2008 APS March Meeting New Orleans, Louisiana

Total Page:16

File Type:pdf, Size:1020Kb

2008 APS March Meeting New Orleans, Louisiana 2008 APS March Meeting New Orleans, Louisiana http://www.aps.org/meetings/march/index.cfm i Monday, March 10, 2008 8:00AM - 11:00AM — Session A8 DFD: Colloidal Self-Assembly I Morial Convention Center RO6 8:00AM A8.00001 Directed Self-Assembly of Spherical Particles NATALIE ARKUS, GUANGNAN MENG, VINOTHAN MANOHARAN, MICHAEL BRENNER, Harvard University — We examine the kinetics and energetics of self-assembly in systems containing a small number of spherical colloidal nanoparticles using a combination of theory, simulation, and experiment. We then explore how the addition of spherically symmetric binding specificity can be used to direct the self-assembly of a given structure. Using graph theoretic, numerical, and algebraic geometric techniques, we denumerate all possible packings for a system of n particles. We map out the energy landscape of these packings, which is determined not only by the value of the potential energy at these minima, but also by the vibrational normal modes of the structures. Experiments for a 6 particle system show that the likelihood of a given packing follows this expected equilibrium distribution. To explore the kinetics of packing formation, we simulate the self-assembly of these systems in the irreversible binding limit. For the 6 particle system, this reveals that the kinetics required to form one of the packings is highly unlikely, resulting in the other packing forming with 100% probability. With the addition of binding specificity however, we can cause the unlikely packing to form with 100% probability. We show how the addition of binding specificity effects the energetic landscape of these systems, and that it alone is sufficient to direct self-assembly. 8:12AM A8.00002 Controlling assembly of micro- and nano-particle systems with DNA. , DMYTRO NYKYPANCHUK, MATHEW MAYE, DANIEL VAN DER LELIE, OLEG GANG, Brookhaven National Laboratory — Addressable biological interactions provide attractive platform for rational self-assembly, however the strength of such interactions are often difficult to control. Here we present an approach where DNA molecules are used to balance attractive and repulsive interactions during particles assembly while preserving the interaction addressability. We show, that by changing the composition and structure of DNA shall of micro- (2 um) or nanoparticles (10 nm), assembly kinetics, aggregate sizes, and the systems melting properties can be tuned. At constant environmental conditions, this strategy allows for rational control of interaction energy landscape for nano- and micro-systems in a wide dynamic range. 8:24AM A8.00003 Evaporation-Driven Assembly of Microspheres with Polymer in Emulsion Droplets1 , KENG-HUI LIN, Institute of Physics, Academia Sinica, Taipei, Taiwan, LIANG-JIE LAI, Dept. of Physics, National Central University, Chung-li, Taiwan, CHIH-CHUNG CHANG, HUI CHEN, Dept. of Chemical and Materials Engineering, National Central University, Chung-li, Taiwan — We study the packing of colloidal microspheres mixed with polymer in oil-in-water emulsion droplets through evaporation. The addition of polymer produce non-unique configurations of final clusters when the number of particles N inside the droplet is larger than 4. The cluster configurations are classified into three categories based on the symmetry. Stablized colloidal clusters of spherical packings are observed. Observation on packing process shed light to the mechanisms which cause different and non-unique structures. The osmotic pressure and interparticle interaction due to polymer play important roles in packing. 1Support for this work is provided by NSC Grant No. 96-2112-M-001 8:36AM A8.00004 Entropy-driven self-assembly of dimers , ISSEI NAKAMURA, AN-CHANG SHI, McMaster University — Supramolecular self-assembly is an important phenomenon with applications ranging from chemical synthesis to biological systems. Although the driving force of assembly is the weak non-covalent intermolecular interaction such as hydrogen bonding and dispersion force, the self-assembly is a result from balancing the enthalpic and entropic contributions. In general, the disassembled/disordered phase is expected as temperature is raised because of the entropic gain from the components of the aggregate. However, it has been observed that the self-assembled/ordered phase can be promoted with increasing temperature. This implies that the self-assembly is driven by entropy. In order to provide a better understanding of this entropy-driven transition, we have studied a statistical mechanical model for the aggregation of macromolecular dimers immersed in solvents. The model demonstrates that solvent molecules absorbed on the surface of the solute are released with increasing temperature, leading to an increase of the total entropy of the system. Consequently, the cooperative stability of the dimeric state is induced. The thermodynamic features of this transition are analyzed. 8:48AM A8.00005 Hydrodynamic interactions effects on the dipole-induced self-assembly of β- peptides and Brownian-induced polymer pore translocation , JUAN HERNANDEZ-ORTIZ, Departamento de Materiales, Universidad Nacional de Colombia, Sede Medellin, MICHAEL GRAHAM, JUAN DE PABLO, Department of Chemical and Biological Engineering, University of Wisconsin-Madison — A novel method that scales linearly with the number of particles is used to study Brownian-systems considering fluctuating hydrodynamic interactions. The method is demostrated in the concept of two applications: the dipole-induced self-assembly of β-peptides and the Brownian-motion-induced translocation of a polymer thought a rectangular pore. The method includes the long-range interactions by the Green’s function formalism. It allows the consideration of peptides at intermediate concentrations and the inclusion of the non-periodic domain of the translocation. The hydrodynamics interactions affect the dynamics of the peptides agglomeration and the mean-squared-displacement indicates significant changes in the long-time diffusion coefficient. The polymer translocation is study using a transition path sampling based methodology. In particular it is used to calculate the translocation rate constant. Even for a single bead there are differences once hydrodynamics are included. These differences are due to the changes of mobility near walls and the change in polymer chain diffusion coefficient. 9:00AM A8.00006 Self-assembly of complex shaped colloidal particles , ADELINE PERRO, VINOTHAN N. MANOHARAN, Harvard School of Engineering and Applied Sciences — We have developed a new method to produce hybrid particles with polyhedral shapes in very high yield (liter quantities at up to 75% purity) using a combination of emulsion polymerization and inorganic surface chemistry. The optical properties of these particles are tailored for studying their dynamics and self-assembly. For example, we produce systems that consist of index-matched sphere doublets with a small strongly scattering inorganic core between the two spheres, allowing us to track the center of mass of each doublet. We have generalized the preparation procedure to create even more complex geometries, including hybrid tetrahedra and octahedra. We present some preliminary studies on the self-assembly of these systems based on various optical experiments, including confocal microscopy, light scattering, and digital holographic microscopy. 9:12AM A8.00007 Progress on systems of DNA modified colloidal particles for self-replication , PAUL CHAIKIN, MIRJAM LEUNISSEN, REMI DREYFUS, ROUJIE SHA, NADRIAN SEEMAN, DAVID GRIER, DAVID PINE, New York University — Our goal is to create new materials that can self-replicate and self-assemble. For this, we modify the interactions between micrometer-sized colloids by coating them with single-stranded DNA ‘sticky ends’, which specifically recognize complementary sequences on other colloids. We find that the aggregation-dissociation behavior is fully reversible for at least tens of temperature cycles. Using magnetic beads or optical tweezers, we form a chain-like ‘seed’ structure, which acts as a template to assemble copies of itself from a soup of singlets. To determine what are the preferred binding sites, we studied the interactions between the singlets and their complementary particles in the seed. Important in our replication scheme is that each particle has two different types of sticky ends: one for ‘longitudinal’ bonding along the chain and another for ‘transverse’ bonding between seed and daughter chains. Contrary to the transverse linkers, the longitudinal linkers form AT/TA bonds, which can be crosslinked with an intercalator and UV irradiation. In this way, we permanently fix the seed and its copies. 9:24AM A8.00008 Binary Colloidal Assembly by Dielectrophoresis , PETER HOFFMAN, YINGXI ELAINE ZHU, University of Notre Dame — Dielectrophoresis (DEP)-driven colloidal assembly has been recently explored as a new route to manipulate colloids and rapidly form nanostructured materials. In this talk, we demonstrate that colloidal particles of varied sizes can be assembled with controllable packing configurations in the presence of AC-electrical fields. We investigate binary latex particles of varied size ratios from 0.25 to 0.8 and directly monitor the dynamic assembly process with final structural characterization by using high-speed confocal microscopy. We observe rich phase behaviors of binary colloidal assembly with a strong dependence of applied AC-field frequency and medium conductivity. The obtained structural phase diagram can be well predicted
Recommended publications
  • Contribution to the Historical Development of Macromolecular Chemistry – Exemplified on Cellulose
    CELLULOSE CHEMISTRY AND TECHNOLOGY CONTRIBUTION TO THE HISTORICAL DEVELOPMENT OF MACROMOLECULAR CHEMISTRY – EXEMPLIFIED ON CELLULOSE PETER ZUGENMAIER Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany Dedicated to Professor Elfriede Husemann, on the occasion of her 100th birthday in December 2008. She was an admirable and internationally highly recognized scientist and the first director of the Institute of Macromolecular Chemistry (Hermann-Staudinger-Haus) of the Albert-Ludwigs-Universität Freiburg; the foundation of the institute owing to the eminent scientific success and recognition of the work of Hermann Staudinger, leading to the Nobel Prize in the field of macromolecular chemistry. Received October 20, 2009 The development of the structure determination for cellulose and its derivatives as macromolecules is described from the beginning of the 20th century to the 1940s. The first correct presentation of the constitution of cellulose as a linear chain macromolecule of 1-4 linked β-D-anhydroglucopyranose, with the help of organic chemistry, dates from 1928. The size and shape of cellulose molecules still remained a controversial topic for some time. On the one hand, there were proposals of micelles i.e. aggregates of cyclic mono- or oligoanhydroglucose or micelles of small macromolecules of 30-50 glucose units. On the other hand, cellulose was seen as large macromolecules with more than 3000 glucose units for structures considered in solution as well as in fibres. The final clarification of the cellulose structure as a semi-flexible macromolecule of high molecular weight was extremely hindered by the inadequate interpretation of experimental results. Later, additional experimental and theoretical methods led to a consistent picture of the cellulose structure with high precision.
    [Show full text]
  • Shear Deformation in Polymer Gels and Dense Colloidal Suspensions
    SHEAR DEFORMATION IN POLYMER GELS AND DENSE COLLOIDAL SUSPENSIONS Anindita Basu A DISSERTATION in Physics and Astronomy Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2012 Arjun G. Yodh, James M. Skinner Professor of Science, Professor of Physics Supervisor of Dissertation Alan T. Charlie Johnson, Jr., Professor of Physics Graduate Group Chairperson Dissertation Committee Paul A. Janmey, Professor of Physiology Tom Lubensky, Professor of Physics Douglas Durian, Professor of Physics Gary Bernstein, Professor of Physics Dedication To my mother. ii Acknowledgements I am deeply indebted to the following individuals for my education and the work presented in this thesis. I am infinitely grateful to my advisor, Dr. Arjun Yodh for his unfailing guidance and support, not to mention his patience in my endeavours. I acknowledge his constant efforts in teaching me to think critically and interact effectively. I also thank my thesis committee members- Drs. Gary Bernstein, Douglas Durian, Paul Janmey, and Tom Lubensky. I thank my dear husband and best friend, Soumyadip Ghosh, for his unwavering support- he took upon himself a 130-mile commute, shine or snow during my PhD. I thank my mother and father, who provided me with every opportunity. I am also grateful to my colleagues and group mates, past and present- Ahmed Alsayed, Kevin Aptowicz, David Busch, Dan Chen, Ke Chen, Piotr Habdas, Yilong Han, Larry Hough, Matt Gratale, Matt Lohr, Xiaoming Mao, Saurav Pathak, Matt Pelc, Tim Still, Qi Wen, Ye Xu, Peter Yunker, and Zexin Zhang. Not only were they instrumental in much that I have learned during my PhD, but they made every moment enjoyable.
    [Show full text]
  • March 2010 Booklet
    DPOLYMarch 2010 Meeting Program including Soft-Matter Physics sessions TM 2010 APS March Meeting • March 15–19 • Portland, Oregon DPOLY Short Course Polymers for Energy Generation and Storage March 13, 1:00 - 5:30 and March 14, 8:30 – 5:30 Oregon Convention Center Course Description Polymers hold much promise as active layers in inexpensive, lightweight energy generating and storing devices. Although the solid state physics and electrochemistry of such devices have been the subject of intense research, it has more recently become clear that an understanding of the polymer physics will lead to both an ability to control nanoscale morphology and optimize transport across the material. The purpose of this short course is to provide a background in the basic device physics of both organic photovoltaics and batteries to an audience primarily consisting of graduate students, postdoctoral researchers, and early career scientists already knowledgeable in polymer physics. It is hoped that this forum will both provide a basic foundation of knowledge as well as a deeper discussion of outstanding problems and avenues of research in energy relevant polymers. Each half of the course will begin by covering the basic underlying physics of charge/ion transport as well as device operation. Then our current understanding of the thermodynamics, morphology, self-assembly, and mechanisms of charge transport within these systems will be outlined with significant time reserved for discussion of gaps in current understanding and promising areas of future research. The course schedule allows for talks from each of the below speakers with ample time for discussion and interaction. This is roughly the schedule that has been followed by recent DPOLY short courses.
    [Show full text]
  • 2007 APS March Meeting Denver, Colorado
    2007 APS March Meeting Denver, Colorado http://www.aps.org/meetings/march i Monday, March 5, 2007 8:00AM - 11:12AM — Session A29 DFD: Focus Session: Colloids I Colorado Convention Center 303 8:00AM A29.00001 How confinement modifies the colloidal glass transition1 ERIC R. WEEKS, Emory University — We study concentrated colloidal suspensions, a model system which has a glass transition. These are suspensions of small solid particles in a liquid, and exhibit glassy behavior when the particle concentration is high; the particles are roughly analogous to individual molecules in a traditional glass. We view the motion of these colloidal particles in three dimensions by using an optical confocal microscope. This allows us to directly study the microscopic behavior responsible for the macroscopic viscosity divergence of glasses. In particular, we study how confinement changes the particle dynamics. We confine a colloidal suspension between two parallel walls, and find that in thin sample chambers the particle motion is greatly slowed. This suggests that confinement causes the onset of the glass transition to happen “sooner,” at particle concentrations which are not normally glassy. 1Supported by the National Science Foundation under Grant No. DMR-0239109. 8:36AM A29.00002 Periodic Stresses and Shear Thickening in an Attractive Colloidal Gel1 , CHINEDUM OSUJI, DAVID WEITZ, Applied Physics, Harvard University — We report on the observation of periodic stresses in a colloidal gel at rest and under minute shear deformation. Dilute suspensions of carbon black colloidal particles in hydrocarbon oil with an attractive Van der Waals interaction are found to shear thicken in two distinct regimes. The first, low shear rate regime is ascribed to network elongation and the high shear regime to hydrodynamic clustering, akin to that observed in concentrated hard sphere systems.
    [Show full text]
  • Acrobat Distiller, Job 10
    NASA/TM—2002-212009 IAC–02–T.4.02 The NASA Microgravity Fluid Physics Program—Knowledge for Use on Earth and Future Space Missions Fred J. Kohl and Bhim S. Singh Glenn Research Center, Cleveland, Ohio J. Iwan Alexander National Center for Microgravity Research, Cleveland, Ohio Nancy J. Shaw, Myron E. Hill, and Frank G. Gati Glenn Research Center, Cleveland, Ohio December 2002 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA’s scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA’s institutional • TECHNICAL TRANSLATION. English- mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA’s are published by NASA in the NASA STI Report mission. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office’s diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results .
    [Show full text]
  • Polyelectrolytes
    POLYELECTROLYTES A. KATCHALSKY Weizmann Institute of Science, Rehovot, Israel ABSTRACT A general review of the behaviour of polyelectrolyte systems is presented. It deals primarily with the colligative properties of aqueous solutions of polyelectrolytes in salt-free and salt-containing mixtures, as well as with several transport phenomena (such as conductance, transference and diffusion). The theoretical model underlying this account is that of charged macromolecules surrounded by a dense cylindrical counterion atmosphere. This model proves a quantitative description of osmotic pressure, of activity coefficients, of the heat of dilution and of Donnan distribution between polyelectrolyte solutions (or gels) and an external salt solution. For the analysis of transport phenomena a non-equilibrium thermodynamic treatment was introduced which allows the identification of straight and coupling phenomena in polyelectrolyte systems. This anslysis led to an explicit consideration of relaxation and electrophoretic effects in polyelectrolytes. Some attention was paid to the biophysical significance of polyelectrolyte interactions, and in particular to the combination of polyelectrolytes with divalent ions and to the complex formation of polyelectrolytes with other charged polyions. These interactions play an important role in the organization of nucleic acids and in their combination with basic proteins. Since the double- or triple-stranded complexes of some polynucleotides exhibit hysteresis— related to the conformation of the complex—the last part of the paper is devoted to the discussion of molecular hysteresis and its significance as a biomolecular memory imprint. 1. INTRODUCTION 1.1 Polyelectrolyte research is concerned with the study of the electro- chemical properties of charged polymers; it may be regarded as a direct descendant of the classical colloid chemistry of hydrophilic biocolloids.
    [Show full text]
  • Research Journal of Pharmaceutical, Biological and Chemical Sciences
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences A Review: Conducting Polymers and Their Applications. Nirmala Kumari Jangida*, Narendra Pal Singh Chauhanb ,Kiran Meghwala, Rakshit Ametac , and Pinki B Punjabia. aDepartment of Chemistry, Mohanlal Sukhadia University, Udaipur – 313001 (Raj.), India bDepartment of Chemistry, B. N. P. G. College, Mohanlal Sukhadia University, Udaipur – 313001 (Raj.), India cDepartment of Chemistry, Pacific College of Basic and Applied Sciences, PAHER University, Udaipur – 313001 (Raj.), India ABSTRACT During the past two decades, both fundamental and applied research in conducting polymers like polyaniline, polyacetylene polythiophene and polypyrrole has grown enormously. Conducting polymers are unique due to its ease of synthesis, environmental stability and simple doping/dedoping chemistry. polyaniline is one of the most studied conducting polymers of the past 50 years. The most common chemical synthesis of polyaniline is by oxidative polymerization with ammonium per sulfate as an oxidant. Conducting polymers owing to its ease of synthesis, remarkable environmental stability and high conductivity in the doped form has remained thoroughly studied due to their varied applications in fields like biological activity, drug release systems, rechargeable batteries and sensors. Keywords: Doping, Effect on conductivity, conducting polymers, applications *Corresponding author May-June 2014 RJPBCS 5(3) Page No. 383 ISSN: 0975-8585 INTRODUCTION Perhaps the first modern example of polymer science is Henri Braconnot's work in the 1830s. He and his coworkers developed derivatives of the natural polymer cellulose, producing new, semi-synthetic materials, such as celluloid and cellulose acetate. The term “polymer” was firstly coined by Berzelius. Friedrich Ludersdorf and Nathaniel Hayward discovered that the addition of sulfur to raw natural rubber (polyisoprene) helped in the prevention of material from becoming sticky.
    [Show full text]
  • Rubber Science a Modern Approach Rubber Science Yuko Ikeda • Atsushi Kato Shinzo Kohjiya • Yukio Nakajima
    Yuko Ikeda · Atsushi Kato Shinzo Kohjiya · Yukio Nakajima Rubber Science A Modern Approach Rubber Science Yuko Ikeda • Atsushi Kato Shinzo Kohjiya • Yukio Nakajima Rubber Science A Modern Approach 123 Yuko Ikeda Shinzo Kohjiya Center for Rubber Science and Technology, Kyoto University Faculty of Molecular Chemistry and Kyoto Engineering Japan Kyoto Institute of Technology Kyoto Yukio Nakajima Japan Department of Mechanical Science and Engineering, School of Advanced Atsushi Kato Engineering Department of Automotive Analysis Kogakuin University NISSAN ARC, LTD. Hachioji, Tokyo Yokosuka, Kanagawa Japan Japan ISBN 978-981-10-2937-0 ISBN 978-981-10-2938-7 (eBook) https://doi.org/10.1007/978-981-10-2938-7 Library of Congress Control Number: 2017948624 © Springer Nature Singapore Pte Ltd. 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Arxiv:1610.10013V2 [Cond-Mat.Soft] 30 Jan 2017 to Understand Some of the Issues, It Is Relevant to Be X
    Experimental soft-matter science Sidney R. Nagel The James Franck and Enrico Fermi Institutes and the Department of Physics The University of Chicago, Chicago, IL 60637 (Dated: January 31, 2017) Soft materials consist of basic units that are significantly larger than an atom but much smaller than the overall dimensions of the sample. The label \soft condensed matter" emphasizes that the large basic building blocks of these materials produce low elastic moduli that govern a material's ability to withstand deformations. Aside from softness, there are many other properties that are also caused by the large size of the constituent building blocks. Soft matter is dissipative, disordered, far-from-equilibrium, non-linear, thermal and entropic, slow, observable, gravity-affected, patterned, non-local, interfa- cially elastic, memory-forming and active. This is only a partial list of how matter created from large component particles is distinct from \hard matter" composed of constituents at an atomic scale. Issues inherent in soft matter raise problems that are broadly important in diverse areas of science and require multiple modes of attack. For example, far-from-equilibrium be- havior is confronted in biology, chemistry, geophysics, astrophysics and nuclear physics. Similarly, issues dealing with disorder appear broadly throughout many branches of inquiry wherever rugged landscapes are invoked. This article reviews the discussions that occurred during a workshop held on January 30-31, 2016 in which opportunities in soft-matter experiment were surveyed. Soft matter has had an exciting history of discovery and continues to be a fertile ground for future research. PACS numbers: 47.57.-s, 47.54.-r, 82.35.-x, 05.70.Ln, 46.65.+g, 83., 47.
    [Show full text]
  • Simple Models for Complex Nonequilibrium Uids
    Available online at www.sciencedirect.com Physics Reports 390 (2004) 453–551 www.elsevier.com/locate/physrep Simple models for complex nonequilibrium &uids Martin Kr)ogera;b;∗ aPolymer Physics, Materials Science, ETH Zentrum, 8092 Zurich, Switzerland bInstitut f. Theoretische Physik, Techn. Univ. Berlin, 10623 Berlin, Germany Accepted 15 October 2003 editor: E. Sackmann Abstract This review is concerned with the nonequilibrium dynamics and structure ofcomplex &uids based on simple micro- and mesoscopic physical models which are not rigorously solvable by analytic methods. Special emphasis is placed on the ÿnitely extendable nonlinear elastic (FENE) chain models which account for molecular stretch, bending, and topology. More coarse-grained descriptions such as primitive path models, and elongated particle models are reviewed as well. We focus on their inherently anisotropic material—in particular rheological—properties via deterministic and stochastic approaches. A number ofrepresentative examples are given on how simple (often high-dimensional) models can, and have been implemented in order to enable the analysis ofthe microscopic origins ofthe nonlinear viscoelastic behavior ofpolymeric materials. These examples are shown to provide us with a number ofroutes fordeveloping and establishing coarse-grained (low-dimensional) models devoted to the prediction ofa reduced number ofsigniÿcant material properties. At this stage approximations which allow for an analytical treatment are discussed as well. Concerning the types ofcomplex &uids,
    [Show full text]
  • APS March Meeting 2010 Portland, Oregon
    APS March Meeting 2010 Portland, Oregon http://www.aps.org/meetings/march/index.cfm i Monday, March 15, 2010 8:00AM - 11:00AM — Session A12 DFD: Microfluidics I: Electrokinesis and Transport B110-B111 8:00AM A12.00001 Flow Regimes and Parametric Competitions in Nanochannel Flows CHONG LIU, ZHIGANG LI, Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong — Nanoscale fluid flow systems involve both micro- and macroscopic parameters, which compete with each another and lead to different flow regimes. In this work, we investigate the competitions of four fundamental parameters, including the fluid-fluid, fluid-wall binding energies, temperature of the system, and driving force. By illustrating the fluid flux as a function of a dimensionless number, which represents the effective surface effect on the fluid, we show that the fluid motion in nanochannels falls into different regimes. For small fluid-fluid self-binding energy, there are three flow regimes; as the dimensionless number increases, the flux undergoes a transition from fluid-wall binding energy independent to temperature independent. If the fluid-wall binding energy is of the order of room temperature, there is a critical value for the dimensionless number, which divides the flow into weak and strong fluid-wall interaction regimes. Each of these regimes is associated with a distinct mechanism which reveals the competitions of the parameters. 8:12AM A12.00002 Microfluidic Chemical Concentration Switching at Taylor’s Limit1 , EBERHARD BODENSCHATZ, ALBERT BAE, LASSP, Cornell University, Ithaca and MPI for Dynamics and Selforganization, Goettingen, CARSTEN BETA, Institute for Physics and Astronomy, University of Potsdam and MPI for Dynamics and Selforganization, Goettingen — In this talk, we will discuss the time for switching chemical concentrations in microfluidic devices.
    [Show full text]