollst¨andigangegeben habe und dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach ent- nommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. (Ort, Datum) (Unterschrift Verfasser) 2 Contents 1 Abstract 4 2 Powerline in Building Automation 5 2.1 Home and Building Automation . 5 2.2 Powerline Communication . 6 2.2.1 Description . 6 2.2.2 Motivation for PLC . 7 2.2.3 Problems with PLC . 8 2.2.4 Security . 9 3 Current Communication Protocols 11 3.1 LonTalk . 11 3.1.1 Protocol . 11 3.1.2 Powerline . 16 3.2 KNX Powernet . 18 3.2.1 Protocol . 18 3.2.2 Powerline . 19 3.3 X10 . 21 3.3.1 Protocol . 21 3.3.2 Powerline . 22 3.4 Universal Powerline Bus - UPB . 24 3.4.1 Protocol . 24 3.4.2 Powerline . 25 3.5 Industrial Powerline Communications - IPC . 27 3.5.1 Protocol . 27 3.5.2 Powerline . 27 3.6 Consumer Electronic Bus - CEBus . 28 3.6.1 Protocol . 28 3.6.2 Powerline . 30 3.7 digitalSTROM . 33 3.7.1 Protocol . 33 3.7.2 Powerline . 35 4 Solutions on the market 36 4.1 Comparison .
    [Show full text]
  • M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the Mediasense
    M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the MediaSense 10/12/2012 MID SWEDEN UNIVERSITY The Department of Information Technology and Media (ITM) Author: Addisu Thomas Lodamo, [email protected] Tutors: Stefan Forsström, Miun,[email protected] Examiner: Prof. Tingting Zhang, [email protected] Medical Monitoring Services Home Security automation Services Services Energy Entertainment Consumption Services services e y t a a W G The Internet M.Sc. Thesis within Computer Engineering AV, 30 Credit Points M2M Protocols, Solutions and Platforms for Smart Home Environments Integrating C.STATUSTM and the MediaSense Addisu Lodamo M2M Protocols, Solutions and Platforms for Smart Home Environments Abstract Addisu Lodamo 2012-11-11 Abstract Digital technological breakthroughs have brought about a huge change in the way the society interacts, responds to the immediate environment and the way that people live. Furthermore, Ubiquitous Computing and dirt cheap sensors have created a new paradigm in digital technology where human beings could control their environment in a different approach. In a number of paradigms of digital technology, multiple proprietary solutions in industry results in a huge cost for the end users to use the technology and thus a very sluggish penetration of the tech- nology into the society. Moreover, such unorganized and vendor ori- ented standards create additional burdens on a person concerned in design and implementation. This thesis presents existing and emerging technologies in relation to smart home environment having an aim to manifest available open standards and platforms. Smart Home Envi- ronment Infrastructures have been presented and discussed.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 7,394,451 B1 Patten Et Al
    US007394451B1 (12) United States Patent (10) Patent N0.: US 7,394,451 B1 Patten et al. (45) Date of Patent: Jul. 1, 2008 (54) BACKLIT DISPLAY WITH MOTION SENSOR 3,697,821 A 10/1972 Johnson (75) Inventors: Daniel Patten, Pleasant Grove, UT (US); Scott S. Chandler, Payson, UT (US); (Continued) Paul T. Clegg, Lindon, UT (US); John McDaniel, Cedar Hills, UT (US) FOREIGN PATENT DOCUMENTS CA 2 245 671 9/2003 (73) Assignee: Vantage Controls, Inc., Orem, UT (US) ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 622 days. OTHER PUBLICATIONS (21) App1.No.: 10/934,332 Horowitz et 211., The Art of Electronics, 1989, Cambridge University Press, 2nd Ed., pp. 595-598. (22) Filed: Sep. 3, 2004 (Continued) Related US. Application Data Primary ExamineriBipin Shalwala (60) Provisional application No. 60/500,146, ?led on Sep. Assistant ExamineriVince E Kovalick 3, 2003. (74) Attorney, Agent, or FirmiMcCarter & English, LLP (51) Int. Cl. (57) ABSTRACT G09G 5/00 (2006.01) (52) US. Cl. ..................... .. 345/156; 345/173; 345/204; An apparatus for interfacing with a control system, and in 345/211; 345/905; 361/600; 361/601; 361/691; particular a home automation system. In one embodiment, the 361/686 apparatus comprises an integrated LCD touch screen and (58) Field of Classi?cation Search ............... .. 345/156, motion sensor. The motion sensor is used to illuminate a 345/173, 204, 211, 905; 361/600, 601, 681, backlight to the touch screen When a person approaches the 361/686; 379/93.17; 455/90, 572, 575 apparatus.
    [Show full text]
  • INSTEON Developer's Guide
    D e v e l o p e r ’ s G u i d e October 14, 2005 © 2005 Smarthome Technology Developer’s Guide Page i Contents at a Glance INTRODUCTION............................................................................................ 1 INSTEON BASICS ......................................................................................... 3 Getting Started Quickly ............................................................................. 4 About This Developer’s Guide.................................................................... 5 INSTEON Overview.................................................................................. 11 INSTEON Application Development Overview.......................................... 23 INSTEON REFERENCE ................................................................................. 30 INSTEON Messages ................................................................................. 31 INSTEON Signaling Details ...................................................................... 46 INSTEON Network Usage......................................................................... 59 INSTEON BIOS (IBIOS) ........................................................................... 90 SALad Language Documentation ........................................................... 132 Smarthome Device Manager Reference ................................................. 209 INSTEON Hardware Development Documentation................................. 229 CONCLUSION...........................................................................................
    [Show full text]
  • INSTEON Compared with X10
    C o m p a r e d January 2, 2006 © 2006 SmartLabs Technology C o m p a r e d Page i Table of Contents Introduction.......................................................................................................... 1 INSTEON Overview ............................................................................................... 3 Hallmarks of INSTEON ................................................................................... 4 How INSTEON Works ..................................................................................... 5 INSTEON Is a Dual Mesh Network............................................................... 5 INSTEON Simulcasts Repeated Messages..................................................... 7 INSTEON Is a Peer-to-Peer Network............................................................ 8 INSTEON Facilitates Product Development ................................................... 9 INSTEON Specifications................................................................................ 11 INSTEON Packet Timing .......................................................................... 13 INSTEON Powerline Data Rates ................................................................ 14 INSTEON Comparisons ........................................................................................ 15 Powerline Networks ..................................................................................... 16 X10...................................................................................................... 16
    [Show full text]