The Planet Venus Author(S): Carl Sagan Source: Science, New Series, Vol

Total Page:16

File Type:pdf, Size:1020Kb

The Planet Venus Author(S): Carl Sagan Source: Science, New Series, Vol The Planet Venus Author(s): Carl Sagan Source: Science, New Series, Vol. 133, No. 3456 (Mar. 24, 1961), pp. 849-858 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/1706530 . Accessed: 24/02/2015 13:54 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org This content downloaded from 128.103.149.52 on Tue, 24 Feb 2015 13:54:17 PM All use subject to JSTOR Terms and Conditions 24 March 1961, Volume 133, Number 345-6 CURRENT PROBLEMS IN RESEARCH eventual manned expeditions to Venus must be exceedingly perplexed over whether to send along a paleobotanist, a mineralogist, a petroleum geologist, or a deep-sea diver. But new informa? tion has recently become available The Planet Venus which probably eliminates three of the four proposed surface environments; taken together with some of the earlier Recent observations shed light on the atmosphere, data, it points the way to a consistent surface, and possible biology of the nearest planet. picture of the atmosphere and surface of Venus. Carl Sagan Composition of the Atmosphere Only the portions of the Cytherean The launching of the Soviet inter? thetical Carboniferous swamp was gen? atmosphere which are above the cloud planetary vehicle toward Venus on 12 erally abandoned, to be replaced by an layer are accessible to spectroscopic in? February 1961 opens a new era in arid planetary desert, overlain by vestigation. Since the cloud layer may planetary studies. This article is an clouds of dust from the wind-swept be situated tens of kilometers above the assessment of current knowletlge of surface (3) (Fig. 1). The arid surface surface (see the discussion below), the Venus at the dawn of this era. also explained the great abundance of spectroscopic data are not necessarily The planet Venus is enshrouded by carbon dioxide [which was accidentally directly applicable to the lower atmos? clouds which prevent telescopic exami? discovered (4) in a search for water phere. It is possible that gases present nation of its surface. In the absence of vapor]; for, in the absence of water, the above the cloud layer in undetectable direct observations, reasons have been Urey equilibrium pressure of carbon amounts are abundant in the lower at? adduced for proposing a variety of dioxide will not be established (5). mosphere. By laboratory intensity- differing and mutually iaconsistent sur? Hoyle (6) explained the lack of water matching of the Cytherean carbon di? face conditions. Since onty water clouds by assuming a great excess of hydro- oxide intercombination bands near were familiar to terrestrial observers, carbons over water on primitive Venus, 8000 angstroms, the abundance of the apparent thickness of the Cytherean and subsequent oxidation of the hydro- carbon dioxide (above the atrnospheric (i) cloud layer seemed to argue for a carbons to carbon dioxide, until all the level at which an 8000-angstrom great abundance of water. From there water was depleted. He suggested that photon is efTectively reflected) is esti? it was only a step to the assertion (2) the surface is now covered with the re? mated to be 1 kilometer-atmosphere that "everything on Venus is dripping mainder of the hydrocarbons, and that (km-atm) (8). The only other pos? wet. A very great part of the sur? the cloud layer is composed of smog. sibly identified atrnospheric constituent face of Venus is no doubt covered with Menzel and Whipple (7) replaced is water vapor, marginally detected on swamps. , . The constantly uniform the wind-swept desert and the planetary Venus recently by high-altitude balloon climatic conditions which exist every- oil field with a global Seltzer ocean; spectroscopy. The abundance of water where result in an entire absence of they argued that if Venus were com? vapor (above the atrnospheric level at adaptation to changing exterior condi? pletely covered by water (because of which a 1.13-micron photon is effective- tions. low Only forms of life are there? the high atrnospheric content of carbon ly reflected) is estimated by Strong to be fore represented, mostly no doubt, be- dioxide, the water would, of course, be about 2 X 10-8 gm/cm2 (9). Kozyrev longing to the vegetable kingdom; and carbonated), the access of carbon di? reports observing several features in the the organisms are nearly of the same oxide to silicates would be impaired, aurora and night sky of Venus corre? kind all over the planet." and for this reason the Urey equilib? sponding in wavelength to known emis? After many unsuccessful spectro? rium would not be established. The sion bands of N2, N2+, and CO+ (10). scopic attempts to discover water vapor state of our knowledge of Venus is From considerations of cosmic abun? in the Cytherean atmosphere, the hypo- amply illustrated by the fact that the dance and from terrestrial analogy, we Carboniferous the would to find N2?which has no The author is Miller research fellow at the swamp, wind-swept expect Institute for Basic Research in Science, the desert, the planetary oil field, and the permitted absorption spectrum in the Space Sciences Laboratory, and the Department Seltzer ocean each have their accessible of Astronomy, University of California at global presently wavelength region Berkeley. serious proponents, and those planning ?on Venus, and we would expect to 24 MARCH 1961 849 This content downloaded from 128.103.149.52 on Tue, 24 Feb 2015 13:54:17 PM All use subject to JSTOR Terms and Conditions find carbon monoxide from the photo- observed; occasionally dark bands are features, the terminator has a serrated dissociation of carbon dioxide. [It is a seen extending perpendicularly from appearance. The bright protruding fea? curious incidental fact that at one time the terminator onto the disk. The dif- tures are prominent near the apparent Kozyrev (II) believed the spectral ficulties encountered in making visual poles, especially near the southern pole; features discovered by him were due to observations of Venus are illustrated by they were also detected visually by microorganisms in the Cytherean at? the fact that the outstanding American such early observers as Schroter and mosphere.] Nevertheless, Newkirk (12) observer at the turn of the century, in Trouvelot, who explained them as found no evidence of many of the over a decade of regular observation enormous mountains, 60 or more kilo? strongest features reported by Kozyrev of Venus, was able to see distinct meters high. Ross proposed the more and found strong emission at a neigh- markings only once. On that occasion likely explanation that the protrusions boring wavelength (4505 A) not re? shading was evident, parallel to the are areas of atmospheric haze sur- ported by Kozyrev and corresponding terminator but not perpendicular to it rounding the planetary poles, such as to no known molecular emission. The (19). Danjon and Dollfus (20) have exist around Mars. This, in turn, im? only features common to both observa? constructed planispheres from their plies an appreciable difference in tem? tions are unidentified emission bands at visual observations which show dark perature between the equator and the 4415 and 4435 angstroms (13). markings with little relative displace? poles. It would be of interest to deter? One might attribute the absence of, ment over periods of weeks. In some mine the composition of the polar for example, the N2+ first negative sys? drawings the markings tend to radiate haze. More recent ultraviolet photo? tem in Newkirk's spectra to low from the subsolar point. Danjon and graphs show three bright and three magnetic activity at the time of his Dollfus interpret these dark markings dark bands, roughly perpendicular to observations, but the absence of the as surface features seen through stable the terminator and extending across the feature at 4505 angstroms in Kozyrev's gaps in the cloud layer. The apparent entire visible hemisphere of Venus. The spectra then remains puzzling. Unsuc- constancy in the position of the mark? inclination of these bands to the plane cessful searches for carbon monoxide ings suggested to the French astrono- of the Cytherean orbit is estimated by absorption place the amount of carbon mers that the period of rotation of Kuiper (22) at 32? and by Richardson monoxide above the relevant reflection Venus is equal to its period of revolu? (23) at 14?. The difference between level at less than 100 cm-atm (14). At tion, 225 days. However, Kuiper (21) these values emphasizes the observa? the present writing, it must be con? has pointed out that on a slowly ro- tional difficulties. cluded that there is no convincing direct tating planet, cloud patterns near the Ross attributed the presence of band evidence for nitrogen or carbon mon? terminator will bear an approximately structure to atmospheric circulation, as oxide on Venus. The present upper constant relation to the terminator, just has been suggested for the Jovian limit on oxygen in the high Cytherean as characteristic cloud patterns appear planets. If the explanation is correct, atmosphere is 100 cm-atm (3, 15); the at a given time of day on the earth. then the speed of rotation at the equa? limit is 100 cm-atm for N2O, 4 cm-atm Photographic detail of Venus is most tor must exceed the speed of random for NHs, 20 cm-atm for CH*, 3 cm-atm evident in the near-ultraviolet region atmospheric winds (17), giving a maxi? for C2H4, and 1 cm-atm for CsHo (14).
Recommended publications
  • Geological Timeline
    Geological Timeline In this pack you will find information and activities to help your class grasp the concept of geological time, just how old our planet is, and just how young we, as a species, are. Planet Earth is 4,600 million years old. We all know this is very old indeed, but big numbers like this are always difficult to get your head around. The activities in this pack will help your class to make visual representations of the age of the Earth to help them get to grips with the timescales involved. Important EvEnts In thE Earth’s hIstory 4600 mya (million years ago) – Planet Earth formed. Dust left over from the birth of the sun clumped together to form planet Earth. The other planets in our solar system were also formed in this way at about the same time. 4500 mya – Earth’s core and crust formed. Dense metals sank to the centre of the Earth and formed the core, while the outside layer cooled and solidified to form the Earth’s crust. 4400 mya – The Earth’s first oceans formed. Water vapour was released into the Earth’s atmosphere by volcanism. It then cooled, fell back down as rain, and formed the Earth’s first oceans. Some water may also have been brought to Earth by comets and asteroids. 3850 mya – The first life appeared on Earth. It was very simple single-celled organisms. Exactly how life first arose is a mystery. 1500 mya – Oxygen began to accumulate in the Earth’s atmosphere. Oxygen is made by cyanobacteria (blue-green algae) as a product of photosynthesis.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Hunting Hours Time Zone A
    WHEN AND WHERE TO HUNT WHEN AND WHERE Hunting Hours Time Zone A. Hunting Hours for Bear, Deer, Fall Wild Turkey, Furbearers, Shown is a map of the hunting-hour time zones. Actual legal hunting hours for and Small Game bear, deer, fall wild turkey, furbearer, and small game for Time Zone A are shown One-half hour before sunrise to one-half hour after sunset (adjusted for in the table at right. Hunting hours for migratory game birds are different and are daylight saving time). For hunt dates not listed in the table, please consult your published in the current-year Waterfowl Digest. local newspaper. 2016 Sept. Oct. Nov. Dec. To determine the opening (a.m.) and closing (p.m.) time for any day in another Note: time zone, add the minutes shown below to the times listed in the Time Zone A • Woodcock and teal Date AM PM AM PM AM PM AM PM Hunting Hours Table. hunting hours are 1 6:28 8:35 7:00 7:43 7:36 6:55 7:12 5:31 The hunting hours listed in the table reflect Eastern Standard Time, with an sunrise to sunset. 2 6:29 8:34 7:01 7:41 7:38 6:54 7:14 5:30 adjustment for daylight saving time. If you are hunting in Gogebic, Iron, Dickinson, • Spring turkey hunting 3 6:30 8:32 7:02 7:39 7:39 6:52 7:15 5:30 or Menominee counties (Central Standard Time), you must make an additional hours are one-half 4 6:31 8:30 7:03 7:38 7:40 6:51 7:16 5:30 adjustment to the printed time by subtracting one hour.
    [Show full text]
  • Daylight Saving Time (DST)
    Daylight Saving Time (DST) Updated September 30, 2020 Congressional Research Service https://crsreports.congress.gov R45208 Daylight Saving Time (DST) Summary Daylight Saving Time (DST) is a period of the year between spring and fall when clocks in most parts of the United States are set one hour ahead of standard time. DST begins on the second Sunday in March and ends on the first Sunday in November. The beginning and ending dates are set in statute. Congressional interest in the potential benefits and costs of DST has resulted in changes to DST observance since it was first adopted in the United States in 1918. The United States established standard time zones and DST through the Calder Act, also known as the Standard Time Act of 1918. The issue of consistency in time observance was further clarified by the Uniform Time Act of 1966. These laws as amended allow a state to exempt itself—or parts of the state that lie within a different time zone—from DST observance. These laws as amended also authorize the Department of Transportation (DOT) to regulate standard time zone boundaries and DST. The time period for DST was changed most recently in the Energy Policy Act of 2005 (EPACT 2005; P.L. 109-58). Congress has required several agencies to study the effects of changes in DST observance. In 1974, DOT reported that the potential benefits to energy conservation, traffic safety, and reductions in violent crime were minimal. In 2008, the Department of Energy assessed the effects to national energy consumption of extending DST as changed in EPACT 2005 and found a reduction in total primary energy consumption of 0.02%.
    [Show full text]
  • Impact of Extended Daylight Saving Time on National Energy Consumption
    Impact of Extended Daylight Saving Time on National Energy Consumption TECHNICAL DOCUMENTATION FOR REPORT TO CONGRESS Energy Policy Act of 2005, Section 110 Prepared for U.S. Department of Energy Office of Energy Efficiency and Renewable Energy By David B. Belzer (Pacific Northwest National Laboratory), Stanton W. Hadley (Oak Ridge National Laboratory), and Shih-Miao Chin (Oak Ridge National Laboratory) October 2008 U.S. Department of Energy Energy Efficiency and Renewable Energy Page Intentionally Left Blank Acknowledgements The Department of Energy (DOE) acknowledges the important contributions made to this study by the principal investigators and primary authors—David B. Belzer, Ph.D (Pacific Northwest National Laboratory), Stanton W. Hadley (Oak Ridge National Laboratory), and Shih-Miao Chin, Ph.D (Oak Ridge National Laboratory). Jeff Dowd (DOE Office of Energy Efficiency and Renewable Energy) was the DOE project manager, and Margaret Mann (National Renewable Energy Laboratory) provided technical and project management assistance. Two expert panels provided review comments on the study methodologies and made important and generous contributions. 1. Electricity and Daylight Saving Time Panel – technical review of electricity econometric modeling: • Randy Barcus (Avista Corp) • Adrienne Kandel, Ph.D (California Energy Commission) • Hendrik Wolff, Ph.D (University of Washington) 2. Transportation Sector Panel – technical review of analytical methods: • Harshad Desai (Federal Highway Administration) • Paul Leiby, Ph.D (Oak Ridge National Laboratory) • John Maples (DOE Energy Information Administration) • Art Rypinski (Department of Transportation) • Tom White (DOE Office of Policy and International Affairs) The project team also thanks Darrell Beschen (DOE Office of Energy Efficiency and Renewable Energy), Doug Arent, Ph.D (National Renewable Energy Laboratory), and Bill Babiuch, Ph.D (National Renewable Energy Laboratory) for their helpful management review.
    [Show full text]
  • Serene Timer B Programming
    Timer Mode B - 24 Hour ON/OFF Time with Full Light Cycle Timer B Mode allows you to program the Serene LED aquarium light with daily Sunrise, Daylight, Sunset and Moonlight, In addition, the background light and audio can also be programmed to run daily along with Daylight. Serene’s Timer B program consists of four photoperiods: Sunrise - 15min ramp into a 1 hour color spectrum, followed by 15min ramp to Daylight Daylight - color spectrum runs until OFF time is reached. (Background light & audio optional.) Sunset - 15min dim into a 1 hour color spectrum, followed by 15min dim to Moonlight Moonlight - runs a color spectrum for 6 hrs., then turns off The below diagram shows the default Timer B program installed with Serene: ON TIME: 07:00 OFF TIME: 17:00 (Light begins to turn on at 7:00am) (Light begins to turn o at 5:00 pm) PREPROGRAMMED DEFAULT: Sunrise/Sunset Color: R-75%, G-5%, B-75%, W-50% Daylight Color: R-100%, G-100%, B-100%, W-100% Background Light: Blue-Orange Fade Audio: Stream, 50% Volume Moonlight Color: R-5%, G-0%, B-10%, W-0% “M”: 100% Red Programming Instructions: There are 4 basic steps to programming Serene in Timer B Mode: STEP 1: Programming Clock & ON/OFF TImes STEP 2: Setting & Adjusting Sunrise/Sunset, Daylight, Moonlight Color Spectrums STEP 3: Programming Background Light & Audio Programs STEP 4: Confirming Timer B Mode Setting 1 Programming Instructions: STEP 1: Programming Clock, Daily ON & OFF Time a. Setting Clock (Time is in 24:00 Hrs) 1. Press: SET CLOCK - Controller Displays: “S-CL” 2.
    [Show full text]
  • Polar Winds from VIIRS
    Polar Winds from VIIRS Jeff Key*, Richard Dworak+, Dave Santek+, Wayne Bresky@, Steve Wanzong+ ! Jaime Daniels#, Andrew Bailey@, Chris Velden+, Hongming Qi^, Pete Keehn#, Walter Wolf#! ! *NOAA/National Environmental Satellite, Data, and Information Service, Madison, WI! + Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison! #NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, MD! ^NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, MD! @I.M. Systems Group (IMSG), Rockville, MD USA! 11th International Winds Workshop, Auckland, 20-24 February 2012 The Polar Wind Product Suite MODIS Polar Winds LEO-GEO Polar Winds •" Aqua and Terra separately, bent pipe •" Combination of may geostationary data source Operational and polar-orbiting imagers •" Aqua and Terra combined, bent pipe •" Fills the 60-70 degree latitude gap •" Direct broadcast (DB) at EW –" McMurdo, Antarctica (Terra, Aqua) VIIRS Polar Winds –" Tromsø, Norway (Terra only) •" (Details on following slides) –" Sodankylä, Finland (Terra only) –" Fairbanks, Alaska (Terra, from UAF) EW AVHRR Polar Winds •" Global Area Coverage (GAC) for NOAA-15, -16, -17, -18, -19 Operational •" Metop Operational •" HRPT (High Resolution Picture Transmission = direct readout) at –" Barrow, Alaska, NOAA-16, -17, -18, -19 –" Rothera, Antarctica, NOAA-17, -18, -19 •" Historical GAC winds, 1982-2009. Two satellites throughout most of the time series. Polar Wind Product History Operational NWP Users of Polar Winds! 13 NWP centers in 9 countries: •" European Centre for Medium-Range Weather Forecasts (ECMWF) - since Jan 2003.! •" NASA Global Modeling and Assimilation Office (GMAO) - since early 2003.! •" Deutscher Wetterdienst (DWD) – MODIS since Nov 2003. DB and AVHRR.! •" Japan Meteorological Agency (JMA), Arctic only - since May 2004.! •" Canadian Meteorological Centre (CMC) – since Sep 2004.
    [Show full text]
  • Outer Planets: the Ice Giants
    Outer Planets: The Ice Giants A. P. Ingersoll, H. B. Hammel, T. R. Spilker, R. E. Young Exploring Uranus and Neptune satisfies NASA’s objectives, “investigation of the Earth, Moon, Mars and beyond with emphasis on understanding the history of the solar system” and “conduct robotic exploration across the solar system for scientific purposes.” The giant planet story is the story of the solar system (*). Earth and the other small objects are leftovers from the feast of giant planet formation. As they formed, the giant planets may have migrated inward or outward, ejecting some objects from the solar system and swallowing others. The giant planets most likely delivered water and other volatiles, in the form of icy planetesimals, to the inner solar system from the region around Neptune. The “gas giants” Jupiter and Saturn are mostly hydrogen and helium. These planets must have swallowed a portion of the solar nebula intact. The “ice giants” Uranus and Neptune are made primarily of heavier stuff, probably the next most abundant elements in the Sun – oxygen, carbon, nitrogen, and sulfur. For each giant planet the core is the “seed” around which it accreted nebular gas. The ice giants may be more seed than gas. Giant planets are laboratories in which to test our theories about geophysics, plasma physics, meteorology, and even oceanography in a larger context. Their bottomless atmospheres, with 1000 mph winds and 100 year-old storms, teach us about weather on Earth. The giant planets’ enormous magnetic fields and intense radiation belts test our theories of terrestrial and solar electromagnetic phenomena.
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • The Golden Hour Refers to the Hour Before Sunset and After Sunrise
    TheThe GoldenGolden HourHour The Golden Hour refers to the hour before sunset and after sunrise. Photographers agree that some of the very best times of day to take photos are during these hours. During the Golden Hours, the atmosphere is often permeated with breathtaking light that adds ambiance and interest to any scene. There can be spectacular variations of colors and hues ranging from subtle to dramatic. Even simple subjects take on an added glow. During the Golden Hours, take photos when the opportunity presents itself because light changes quickly and then fades away. 07:14:09 a.m. 07:15:48 a.m. Photographed about 60 seconds after previous photo. The look of a scene can vary greatly when taken at different times of the day. Scene photographed midday Scene photographed early morning SampleSample GoldenGolden HourHour photosphotos Top Tips for taking photos during the Golden Hours Arrive on the scene early to take test shots and adjust camera settings. Set camera to matrix or center-weighted metering. Use small apertures for maximizing depth-of-field. Select the lowest possible ISO. Set white balance to daylight or sunny day. When lighting is low, use a tripod with either a timed shutter release (self-timer) or a shutter release cable or remote. Taking photos during the Golden Hours When photographing the sun Don't stare into the sun, or hold the camera lens towards it for a very long time. Meter for the sky but don't include the sun itself. Composition tips: The horizon line should be above or below the center of the scene.
    [Show full text]
  • Discovery of a Low-Mass Companion to a Metal-Rich F Star with the Marvels Pilot Project
    The Astrophysical Journal, 718:1186–1199, 2010 August 1 doi:10.1088/0004-637X/718/2/1186 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT Scott W. Fleming1,JianGe1, Suvrath Mahadevan1,2,3, Brian Lee1, Jason D. Eastman4, Robert J. Siverd4, B. Scott Gaudi4, Andrzej Niedzielski5, Thirupathi Sivarani6, Keivan G. Stassun7,8, Alex Wolszczan2,3, Rory Barnes9, Bruce Gary7, Duy Cuong Nguyen1, Robert C. Morehead1, Xiaoke Wan1, Bo Zhao1, Jian Liu1, Pengcheng Guo1, Stephen R. Kane1,10, Julian C. van Eyken1,10, Nathan M. De Lee1, Justin R. Crepp1,11, Alaina C. Shelden1,12, Chris Laws9, John P. Wisniewski9, Donald P. Schneider2,3, Joshua Pepper7, Stephanie A. Snedden12, Kaike Pan12, Dmitry Bizyaev12, Howard Brewington12, Olena Malanushenko12, Viktor Malanushenko12, Daniel Oravetz12, Audrey Simmons12, and Shannon Watters12,13 1 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 326711-2055, USA; scfl[email protected]fl.edu 2 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 3 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA 4 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 5 Torun´ Center for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100, Torun,´ Poland 6 Indian Institute of Astrophysics, Bangalore 560034, India 7 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA 8 Department of Physics, Fisk University, 1000 17th Ave.
    [Show full text]
  • Libration of Venus and Mercury. Projections on the Terminator Of
    Projections on the Terminator of Mars and Martian Meteorology Item Type Article Authors Douglass, A.E. Download date 24/09/2021 13:15:20 Link to Item http://hdl.handle.net/10150/200042 3406 Lastly : the relative visibility of some of the markings the limb. As of two markings occupying the same part of changes with their position with regard to the observer. the disk, Hermione regio and Somnus regio for example, For instance Somnus regio, which was almost invisible when the one will change in one way, the other in an opposite in the centre of the disk, has grown more conspicuous as manner, the changes cannot be a matter of obscuration. it has approached the limb. Anteros regio and Adonis Secondly as the position of the markings has not shifted regio have similarly become less salient on nearing the with regard to the Sun, the change cannot be intrinsic. It central meridian. Other markings under like conditions of is due probably to a difference in the character of the rock position and illumination have not done so, but have re­ or soil, greater or less roughness for example, in one region mained as evident in the one aspect as in the other or, than in toe other. That in these markings we are looking down m Hermione regio, have been less conspicuous on nearing on a bare desert-like surface is what the observations imply. Lowell Observatory, I896 Oct. 21. Percival Lowell. Zusatz. Die von Herrn P. Lowell eingesandten Zeich­ to 2h2m, Oct.8 2hi9m-25m, Oct.8 4h42m, Oct.9 1h59m nungen, zu we\chen nachtraglich noch einige spatere, bis to 2h28"', Oct.9 2h48m-56m, Oct.9 4h5om-57m, Oct.9 zum 9· November reichende hinzugetreten sind, sind zum 5h3m-8m, Oct.I6 OhiSm-20m, Oct.16 sh-5hsm, Oct.q grosseren Theil auf den beiliegenden Tafeln wiedergegeben.
    [Show full text]