ARITHMETIC PROPERTIES of DEL PEZZO SURFACES Written Mental

Total Page:16

File Type:pdf, Size:1020Kb

ARITHMETIC PROPERTIES of DEL PEZZO SURFACES Written Mental ARITHMETIC PROPERTIES OF DEL PEZZO SURFACES DAMIANO TESTA Written mental notes. These are just some rough notes meant as written mental notes of what the course will cover. Introduction In this series of lectures, I will present some results on arithmetic properties of del Pezzo surfaces over a field k. I will try to impose as few restrictions as possible on k. Important fields to keep in mind are • the complex numbers C; • algebraically closed fields; • finite fields Fq; • p-adic fields Qp and their finite extensions; • number fields. I will recall and sometimes give proofs of facts on del Pezzo surfaces over alge- braically closed fields. I will then take these facts as our guiding principles to figure out what can be said over a field that is not necessarily algebraically closed. Here is an outline of the course. We begin by studying the exceptional curves on del Pezzo surfaces. Next, we focus on del Pezzo surfaces of degree at least 7. The analysis shows that given a k-rational point on a del Pezzo surface, we can often produce more k-rational points. This naturally leads to the question of k- (uni)rationality for del Pezzo surfaces. We will see that del Pezzo surfaces of certain degrees automatically have a k-rational point. Finally, we may touch upon Cox rings of del Pezzo surfaces, universal torsors and Manin's conjecture. 1. Background and the case of curves Definition 1.1. Let k be a field and let X be a scheme over k.A k-rational point on X is a morphism Spec k ! X. We denote the set of all k-rational points of X by X(k). n If X ⊂ Ak is affine and it is the vanishing set of polynomials f1; : : : ; fr 2 n k[x1; : : : ; xn], then a k-rational point on X is an n-tuple x = (x1;:::; xn) 2 k such that f1(x) = ··· = fr(x) = 0. Lemma 1.2 (Lang-Nishimura). Let k be a field, let X; Y be varieties over k and let ': X 99K Y be a rational map. If X has a smooth k-rational point and Y is proper, then Y has a k-rational point. Proof. Proceed by induction on the dimension of X. If the dimension of X is 0, then do the obvious. For the induction step, use the valuative criterion of properness to show that a rational map from X to Y determines a rational map from any divisor Date: July 2019. 1 2 DAMIANO TESTA on X to Y . Choose a divisor containing a smooth k-rational point of X as a smooth point and conclude by induction. An immediate consequence of the Lang-Nishimura Lemma is that having a k- rational point of a birational invariant among smooth proper varieties. Corollary 1.3. If X and Y are smooth proper varieties defined over a field k, then X has a k-rational point if and only if Y has a k-rational point. Proof. Use the Lang-Nishimura Lemma and the symmetry of the assumptions. Let k be a field and let X be a smooth variety of dimension n defined over k. We denote by !X a dualizing sheaf on X and we call it the canonical line bundle. Vn Thus, the sheaf !X is a line bundle isomorphic to ΩX , the determinant of the sheaf of 1-forms on X. We shall mostly use this for curves and surfaces, i.e. for n ≤ 2. Definition 1.4. A Fano variety over k is a smooth projective variety X defined _ over k with ample anti-canonical line bundle (!X ) . The degree dX of X is the d positive integer dX = (−KX ) . In this course, we will mostly be interested in the case of Fano varieties of dimension 2, that is, del Pezzo surfaces, over general fields. In our arguments, we will often switch between a field k and an extension of k, often a fixed algebraic closure k. In doing so, we will want to keep track of what changes and what stays constant. One of the most basic facts that we will use is the following result. Fact. Let k0 ⊃ k be an extension of fields. Let X be a projective variety over k and let L be a line bundle on X. Denote by Lk0 the pull-back of L to the base change 0 0 0 0 Xk0 of X to k . The k -vector space H (Xk0 ; Lk0 ) is isomorphic to the k -vector 0 0 space H (X; L ) ⊗k k . The more general result with global sections replaced by an arbitrary cohomology group of a quasi-coherent sheaf on X is also true (see Cohomology and base-change). Nevertheless, the mentioned fact is enough for most of our applications. Indeed, we can almost get away simply with knowing that the dimensions of the spaces of global sections of line bundles are constant when extending the base field. ARITHMETIC PROPERTIES OF DEL PEZZO SURFACES 3 Aside. Let us pause to think about \base rings". Suppose that X is the vanishing set of an ideal I in k[x1; : : : ; xn]. There are at least three \base rings" that can, and will, be relevant for this course. (Tautological) Of course, we defined I to be an ideal in k[x1; : : : ; xn], so certainly k is a possible \base ring". (Geometric) We may want to allow ourselves to pick coordinates of points on the inter- section of X with curves or surfaces, to extract coefficients of equations of special curves on X, or more generally to be able to make finite extensions of k. Thus, certainly also the collection of all finite extensions of k, i.e. an algebraic closure k of k, is a possible \base ring". (Minimal) We may only want to look at the smallest subfield (or even the smallest subring) k0 of k containing the coefficients of a set of generators of I. Again, k0 is another good candidate for a \base ring". Really, we should make up our mind on what the base ring is and stick to the tau- tological option. For instance, we may be in a situation in which X is defined over the complex numbers by an equation with integer coefficients, and we want to reduce modulo 2 to deduce properties over C. In such a situation, we may (re-)define a sur- face over Spec Z with the same equation as X and we can now base change using Spec F2 ! Spec Z or Spec C ! Spec Z. Before looking at the surface case, we give a quick overview of what happens in the case of Fano curves. If the field k is algebraically closed, then a smooth projective curve over k with ample anti-canonical line bundle (that is, ample tangent bundle) is isomorphic 1 to Pk. Thus, we have a full classification, with only one geometric example. Now, let C be a smooth projective Fano curve over an arbitrary ground field k. _ _ _ The anti-canonical linear system j!C j on C induces a rational map C 99K j!C j . By the previously mentioned Cohomology and base-change, we know that the linear _ 2 system j!C j has dimension 2 and hence we obtain a rational map ι: C 99K Pk. We fix an algebraic closure k of k and base-change to k. The curve C becomes isomorphic 1 _ to P , the line bundle j!C j becomes isomorphic to O 1 (2) and the rational map ι k Pk becomes an isomorphism betwen 1 and a smooth plane conic. We deduce that ι Pk induces an isomorphism between the curve C and a smooth plane conic. 1 Observe that Pk is certainly a Fano curve, regardless of whether or not the field k 1 is algebraically closed. The following exercise gives a characterisation of Pk among Fano curves. Exercise 1.5. Let C be a Fano curve over a field k. The following are equivalent. 1 (1) The curves C and Pk are isomorphic over k. (2) There is a k-rational point on C. (3) There is a line bundle on C of degree 1. (4) There is a line bundle on C of odd degree. [Hints. (1) =) (2), use the Lang-Nishimura Lemma. (2) =) (1), realize C as a conic and use stereographic projection. (2) =) (3) =) (4), easy. (3) =) (2), the vanishing set of any global section gives you a point. (4) =) (3), using a line bundle of odd degree and the canonical line bundle, produce a line bundle of degree 1. ] 1 From the previous exercise, if C is isomorphic to Pk over the field k, then C has at least one k-rational point. We can therefore easily find examples of Fano curves 1 that are not isomorphic to Pk. 4 DAMIANO TESTA Exercise 1.6. The conic C ⊂ 2 defined by the equation x2 + y2 + z2 = 0 is a PQ Fano curve that is not isomorphic to 1 . PQ We are therefore naturally led to examine the question of whether or not a variety has a rational point. Clearly, if a variety defined over a field k has a k-rational point, then it also has a point over every field extension k0 of k. In the case in which the ground field is Q, there are some natural extensions of Q that play an important role. For instance, the real numbers R are the completion of Q with respect to the familiar Euclidean absolute value on Q.
Recommended publications
  • Cubic Surfaces and Their Invariants: Some Memories of Raymond Stora
    Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 912 (2016) 374–425 www.elsevier.com/locate/nuclphysb Cubic surfaces and their invariants: Some memories of Raymond Stora Michel Bauer Service de Physique Theorique, Bat. 774, Gif-sur-Yvette Cedex, France Received 27 May 2016; accepted 28 May 2016 Available online 7 June 2016 Editor: Hubert Saleur Abstract Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I’m very much indebted. Each smooth cubic surface has a rich geometric structure, which I review briefly, with emphasis on the 27 lines and the combinatorics of their intersections. Only elementary methods are used, relying on first order perturbation/deformation theory. I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4(C) splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric) invariant theory. Ireview briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. Ishow how to retrieve this description via counting/generating functions and character formulae. © 2016 The Author. Published by Elsevier B.V.
    [Show full text]
  • Classifying Smooth Cubic Surfaces up to Projective Linear Transformation
    Classifying Smooth Cubic Surfaces up to Projective Linear Transformation Noah Giansiracusa June 2006 Introduction We would like to study the space of smooth cubic surfaces in P3 when each surface is considered only up to projective linear transformation. Brundu and Logar ([1], [2]) de¯ne an action of the automorphism group of the 27 lines of a smooth cubic on a certain space of cubic surfaces parametrized by P4 in such a way that the orbits of this action correspond bijectively to the orbits of the projective linear group PGL4 acting on the space of all smooth cubic surfaces in the natural way. They prove several other results in their papers, but in this paper (the author's senior thesis at the University of Washington) we focus exclusively on presenting a reasonably self-contained and coherent exposition of this particular result. In doing so, we chose to slightly modify the action and ensuing proof, more aesthetically than substantially, in order to better reveal the intricate relation between combinatorics and geometry that underlies this problem. We would like to thank Professors Chuck Doran and Jim Morrow for much guidance and support. The Space of Cubic Surfaces Before proceeding, we need to de¯ne terms such as \the space of smooth cubic surfaces". Let W be a 4-dimensional vector-space over an algebraically closed ¯eld k of characteristic zero whose projectivization P(W ) = P3 is the ambient space in which the cubic surfaces we consider live. Choose a basis (x; y; z; w) for the dual vector-space W ¤. Then an arbitrary cubic surface is given by the zero locus V (F ) of an element F 2 S3W ¤ ½ k[x; y; z; w], where SnV denotes the nth symmetric power of a vector space V | which in this case simply means the set of degree three homogeneous polynomials.
    [Show full text]
  • Projective Planarity of Matroids of 3-Nets and Biased Graphs
    AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 76(2) (2020), Pages 299–338 Projective planarity of matroids of 3-nets and biased graphs Rigoberto Florez´ ∗ Deptartment of Mathematical Sciences, The Citadel Charleston, South Carolina 29409 U.S.A. [email protected] Thomas Zaslavsky† Department of Mathematical Sciences, Binghamton University Binghamton, New York 13902-6000 U.S.A. [email protected] Abstract A biased graph is a graph with a class of selected circles (“cycles”, “cir- cuits”), called “balanced”, such that no theta subgraph contains exactly two balanced circles. A 3-node biased graph is equivalent to an abstract partial 3-net. We work in terms of a special kind of 3-node biased graph called a biased expansion of a triangle. Our results apply to all finite 3-node biased graphs because, as we prove, every such biased graph is a subgraph of a finite biased expansion of a triangle. A biased expansion of a triangle is equivalent to a 3-net, which, in turn, is equivalent to an isostrophe class of quasigroups. A biased graph has two natural matroids, the frame matroid and the lift matroid. A classical question in matroid theory is whether a matroid can be embedded in a projective geometry. There is no known general answer, but for matroids of biased graphs it is possible to give algebraic criteria. Zaslavsky has previously given such criteria for embeddability of biased-graphic matroids in Desarguesian projective spaces; in this paper we establish criteria for the remaining case, that is, embeddability in an arbitrary projective plane that is not necessarily Desarguesian.
    [Show full text]
  • Octonion Multiplication and Heawood's
    CONFLUENTES MATHEMATICI Bruno SÉVENNEC Octonion multiplication and Heawood’s map Tome 5, no 2 (2013), p. 71-76. <http://cml.cedram.org/item?id=CML_2013__5_2_71_0> © Les auteurs et Confluentes Mathematici, 2013. Tous droits réservés. L’accès aux articles de la revue « Confluentes Mathematici » (http://cml.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://cml.cedram.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation á fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Confluentes Math. 5, 2 (2013) 71-76 OCTONION MULTIPLICATION AND HEAWOOD’S MAP BRUNO SÉVENNEC Abstract. In this note, the octonion multiplication table is recovered from a regular tesse- lation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map. Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly) has a picture like the following Figure 0.1 representing the so-called ‘Fano plane’, which will be denoted by Π, together with some cyclic ordering on each of its ‘lines’. The Fano plane is a set of seven points, in which seven three-point subsets called ‘lines’ are specified, such that any two points are contained in a unique line, and any two lines intersect in a unique point, giving a so-called (combinatorial) projective plane [8,7].
    [Show full text]
  • Arxiv:1712.01167V2 [Math.AG] 12 Oct 2018 12
    AUTOMORPHISMS OF CUBIC SURFACES IN POSITIVE CHARACTERISTIC IGOR DOLGACHEV AND ALEXANDER DUNCAN Abstract. We classify all possible automorphism groups of smooth cu- bic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quar- tic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automor- phism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive char- acteristic, together with a group action, can be lifted to characteristic zero. Contents 1. Introduction2 Acknowledgements8 2. Preliminaries8 3. Del Pezzo surfaces of degree 4 12 4. Differential structure in special characteristics 19 5. The Fermat cubic surface 24 6. General forms 28 7. Rationality of the moduli space 33 8. Conjugacy classes of automorphisms 36 9. Involutions 38 10. Automorphisms of order 3 46 11. Automorphisms of order 4 59 arXiv:1712.01167v2 [math.AG] 12 Oct 2018 12. Automorphisms of higher order 64 13. Collections of Eckardt points 69 14. Proof of the Main Theorem 72 15. Lifting to characteristic zero 73 Appendix 78 References 82 The second author was partially supported by National Security Agency grant H98230- 16-1-0309. 1 2 IGOR DOLGACHEV AND ALEXANDER DUNCAN 1. Introduction 3 Let X be a smooth cubic surface in P defined over an algebraically closed field | of arbitrary characteristic p. The primary purpose of this paper is to classify the possible automorphism groups of X.
    [Show full text]
  • UNIVERSAL TORSORS and COX RINGS Brendan Hassett and Yuri
    UNIVERSAL TORSORS AND COX RINGS by Brendan Hassett and Yuri Tschinkel Abstract. — We study the equations of universal torsors on rational surfaces. Contents Introduction . 1 1. Generalities on the Cox ring . 4 2. Generalities on toric varieties . 7 3. The E6 cubic surface . 12 4. D4 cubic surface . 23 References . 26 Introduction The study of surfaces over nonclosed fields k leads naturally to certain auxiliary varieties, called universal torsors. The proofs of the Hasse principle and weak approximation for certain Del Pezzo surfaces required a very detailed knowledge of the projective geometry, in fact, explicit equations, for these torsors [7], [9], [8], [22], [23], [24]. More recently, Salberger proposed using universal torsors to count rational points of The first author was partially supported by the Sloan Foundation and by NSF Grants 0196187 and 0134259. The second author was partially supported by NSF Grant 0100277. 2 BRENDAN HASSETT and YURI TSCHINKEL bounded height, obtaining the first sharp upper bounds on split Del Pezzo surfaces of degree 5 and asymptotics on split toric varieties over Q [21]. This approach was further developed in the work of Peyre, de la Bret`eche, and Heath-Brown [19], [20], [3], [14]. Colliot-Th´el`eneand Sansuc have given a general formalism for writing down equations for these torsors. We briefly sketch their method: Let X be a smooth projective variety and {Dj}j∈J a finite set of irreducible divisors on X such that U := X \ ∪j∈J Dj has trivial Picard group. In practice, one usually chooses generators of the effective cone of X, e.g., the lines on the Del Pezzo surface.
    [Show full text]
  • Shadow of a Cubic Surface
    Faculteit B`etawetenschappen Shadow of a cubic surface Bachelor Thesis Rein Janssen Groesbeek Wiskunde en Natuurkunde Supervisors: Dr. Martijn Kool Departement Wiskunde Dr. Thomas Grimm ITF June 2020 Abstract 3 For a smooth cubic surface S in P we can cast a shadow from a point P 2 S that does not lie on one of the 27 lines of S onto a hyperplane H. The closure of this shadow is a smooth quartic curve. Conversely, from every smooth quartic curve we can reconstruct a smooth cubic surface whose closure of the shadow is this quartic curve. We will also present an algorithm to reconstruct the cubic surface from the bitangents of a quartic curve. The 27 lines of S together with the tangent space TP S at P are in correspondence with the 28 bitangents or hyperflexes of the smooth quartic shadow curve. Then a short discussion on F-theory is given to relate this geometry to physics. Acknowledgements I would like to thank Martijn Kool for suggesting the topic of the shadow of a cubic surface to me and for the discussions on this topic. Also I would like to thank Thomas Grimm for the suggestions on the applications in physics of these cubic surfaces. Finally I would like to thank the developers of Singular, Sagemath and PovRay for making their software available for free. i Contents 1 Introduction 1 2 The shadow of a smooth cubic surface 1 2.1 Projection of the first polar . .1 2.2 Reconstructing a cubic from the shadow . .5 3 The 27 lines and the 28 bitangents 9 3.1 Theorem of the apparent boundary .
    [Show full text]
  • A Mathematical Background to Cubic and Quartic Schilling Models
    Utrecht University A Mathematical Background to Cubic and Quartic Schilling Models Author: I.F.M.M.Nelen A thesis presented for the degree Master of Science Supervisor: Prof. Dr. F. Beukers Second Reader: Prof. Dr. C.F. Faber Masters Programme: Mathematical Sciences Department: Departement of Mathematics University: Utrecht University Abstract At the end of the twentieth century plaster models of algebraic surface were constructed by the company of Schilling. Many universities have some series of these models but a rigorous mathematical background to the theory is most often not given. In this thesis a mathematical background is given for the cubic surfaces and quartic ruled surfaces on which two series of Schilling models are based, series VII and XIII. The background consists of the classification of all complex cubic surface through the number and type of singularities lying on the surface. The real cubic sur- faces are classified by which of the singularities are real and the number and configuration of the lines lying on the cubic surface. The ruled cubic and quartic surfaces all have a singular curve lying on them and they are classified by the degree of this curve. Acknowledgements Multiple people have made a contribution to this thesis and I want to extend my graditute here. First of all I want to thank Prof. Dr. Frits Beukers for being my super- visor, giving me an interesting subject to write about and helping me get the answers needed to finish this thesis. By his comments he gave me a broader un- derstanding of the topic and all the information I needed to complete this thesis.
    [Show full text]
  • Matroids You Have Known
    26 MATHEMATICS MAGAZINE Matroids You Have Known DAVID L. NEEL Seattle University Seattle, Washington 98122 [email protected] NANCY ANN NEUDAUER Pacific University Forest Grove, Oregon 97116 nancy@pacificu.edu Anyone who has worked with matroids has come away with the conviction that matroids are one of the richest and most useful ideas of our day. —Gian Carlo Rota [10] Why matroids? Have you noticed hidden connections between seemingly unrelated mathematical ideas? Strange that finding roots of polynomials can tell us important things about how to solve certain ordinary differential equations, or that computing a determinant would have anything to do with finding solutions to a linear system of equations. But this is one of the charming features of mathematics—that disparate objects share similar traits. Properties like independence appear in many contexts. Do you find independence everywhere you look? In 1933, three Harvard Junior Fellows unified this recurring theme in mathematics by defining a new mathematical object that they dubbed matroid [4]. Matroids are everywhere, if only we knew how to look. What led those junior-fellows to matroids? The same thing that will lead us: Ma- troids arise from shared behaviors of vector spaces and graphs. We explore this natural motivation for the matroid through two examples and consider how properties of in- dependence surface. We first consider the two matroids arising from these examples, and later introduce three more that are probably less familiar. Delving deeper, we can find matroids in arrangements of hyperplanes, configurations of points, and geometric lattices, if your tastes run in that direction.
    [Show full text]
  • Algebraic Curves and Surfaces
    Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces .
    [Show full text]
  • Moduli Spaces and Invariant Theory
    MODULI SPACES AND INVARIANT THEORY JENIA TEVELEV CONTENTS §1. Syllabus 3 §1.1. Prerequisites 3 §1.2. Course description 3 §1.3. Course grading and expectations 4 §1.4. Tentative topics 4 §1.5. Textbooks 4 References 4 §2. Geometry of lines 5 §2.1. Grassmannian as a complex manifold. 5 §2.2. Moduli space or a parameter space? 7 §2.3. Stiefel coordinates. 8 §2.4. Complete system of (semi-)invariants. 8 §2.5. Plücker coordinates. 9 §2.6. First Fundamental Theorem 10 §2.7. Equations of the Grassmannian 11 §2.8. Homogeneous ideal 13 §2.9. Hilbert polynomial 15 §2.10. Enumerative geometry 17 §2.11. Transversality. 19 §2.12. Homework 1 21 §3. Fine moduli spaces 23 §3.1. Categories 23 §3.2. Functors 25 §3.3. Equivalence of Categories 26 §3.4. Representable Functors 28 §3.5. Natural Transformations 28 §3.6. Yoneda’s Lemma 29 §3.7. Grassmannian as a fine moduli space 31 §4. Algebraic curves and Riemann surfaces 37 §4.1. Elliptic and Abelian integrals 37 §4.2. Finitely generated fields of transcendence degree 1 38 §4.3. Analytic approach 40 §4.4. Genus and meromorphic forms 41 §4.5. Divisors and linear equivalence 42 §4.6. Branched covers and Riemann–Hurwitz formula 43 §4.7. Riemann–Roch formula 45 §4.8. Linear systems 45 §5. Moduli of elliptic curves 47 1 2 JENIA TEVELEV §5.1. Curves of genus 1. 47 §5.2. J-invariant 50 §5.3. Monstrous Moonshine 52 §5.4. Families of elliptic curves 53 §5.5. The j-line is a coarse moduli space 54 §5.6.
    [Show full text]
  • Arxiv:2002.02220V2 [Math.AG] 8 Jun 2020 in the Early 80’S, V
    Contemporary Mathematics Toward good families of codes from towers of surfaces Alain Couvreur, Philippe Lebacque, and Marc Perret To our late teacher, colleague and friend Gilles Lachaud Abstract. We introduce in this article a new method to estimate the mini- mum distance of codes from algebraic surfaces. This lower bound is generic, i.e. can be applied to any surface, and turns out to be \liftable" under finite morphisms, paving the way toward the construction of good codes from towers of surfaces. In the same direction, we establish a criterion for a surface with a fixed finite set of closed points P to have an infinite tower of `{´etalecovers in which P splits totally. We conclude by stating several open problems. In par- ticular, we relate the existence of asymptotically good codes from general type surfaces with a very ample canonical class to the behaviour of their number of rational points with respect to their K2 and coherent Euler characteristic. Contents Introduction 1 1. Codes from surfaces 3 2. Infinite ´etaletowers of surfaces 15 3. Open problems 26 Acknowledgements 29 References 29 Introduction arXiv:2002.02220v2 [math.AG] 8 Jun 2020 In the early 80's, V. D. Goppa proposed a construction of codes from algebraic curves [21]. A pleasant feature of these codes from curves is that they benefit from an elementary but rather sharp lower bound for the minimum distance, the so{called Goppa designed distance. In addition, an easy lower bound for the dimension can be derived from Riemann-Roch theorem. The very simple nature of these lower bounds for the parameters permits to formulate a concise criterion for a sequence of curves to provide asymptotically good codes : roughly speaking, the curves should have a large number of rational points compared to their genus.
    [Show full text]