Nobel Laureate Pathologists

Total Page:16

File Type:pdf, Size:1020Kb

Nobel Laureate Pathologists Available online at www.annclinlabsci.org 196 Annals of Clinical & Laboratory Science, vol. 39, no. 2, 2009 A Note from History: Nobel Laureate Pathologists Steven I. Hajdu Los Angeles, California Keywords: Nobel Prize, Fibiger, Whipple, Dulbecco, Benacerraf, Warren, history of pathology Alfred Nobel (1833-1896), Swedish chemical in 1895–directed that most of his assets should be engineer, inventor, and entrepreneur, patented over allocated for prizes in 5 areas: physics, chemistry, 300 inventions in 5 different countries. Nobel physiology or medicine, literature, and peace. He began to experiment with nitroglycerine and ordered that the prizes be given annually to those produced his first explosion in 1862. After his most living awardees who during the preceding year had important inventions–the detonator (to explode conferred the greatest benefit on mankind. nitroglycerine), dynamite (to stabilize nitroglycerine) Since 1901, when the first prizes were awarded, and ballistite (smokeless gunpowder)–he built over 800 Nobel Prizes have been granted. Among factory after factory in 20 different countries. Soon, the Nobel laureates there are many scientists and he became a mega-industrialist and multimillion- physicians who had some expertise in pathology, aire. but there have been only 5 physicians who Nobel never attended a university nor did he completed pathology training and entered the ever obtain any degree. He was a self-educated man practice of pathology. and a remarkable linguist. He spoke German, English, French, Italian, Russian, and Swedish. He Johannes Fibiger, a pathologist and professor took serious interest in English literature. Chemistry at the University of Copenhagen, Denmark, fed was his hobby. Despite his fame, Nobel remained a cockroaches–obtained from a Danish sugar lonely man all his life and never gained happiness. factory–to rats kept in his research laboratory. After He acquired houses in France, Russia, and Italy, 2 months of feeding, he discovered that most of the but regarded himself homeless. He worshipped his rats had developed tumors in the stomach. On mother and almost every year he returned to histologic examination of the stomach, a parasitic Stockholm on her birthday. worm belonging to the nematode group was found. Nobel was a pacifist and he considered his Fibiger repeated the experiment over and over again inventions so dangerous that making war had with the same results. The rats developed chronic become unthinkable. In order to establish gastritis, gastric papilloma, and carcinoma. He permanent peace he set aside funds from his estate discovered in the infected cockroaches the same for an annual peace prize. This gave him the nematode he found in the stomach of the rats. impetus to extend his generosity to the sciences for Fibiger received the Nobel Prize in Physiology the benefit of mankind. Nobel in his final will–a or Medicine in 1926 for the experiments he had one-page handwritten note that he drafted in Paris conducted more than a decade before when he produced gastric carcinoma in rats by feeding them Address correspondence to Steven I. Hajdu, M.D., 1759 Spiroptera-infected cockroaches. Although Fibiger Drumcliff Court, Westlake Village, CA 91361-1636, USA; and his associates were known as meticulous tel 805 496 0691; fax 805 496 0620; e-mail [email protected]. investigators with integrity, the cause and nature of 0091-7370/09/0200-0196. $0.90. © 2009 by the Association of Clinical Scientists, Inc. Pathologists who received the Nobel Prize 197 the gastric tumors were questioned in subsequent Renato Dulbecco was born in Catanzara, Italy, years by numerous researchers who failed to in 1914. At the young age of 22 he received his reproduce Fibiger’s results. It is still uncertain what M.D. degree from the University of Turin. After caused the tumors produced by Fibiger. It has been his training in pathology, he was drafted into the suggested that the tumors of the rat stomach Italian army. During the Second World War, he resulted from vitamin A deficiency or from served with the Italian army in France and Russia. contamination of their diet by a fungus, Fusarium, He was wounded and returned to Italy where he that produces carcinogenic mycotoxins. joined the Resistance against Mussolini. After the war, in 1947, Dulbecco joined the George Whipple was born in 1878 in Ashland, staff of the California Institute of Technology and New Hampshire, USA. After graduating from began work on animal viruses. In 1962, he moved college, he spent a year in Ossining, New York, at to the Salk Institute in La Jolla, California, where the Holbrook Military Academy, where he taught he discovered the interaction between DNA tumor mathematics and science and was in charge of the viruses and the genetic material of cultivated cells. athletic program. He then entered Johns Hopkins He found that the virus either led to destruction of Medical School, where his favorite subjects were cells and the release of virus particles, or to pathology, biochemistry, and pharmacology. At transformation of cells. He showed by molecular Hopkins, he came under the influence of Welch, techniques that the genetic material of viruses was Osler, Halsted, and Cushing. After graduation he incorporated into the genetic material of the remained at Hopkins as a trainee in anatomic transformed cells and represented the first phase in pathology and after the second year, he was granted carcinogenesis. a year to study tropical diseases in Panama. In the In 1975, Dulbecco was awarded the Nobel Canal Zone, he worked under the direction of Prize in Physiology or Medicine in recognition of General Gorgas. the research work he carried out at the California During his years as a pathologist at Hopkins, Institute of Technology and the Salk Institute. Whipple developed an interest in diseases of the Dulbecco shared the Nobel Prize with David liver and he attempted to produce liver cell necrosis Baltimore and Howard Temin of the USA. in dogs by chloroform injection. In 1914, he was offered a professorship in research medicine at the Baruj Benacerraf was born in 1920 in Caracas, University of California in San Francisco. There he Venezuela. He had his primary and secondary extended his liver injury studies to research on the education in Paris, France. He received his B.S. in production of hemoglobin. 1942 at Columbia University in New York City In 1921, he assumed the position as head of the and his M.D. in 1945 at the Medical College of department of pathology and dean of the new Virginia in Richmond. He trained in pathology at medical school in Rochester, New York. Within a the Columbia Presbyterian Hospital in New York few years after his arrival in Rochester, with the City and took a fellowship in Paris. After returning generous support of Mr. Eastman and his film to New York, he went into the banking business in manufacturing company, Whipple showed that which he failed. feeding liver to dogs, made anemic by blood-letting, In 1956, Benacerraf joined the faculty of New was a potent cure for anemia. He also demonstrated York University School of Medicine. There he that a liver fraction was useful in secondary anemia began developing the concept of immune response (pernicious anemia). (Ir) genes, which control the body’s response to In 1934, Whipple was awarded the Nobel Prize antigens in autoimmune diseases. In 1970, he was in Physiology or Medicine for his discovery that a appointed chairman of the department of pathology diet rich in liver cured pernicious anemia. He at Harvard University in Boston, where he remained shared the prize with George Minot and William until 1991. As an aside, after Benacerraf assumed Murphy of the United States. his position as chairman of pathology, he discarded the gross and microscopic teaching sets that had 198 Annals of Clinical & Laboratory Science, vol. 39, no. 2, 2009 been accumulated for medical students by his It was there, in 1979, that Warren first noticed illustrious predecessors. Benacerraf received the small curved bacteria in gastric biopsies. Over the 1980 Nobel Prize in Physiology or Medicine for his next 2 years he demonstrated that the organisms discovery, while at New York University, of the were usually related to chronic gastritis and ulcers immune response genes. He shared the Nobel Prize in the stomach or duodenum. Subsequently, Warren with George Snell of the USA and Jean Dausset of and Barry Marshall, a gastroenterologist, succeeded France. in culturing the previously unknown bacterial species, Helicobacter pylori. John Warren was born in Adelaide, Australia In recognition of this discovery, Warren in 1937. At age 18 he was diagnosed as suffering received the Nobel Prize in Physiology or Medicine from grand mal epilepsy. Despite this handicap, he in 2005. He shared the Prize with his Australian gained entrance to the medical school of Adelaide colleague and co-worker, Barry Marshall. University in 1955. After he completed training in pathology at the Royal Melbourne Hospital, he was In conclusion, it is gratifying that through appointed pathologist at the Royal Perth Hospital Nobel’s inspired prize system, these five pathologists in Perth, Australia. were richly rewarded for their scientific achieve- ments. As for Nobel, this lonely man’s reward has been enduring and well-earned fame. .
Recommended publications
  • Alfred Nobel
    www.bibalex.org/bioalex2004conf The BioVisionAlexandria 2004 Conference Newsletter November 2003 Volume 1, Issue 2 BioVisionAlexandria ALFRED NOBEL 2004 aims to celebrate the The inventor, the industrialist outstanding scientists and scholars, in a he Nobel Prize is one of the highest distinctions recognized, granting its winner century dominated by instant fame. However, many do not know the interesting history and background technological and T that led to this award. scientific revolutions, through its It all began with a chemist, known as Alfred Nobel, born in Stockholm, Sweden in 1833. Nobel Day on 3 April Alfred Nobel moved to Russia when he was eight, where his father, Immanuel Nobel, 2004! started a successful mechanical workshop. He provided equipment for the Russian Army and designed naval mines, which effectively prevented the British Royal Navy from moving within firing range of St. Petersburg during the Crimean War. Immanuel Nobel was also a pioneer in the manufacture of arms, and in designing steam engines. INSIDE Scientific awards .........3 Immanuel’s success enabled him to Alfred met Ascanio Sobrero, the Italian Confirmed laureates ....4 Lady laureates ............7 provide his four sons with an excellent chemist who had invented Nitroglycerine education in natural sciences, languages three years earlier. Nitroglycerine, a and literature. Alfred, at an early age, highly explosive liquid, was produced by acquired extensive literary knowledge, mixing glycerine with sulfuric and nitric mastering many foreign languages. His acid. It was an invention that triggered a Nobel Day is interest in science, especially chemistry, fascination in the young scientist for many dedicated to many of was also apparent.
    [Show full text]
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Biochemistrystanford00kornrich.Pdf
    University of California Berkeley Regional Oral History Office University of California The Bancroft Library Berkeley, California Program in the History of the Biosciences and Biotechnology Arthur Kornberg, M.D. BIOCHEMISTRY AT STANFORD, BIOTECHNOLOGY AT DNAX With an Introduction by Joshua Lederberg Interviews Conducted by Sally Smith Hughes, Ph.D. in 1997 Copyright 1998 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the Nation. Oral history is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well- informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ************************************ All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Arthur Kornberg, M.D., dated June 18, 1997. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley.
    [Show full text]
  • Naturvidenskabernes Kanonisering. Forskere, Erkendelser Eller Kulturarv
    NORDISK MUSEOLOGI 2006 G 2, S. 27-44 Naturvidenskabernes kanonisering. Forskere, erkendelser eller kulturarv KRISTIAN HVIDTFELT NIELSEN* Title: The ”canonisation” of the natural sciences. Abstract: This paper concerns recent official attempts to place science in Denmark within the context of a cultural canon. Based on differentiation between Mode 1 and 2 knowledge production, the paper points out that such attempts are highly contextualised and contingent on their different modes of application. Consequent- ly, they entangle scientific expertise with other social skills and qualifications. Like science museums and science centres, they are a means of dealing with science in the public agora, i.e. the public sphere in which negotiations, mediations, consulta- tions and contestations regarding science increasingly take place. Analysing the am- biguities and uncertainties associated with the recent official placing of science wit- hin an overall cultural canon for Denmark, this paper concludes that even though the agora embodies antagonistic forms of interaction, it might also lead the way to producing socially robust knowledge about science. Keywords: Cultural canon, science, Mode 1 and 2 knowledge production, Mode 2 society, agora, science museums, science centres. Naturvidenskab er ikke med i den officielle, denskabskanoner samt deres bredere betyd- danske kulturkanon, som blev sat i værk af ning for offentlighedens forståelse af naturvi- Kulturministeriet i 2005 (Kulturministeriet denskab, som jeg i denne artikel vil komme 2006). Det
    [Show full text]
  • Tierversuche in Der Forschung Senatskommission Für Tierexperimentelle Forschung Der Deutschen Forschungsgemeinschaft Tierversuche in Der Forschung 3  2
    Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung 2 3 Inhalt Vorwort �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4 Tierversuche und Tierschutz: Ethische Abwägungen Einführung �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6 Die Entwicklung des Tierschutzgedankens in Deutschland �� � � � � � � � � � � � � 39 Ethische Aspekte von Tierversuchen und das Solidaritätsprinzip� � � � � � � � 40 Tierversuche: Definition und Zahlen Die Übertragbarkeit aus ethisch-rechtlicher Sicht� � � � � � � � � � � � � � � � � � � � � � 45 Was ist ein Tierversuch? �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 Das 3 R-Prinzip �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 48 Wie viele Tiere werden verwendet? �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 Alternativen zum Tierversuch� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 51 Wofür werden Tiere in der Forschung benötigt? �� � � � � � � � � � � � � � � � � � � � � � 11 Grenzen von Alternativmethoden� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 54 Welche Tierarten werden eingesetzt? ��
    [Show full text]
  • Tierversuche in Der Forschung Senatskommission Für Tierexperimentelle Forschung Der Deutschen Forschungsgemeinschaft Tierversuche in Der Forschung 2 3
    Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung 2 3 Inhalt Vorwort . 4 Tierversuche und Tierschutz: Ethische Abwägungen Einführung . 6 Die Entwicklung des Tierschutzgedankens in Deutschland . 39 Ethische Aspekte von Tierversuchen und das Solidaritätsprinzip. 40 Tierversuche: Definition und Zahlen Die Übertragbarkeit aus ethisch-rechtlicher Sicht. 45 Was ist ein Tierversuch? . 9 Das 3 R-Prinzip . 48 Wie viele Tiere werden verwendet? . 9 Alternativen zum Tierversuch. 51 Wofür werden Tiere in der Forschung benötigt? . 11 Grenzen von Alternativmethoden. 54 Welche Tierarten werden eingesetzt? . 11 Die Basler Deklaration . 56 Europaweite Entwicklung . 14 Tierversuche in Deutschland: Vom Antrag bis zur Durchführung Tierexperimentelle Praxis: Einsatzbereiche für Versuchstiere Europäische Regelungen für Tierversuche . 59 Grundlagenforschung. 17 Tierversuche unter Genehmigungsvorbehalt . 60 Medizinische Forschung. 18 Rechtliche Grundlagen . 60 Nobelpreiswürdig: Herausragende wissenschaftliche Erkenntnisse . 20 Genehmigungsverfahren . 63 Diagnostik . 22 Durchführung von Tierversuchen . 64 Transplantationsmedizin . 25 Qualifizierte Überwachung. 68 Zell- und Gewebeersatz beim Menschen. 26 Belastungen für die Tiere . 69 Stammzellforschung . 27 Die Tierschutz-Verbandsklage . 71 Genomforschung . 28 Neurowissenschaften . 31 Anhang Veterinärmedizinische Forschung . 33 Tierversuche
    [Show full text]
  • Download Ps Nobel Prizes for Site BEE 11.18.16 Revised 11.30.17.Pdf
    Nobel Laureates at the College of Physicians and Surgeons For years, College of Physicians and Surgeons alumni, faculty, and researchers have led groundbreaking clinical and basic scientific studies that have transformed our understanding of human biology and advanced the practice of medicine. On many occasions, this work has been honored with the Nobel Prize. The scope of research led by P&S Nobel laureates is tremendous. Although most of our prizewinners were honored for work in physiology or medicine, a few also received the prize for chemistry. Their research has fundamentally shaped the course of numerous fields, including cardiology, neuroscience, genetics, pharmaceutical development, and more. Our Nobel laureates include: André Cournand and Dickinson Richards (P&S’23), whose work at P&S on cardiac catheterization—a method of inserting a tiny tube into the heart—provided the basis for open-heart surgery and interventional cardiology Baruch Blumberg (P&S’51), who discovered the hepatitis B virus and helped develop a test and a vaccine for the virus Joshua Lederberg, a Columbia College and P&S graduate student who showed that bacteria can exchange genes when they reproduce, creating a way to model and study genetics in higher organisms Harold Varmus (P&S’66), who demonstrated how genes in normal human and animal cells can mutate to cause cancer, leading to a new generation of research on the genetic origins of cancer Eric Kandel, current University Professor, who showed how memories are stored in nerve cells, greatly enhancing
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • The Fascinating Germ Theories on Cancer Pathogenesis G
    JBUON 2014; 19(1): 319-323 ISSN: 1107-0625, online ISSN: 2241-6293 • www.jbuon.com E-mail: [email protected] HISTORY OF ONCOLOGY The fascinating germ theories on cancer pathogenesis G. Tsoucalas1, K. Laios1, M. Karamanou1, V. Gennimata2, G. Androutsos1 1Department of History of Medicine, Medical School, University of Athens, Athens; 2Department of Microbiology, Medical School, University of Athens, Athens, Greece Summary bel Prize in 1926 that was attributed to the Danish scientist Johannes Fibiger for his work on the nematode Spiroptera as a For more than 100 years, the germ theory of cancer, pro- causative agent in cancer. Even if those theories were the result posing that microorganisms were at the origin of the disease, of fantasy and misinterpretation, they paved the way for the dominated medicine. Several eminent scientists like Etienne scientific research in oncology. Burnet, Mikhail Stepanovich Voronin, Charles-Louis Mal- assez, and Francis-Peyton Rous argued on the pathogenesis presenting their theories that implicated cocci, fungi and par- Key words: carcinogenesis, germ theories, Johannes Fibiger, asites. The impact of these theories was culminated by the No- parasitic theory Introduction transmission was explained. It is long discussed for cancer that heredity is a legend that will vanish Apart from the exogenous, strange for today’s when contagion will be proved” [1]. medical world, misconceptions about cancer (can- cer villages, cancer houses, cancer countries, can- The germs of cancer: coccus and fungi cer races), the microbial theory of cancer held a significant place in the scientific community dur- Several scientists believed that cancerous ing the second half of the 19th century, similarly to germ had a preference for wetlands and could be tuberculosis during the previous decades.
    [Show full text]
  • EDITORIAL Year's Comments for 2005
    EDITORIAL INTERNATIONAL MICROBIOLOGY (2005) 8:231-234 Year’s comments for 2005 Ricardo Guerrero Editor-in-Chief, INT. MICROBIOL. E-mail: [email protected] For several years, new sequences of microbial genomes have dogma. Conclusive evidence for a pathogenic role of H. pylori been the highlights of microbiology and a major topic of our came from trials showing that elimination of the bacterium dra- yearly comments. But sequencing has become “routine” and, at matically changed the clinical course of ulcer. This finding was the time this editorial is being written, the complete sequences confirmed by Marshall, who swallowed a broth of H. pylori and of 284 prokaryotic genomes and 40 eukaryotic genomes have soon thereafter developed gastritis, the prelude to ulcers. He been published. This allows us to focus our comments on those recovered from the disease after treatment with antibiotics. events from 2005 that have attracted the attention of both (Warren could not join him in the experiment because he already researchers and the media. These include the Nobel Prize in suffered from peptic ulcer.) Subsequently, the two investigators Physiology or Medicine, which was awarded for the discovery successfully treated other people suffering from ulcers, in the of the role of Helicobacter pylori as the causal agent of gastric process clearly identifying the bacterium as the culprit. In 1994, ulcers; the worldwide effort to fight malaria, a disease that main- H. pylori was the first bacterium, and the second infectious ly affects developing countries; and the global spread of avian organism after hepatitis B virus, to be classified as a class I car- influenza, which is becoming a panzootic.
    [Show full text]
  • The Federal Government: a Nobel Profession
    The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery.
    [Show full text]
  • Jewish Nobel Prize Laureates
    Jewish Nobel Prize Laureates In December 1902, the first Nobel Prize was awarded in Stockholm to Wilhelm Roentgen, the discoverer of X-rays. Alfred Nobel (1833-96), a Swedish industrialist and inventor of dynamite, had bequeathed a $9 million endowment to fund significant cash prizes ($40,000 in 1901, about $1 million today) to those individuals who had made the most important contributions in five domains (Physics, Chemistry, Physiology or Medicine, Literature and Peace); the sixth, in "Economic Sciences," was added in 1969. Nobel could hardly have imagined the almost mythic status that would accrue to the laureates. From the start "The Prize" became one of the most sought-after awards in the world, and eventually the yardstick against which other prizes and recognition were to be measured. Certainly the roster of Nobel laureates includes many of the most famous names of the 20th century: Marie Curie, Albert Einstein, Mother Teresa, Winston Churchill, Albert Camus, Boris Pasternak, Albert Schweitzer, the Dalai Lama and many others. Nobel Prizes have been awarded to approximately 850 laureates of whom at least 177 of them are/were Jewish although Jews comprise less than 0.2% of the world's population. In the 20th century, Jews, more than any other minority, ethnic or cultural, have been recipients of the Nobel Prize. How to account for Jewish proficiency at winning Nobel’s? It's certainly not because Jews do the judging. All but one of the Nobel’s are awarded by Swedish institutions (the Peace Prize by Norway). The standard answer is that the premium placed on study and scholarship in Jewish culture inclines Jews toward more education, which in turn makes a higher proportion of them "Nobel-eligible" than in the larger population.
    [Show full text]