Eye on Hawkfish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
May Be Reprinted by Other Non-Profit Organizations, Provided Proper Credit Is Given to the Author and Aquatica, and Two Copies Are Sent to the Exchange Editor
AQUATICA T H E J O U R NA L O F T H E B R O O K LY N AQ UA R I U M S O C I E T Y VO L . X X I I I M AY ~ J U N E 2 0 0 9 N o . 5 Buffalo Head Cichlids Steatocranus casuarius Illustration: John Todaro . A Q U A T I C A V O L X X I I I • M A Y / J U N E 2 0 0 9 • N O 5 C O N T E N T S 1 Calendar of Events ~ 2009/2010 13 Red Cherry Shrimp 2 Digging, Playing, and Extreme 15 More About Buying & Keeping Aggression in Green Terror Cichlid Freshwater Dwarf Shrimp Breeding Pairs 17 Bus Tour of Atlantis Marine World 4 The Spawning of a Mouth Brooding Saturday, July 18 Betta: Betta edithae 18 The Practical Plant 7 Breeding Clownfish: A Short Description 20 The Amazon Biotope Aquarium 8 Fish for Ponds & Water Gardens 22 Exchange Editor’s Report 23 y Support Us! ...Where the Buffalo Roam... Patronize Our Sponsors, The 11 We Must Support Them! 12 Buffalo Head Cichlids } Steatocranus casuarius 24 Membership Application AQUATICA STAFF Editor: John Todaro Subscriptions: Lita Goldberg Copy Editor: Kay Martin Exchange Editor: Vinny Babino Marine Editor: Open Contributing Writers: Robert Price, Heather Burke, Plant Editor: Izzy Zwerin William Berg, Ed Katuska, John Todaro, Bill Southern, Illustrations: J. Todaro, C. Giam Izzy Zwerin, Andy Gordon,Vinny Babino Advertising: Izzy Zwerin Note: The Editor takes full responsibility for misspellings and punctuation errors. -
FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Cirrhitidae 3321
click for previous page Perciformes: Percoidei: Cirrhitidae 3321 CIRRHITIDAE Hawkfishes by J.E. Randall iagnostic characters: Oblong fishes (size to about 30 cm), body depth 2 to 4.6 times in standard Dlength. A fringe of cirri on posterior edge of anterior nostril. Two indistinct spines on opercle. A row of canine teeth in jaws, the longest usually anteriorly in upper jaw and half-way back on lower jaw; a band of villiform teeth inside the canines, broader anteriorly (in lower jaw only anteriorly). One or more cirri projecting from tips of interspinous membranes of dorsal fin. Dorsal fin continuous, with X spines and 11 to 17 soft rays, notched between spinous and soft portions; anal fin with III spines and 5 to 7 (usually 6) soft rays; pectoral fins with 14 rays, the lower 5 to 7 rays unbranched and usually enlarged, with the membranes deeply incised; pelvic fins with I spine and 5 soft rays. Principal caudal-fin rays 15. Branchiostegal rays 6. Scales cycloid. Swimbladder absent. Vertebrae 26. Colour: variable with species. cirri lower pectoral-fin rays thickened and unbranched Remarks: The hawkfish family consists of 10 genera and 38 species, 33 of which occur in the Indo-Pacific region; 19 species are found in the Western Central Pacific. Habitat, biology, and fisheries: Cirrhitids are bottom-dwelling fishes of coral reefs or rocky substrata; the majority occur in shallow water. They use their thickened lower pectoral-fin rays to wedge themselves in position in areas subject to surge. All species are carnivorous, feeding mainly on benthic crustaceans. -
FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Latitudinal Gradients in Atlantic Reef Fish Communities: Trophic Structure and Spatial Use Patterns
Journal of Fish Biology (2004) 64, 1680–1699 doi:10.1111/j.1095-8649.2004.00428.x,availableonlineathttp://www.blackwell-synergy.com Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns S. R. FLOETER*†,C.E.L.FERREIRA‡, A. DOMINICI-AROSEMENA§ AND I. R. ZALMON* *Lab. de Cieˆncias Ambientais, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28 013-600, Brasil, ‡Depto. de Oceanografia, IEAPM, Rua Kioto 253, Arraial do Cabo, RJ, 28 930-000, Brasil and §Center for Tropical Marine Ecology (ZMT), Fahrenheitstrasse 6, 28 359, Bremen, Germany (Received 1 August 2003, Accepted 19 March 2004) Trophic strategies and spatial use habits were investigated in reef fish communities. The results supported the hypothesis of differential use of food resources among tropical and higher latitude reef fishes, i.e. the number of species and relative abundance of fishes relying on relatively low-quality food significantly decreased from tropical to temperate latitudes. The species : genus ratio of low-quality food consumers increased toward the tropics, and was higher than the overall ratio considering all fishes in the assemblages. This supports the view that higher speciation rates occurred among this guild of fishes in warm waters. It was also demonstrated that density of herbivorous fishes (the dominant group relying on low-quality food resources) in the western Atlantic decreased from tropical to temperate latitudes. Spatial use and mobility varied with latitude and consequently reef type and complexity. Fishes with small-size home ranges predominated on tropical coral reefs. # 2004 The Fisheries Society of the British Isles Key words: community structure; herbivory; latitudinal gradient; macroecology; reef fishes. -
Towards a Global Names Architecture: the Future of Indexing Scientific Names
A peer-reviewed open-access journal ZooKeys 550: 261–281Towards (2016) a Global Names Architecture: The future of indexing scientific names 261 doi: 10.3897/zookeys.550.10009 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Towards a Global Names Architecture: The future of indexing scientific names Richard L. Pyle1 1 Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA Corresponding author: Richard L. Pyle (email address) Academic editor: Ellinor Michel | Received 19 May 2015 | Accepted 20 May 2015 | Published 7 January 2016 http://zoobank.org/AD5B8CE2-BCFC-4ABC-8AB0-C92DEC7D4D85 Citation: Pyle RL (2016) Towards a Global Names Architecture: The future of indexing scientific names. In: Michel E (Ed.) Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond. ZooKeys 550: 261–281. doi: 10.3897/zookeys.550.10009 Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inacces- sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro- scopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade. -
Table of Fishes of Sydney Harbour 2019
Table of Fishes of Sydney Harbour 2019 Family Family/Com Species Species Common Notes mon Name Name Acanthuridae Surgeonfishe Acanthurus Eyestripe close s dussumieri Surgeonfish to southern li mit Acanthuridae Acanthurus Orangebloch close to olivaceus Surgeonfish southern limit Acanthuridae Acanthurus Convict close to triostegus Surgeonfish southern limit Acanthuridae Acanthurus Yellowmask xanthopterus Surgeonfish Acanthuridae Paracanthurus Blue Tang not included hepatus in species count Acanthuridae Prionurus Spotted Sawtail maculatus Acanthuridae Prionurus Australian Sawtail microlepidotus Ambassidae Glassfishes Ambassis Port Jackson jacksoniensis glassfish Ambassidae Ambassis marianus Estuary Glassfish Anguillidae Freshwater Anguilla australis Shortfin Eel Eels Anguillidae Anguilla reinhardtii Longfinned Eel Antennariidae Anglerfishes Antennarius Freckled Anglerfish southern limit coccineus Antennariidae Antennarius Giant Anglerfish close to commerson southen limit Antennariidae Antennarius Shaggy Anglerfish southern limit hispidus Antennariidae Antennarius pictus Painted Anglerfish Antennariidae Antennarius striatus Striate Anglerfish Table of Fishes of Sydney Harbour 2019 Antennariidae Histrio histrio Sargassum close to Anglerfish southen limit Antennariidae Porophryne Red-fingered erythrodactylus Anglerfish Aploactinidae Velvetfishes Aploactisoma Southern Velvetfish milesii Aploactinidae Cocotropus Patchwork microps Velvetfish Aploactinidae Paraploactis Bearded Velvetfish trachyderma Aplodactylidae Seacarps Aplodactylus Rock Cale -
Using Molecular Identification of Ichthyoplankton to Monitor
Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 1 Using molecular identification of ichthyoplankton to monitor 2 spawning activity in a subtropical no-take Marine Reserve 3 4 5 6 Ana Luisa M. Ahern1, *, Ronald S. Burton1, Ricardo J. Saldierna-Martínez2, Andrew F. Johnson1, 7 Alice E. Harada1, Brad Erisman1,4, Octavio Aburto-Oropeza1, David I. Castro Arvizú3, Arturo R. 8 Sánchez-Uvera2, Jaime Gómez-Gutiérrez2 9 10 11 12 1Marine Biology Research Division, Scripps Institution of Oceanography, University of California 13 San Diego, La Jolla, California, USA 14 2Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, 15 Instituto Politécnico Nacional, CP 23096, La Paz, Baja California Sur, Mexico 16 3Cabo Pulmo National Park, Baja California Sur, Mexico 17 4The University of Texas at Austin, Marine Science Institute, College of Natural Sciences, 18 Port Aransas, Texas, USA 19 20 21 22 23 24 25 *Corresponding author: [email protected] 1 Molecular Identification of Ichthyoplankton in Cabo Pulmo National Park 26 ABSTRACT: Ichthyoplankton studies can provide valuable information on the species richness 27 and spawning activity of fishes, complementing estimations done using trawls and diver surveys. 28 Zooplankton samples were collected weekly between January and December 2014 in Cabo 29 Pulmo National Park, Gulf of California, Mexico (n=48). Fish larvae and particularly eggs are 30 difficult to identify morphologically, therefore the DNA barcoding method was employed to 31 identify 4,388 specimens, resulting in 157 Operational Taxonomic Units (OTUs) corresponding 32 to species. Scarus sp., Halichoeres dispilus, Xyrichtys mundiceps, Euthynnus lineatus, 33 Ammodytoides gilli, Synodus lacertinus, Etrumeus acuminatus, Chanos chanos, Haemulon 34 flaviguttatum, and Vinciguerria lucetia were the most abundant and frequent species recorded. -
FAMILY Plesiopidae Günther, 1861 - Roundheads, Longfins
FAMILY Plesiopidae Günther, 1861 - roundheads, longfins SUBFAMILY Acanthoclininae Günther, 1861 - spiny basslets GENUS Acanthoclinus Jenyns, 1841 - spiny basslets [=Acanthoclinus Jenyns [L.], 1841:91, Taumakoides (subgenus of Acanthoclinus) Whitley [G. P.], 1955:111] Notes: [The zoology of the voyage of H. M. S. Beagle; ref. 2344] Masc. Acanthoclinus fuscus Jenyns, 1842. Type by original designation. Mooi 1993 [ref. 21801] places the Acanthoclinidae as a subfamily of the Plesiopidae. Type by original designation (also monotypic, second species questionably included). •Valid as Acanthoclinus Jenyns, 1841 -- (Hardy 1985:360 [ref. 5184], Smith-Vaniz & Johnson 1990:223 [ref. 16561], Mooi 1993:322 [ref. 21801], Yerman & Leis 2011:79 [ref. 31400], Stewart 2015:1208 [ref. 34196]). Current status: Valid as Acanthoclinus Jenyns, 1841. Plesiopidae: Acanthoclininae. (Taumakoides) [Australian Zoologist v. 12 (pt 2); ref. 4722] Masc. Acanthoclinus trilineatus Griffin, 1933. Type by original designation (also monotypic). •Valid as Taumakoides Whitley, 1955 -- (Hardy 1985:364 [ref. 5184]). •Synonym of Acanthoclinus Jenyns, 1841 -- (Smith-Vaniz & Johnson 1990:223 [ref. 16561]). Current status: Synonym of Acanthoclinus Jenyns, 1841. Plesiopidae: Acanthoclininae. Species Acanthoclinus fuscus Jenyns, 1841 - olive rockfish [=Acanthoclinus fuscus Jenyns [L.], 1841:92, Pl. 18 (fig. 2), Acanthoclinus taumaka Clarke [F. E.], 1879:293, Pl. 15 (upper right)] Notes: [The zoology of the voyage of H. M. S. Beagle; ref. 2344] Bay of Islands, New Zealand. Current status: Valid as Acanthoclinus fuscus Jenyns, 1841. Plesiopidae: Acanthoclininae. Distribution: New Zealand. Habitat: marine. (taumaka) [Transactions and Proceedings of the New Zealand Institute v. 11 (art. 25) (for 1878); ref. 18006] Jackson's Bay, New Zealand. Current status: Synonym of Acanthoclinus fuscus Jenyns, 1841. -
Statewide Survey of Boat-Based Recreational Fishing in Western Australia 2015/16 K.L
Department of Primary Industries and Regional Development Fisheries Research Report No. 287 Statewide survey of boat-based recreational fishing in Western Australia 2015/16 K.L. Ryan, N.G. Hall, E.K. Lai, C.B. Smallwood, S.M. Taylor, B.S. Wise Fisheries Research Report No. 287 December 2017 Correct citation: Ryan KL, Hall NG, Lai EK, Smallwood CB, Taylor SM, Wise BS 2017. Statewide survey of boat- based recreational fishing in Western Australia 2015/16. Fisheries Research Report No. 287, Department of Primary Industries and Regional Development, Western Australia. 205pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Department of Primary Industries and Regional Development Gordon Stephenson House 140 William Street PERTH WA 6000 Telephone: (08) 6551 4444 Website: dpird.wa.gov.au ABN: 18 951 343 745 ISSN: 1035-4549 (Print) ISBN: 978-1-921258-00-8 (Print) ISSN: 2202-5758 (Online) ISBN: 978-1-921258-01-5 (Online) Copyright © Department of Primary Industries and Regional Development, 2017. 4874/17 ii Fisheries Research Report [Western Australia] No. 287 Table of Contents Executive Summary ............................................................................................... ix 1 Introduction .................................................................................................... -
Proceedings of the United States National Museum
Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 114 1963 Number 3472 REVIEW OF THE HAWKFISHES (FAMILY CIRRHITIDAE) By John E. Randall ^ The Cirrhitidae is a famil}'^ of 10 genera and 34 species of carniv- orous fishes, usually small and often colorful, which inhabit warm seas. One of the genera and six of the species are herein described as new. The family is characterized as follows: pectoral fins with 14 rays, the lower 5 to 7 rays unbranched and usually enlarged with membranes deeply incised; 1 dorsal fin, notched between spinous and soft portions, with 10 spines and 11 to 17 rays (the spinous portion, however, of greater basal length than the soft); anal fin with 3 spines and 5 to 7 (usually 6) rays; 15 principal caudal rays; 6 branchiostegal rays; pelvic rays 1,5; 1 or more cirri projecting pos- teriorly from interspinous membranes near tips of dorsal spines; a fringe of cirri on hind edge of anterior nostril; gill membranes broadly joined with a free fold across isthmus; no air bladder; 26 vertebrae. ' Contribution Ko. 409 from The Marino Laboratory, University of Miami. Author now Professor of Biology, University of Puerto Rico, Mayagiiez, Puerto Rico. 389 390 PROCEEDINGS OF THE NATIONAL MUSEUM vol. ii4 With the exception of the presence or absence of palatine teeth, the dentition of cirrhitids is relatively unchanging from species to spe- cies. Teeth are present on the vomer. There is a row of canine teeth in both jaws which are usually longer anteriorly in the upper jaw; the longest canines in the lower jaw are usually a group of 2 to 4 on each side about half way back in the series of teeth. -
Statewide Survey of Boat-Based Recreational Fishing in Western Australia 2017/18
Fisheries Research Report No. 297 Statewide survey of boat-based recreational fishing in Western Australia 2017/18 K.L. Ryan, N.G. Hall, E.K. Lai, C.B. Smallwood, A. Tate, S.M. Taylor, B.S. Wise December 2019 8562 /15 Correct citation: Ryan KL, Hall NG, Lai EK, Smallwood CB, Tate A, Taylor SM, Wise BS 2019. Statewide survey of boat-based recreational fishing in Western Australia 2017/18. Fisheries Research Report No. 297, Department of Primary Industries and Regional Development, Western Australia. 195pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au Fish Illustrations © R.Swainston/www.anima.net.au. Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Department of Primary Industries and Regional Development Gordon Stephenson House 140 William Street PERTH WA 6000 Telephone: (08) 6551 4444 Website: dpird.wa.gov.au ABN: 18 951 343 745 ISSN: 1035-4549 (Print) ISBN: 978-1-921258-32-9 (Print) ISSN: 2202-5758 (Online) ISBN: 978-1-921258-33-6 (Online) Copyright © State of Western Australia (Department of Primary Industries and Regional Development) 2019. ii Fisheries Research Report [Western Australia] No. 297 Table of Contents Executive Summary ..........................................................................................