Propagating Crops from Seed, and Greenhouse Management

Total Page:16

File Type:pdf, Size:1020Kb

Propagating Crops from Seed, and Greenhouse Management 1.3 Propagating Crops from Seed, and Greenhouse Management Introduction 97 Lecture 1: Seed Biology, Germination, and Development: 99 Environmental Conditions and Cultural Requirements Lecture 2: Managing Environmental Conditions— 105 Using Greenhouses to Optimize Seedling Production Lecture 3: Heating, Cooling, Lighting, Irrigation, and 113 Climate Control Systems Lecture 4: Soil Media, Fertility, and Container Formats 119 Demonstration 1: Greenhouse Management Instructor’s Demonstration Outline 127 Demonstration 2: Propagation Media Instructor’s Demonstration Outline 128 Demonstration 3: Sowing Seed Instructor’s Demonstration Outline 129 Demonstration 4: Transplanting or “Pricking Out” Instructor’s Demonstration Outline 130 Demonstration 5: Greenhouse Irrigation Instructor’s Demonstration Outline 132 Demonstration 6: Seedling Development and the “Hardening Off” Process Instructor’s Demonstration Outline 133 Assessment Questions and Key 135 Resources 139 Supplements: 1. Examples of Daily Cool- and Warm-Season Greenhouse 145 Management in a Passive Solar Greenhouse 2. Conserving Water and Protecting Water 148 Quality 3. Low-Cost and Sustainable Alternatives to 149 Traditional Greenhouse Propagation Glossary 151 Appendices 1. Characteristics of Open-Pollinated (OP) and 153 Hybrid Seed 2. Seed Viability Chart 154 3. Soil Temperature Conditions for Vegetable 155 Seed Germination 4. Days Required for Seedling Emergence at 156 Various Soil Temperatures from Seed Planted 1/2-inch Deep 5. Approximate Monthly Temperatures for 157 Best Growth and Quality of Vegetable Crops 6. Examples of Propagation Containers 158 7. Propagation Media—Ingredients and Properties 159 Imparted 8. Sample Soil Mix Recipes 160 9. “Pricking Out” Technique, Depth of Planting 161 10. Flat-Grown and Cell-Grown Seedlings 162 11. Propagation and Crop Performance Records Sheet 163 12. Greenhouse Records Sheet 164 Part 1 – 96 | Unit 1.3 Propagation/Greenhouse Management Introduction: Propagation/Greenhouse Management UNIT OVERVIEW MODES OF INSTRUCTION Getting plants off to a healthy > LECTURES (4 LECTURES, 1.5 HOURS EACH) start is critical to successful crop Lecture 1 covers seed biology, and the cultural require- production. This unit introduces ments for germination and healthy seedling development. Lecture 2 examines the rationale and associated costs and students to the basic skills, concepts, benefits of solar and conventional greenhouse structures, and equipment associated with and the prevention/management of common greenhouse the sexual propagation of crop pest and pathogens. plants, and the use of greenhouses Lecture 3 takes a closer look at greenhouse technology: heating, cooling, lighting, and irrigation systems. to promote healthy seedling Lecture 4 addresses desirable characteristics of propaga- production. Lectures, exercises, tion media, common container formats, and supplemental and supporting material emphasize fertility. the roles of temperature, moisture, > DEMONSTRATION 1: GREENHOUSE MANAGEMENT air circulation, and fertility in (1–1.5 HOURS) germination, seedling development, The greenhouse demonstration illustrates the way that air temperature, soil moisture, and air circulation are man- and pest and disease control. aged to create optimal environmental conditions for seed germination and seedling growth. Students will also be Four lectures examine cultural require- introduced to the steps used to prepare seedlings for field ments of seeds and seedlings, as well as the transplanting. technology, costs, advantages, and disad- vantages of various greenhouse structures, > DEMONSTRATIONS 2–6: PROPAGATION MEDIA, SEED and options for propagation media and SOWING, TRANSPLANTING, IRRIGATION, AND SEEDLING container formats. A series of demonstra- DEVELOPMENT (1–1.5 HOURS EACH) tions then introduces the skills involved in The propagation demonstrations illustrate the techniques sowing seeds and the cultural practices used used to produce propagation media, sow seeds, transplant to manage passive solar greenhouses to pro- seedlings, and manage irrigation and seedling development. mote successful development of organically > ASSESSMENT QUESTIONS (0.5–1 HOUR) grown seedlings. Supplements address ex- amples of daily greenhouse practices, along Assessment questions reinforce key unit concepts and skills. with ways to conserve water, protect water > POWERPOINT, VIDEOS quality, and lower expenses associated with See casfs.ucsc.edu/about/publications and click on Teaching greenhouse propagation. Organic Farming & Gardening. Unit 1.3 | Part 1 – 97 Introduction Propagation/Greenhouse Management LEARNING OBJECTIVES CONCEPTS SKILLS • Definition of sexual propagation • How to create propagation media • Propagation media: Components, properties and • How to sow seeds into flats and cell trays ratios of materials used • How to manage a greenhouse/cold frame: • Containers: Advantages and disadvantages of Maintaining optimal environmental commonly used formats conditions for germination and early stages of • Accurate documentation of propagation for seedling growth trouble shooting • How to transplant/“prick out” seedlings • Germination requirements of various crops: • How to manage seedlings in preparation for Seed physiology, seed treatments, temperature field transplanting ranges, light, air circulation, and moisture conditions • How to identify appropriate life stage for transplanting to field/garden • Physiological process of seed germination and seedling development, and its relationship to • When and how to deliver supplemental environmental conditions fertilization • Optimal conditions for early stages of plant • How to manage pests and pathogens: growth up to transplanting stage, including the Monitoring, identification resources, and hardening off process and movement of plants active management through facilities • The role, timing, and tools used in supplemental fertilization • Preventive and active pest and pathogen management Part 1 – 98 | Unit 1.3 Propagation/Greenhouse Management Introduction Lecture 1: Seed Biology, Germination, & Development—Environmental Conditions & Cultural Requirements Pre-Assessment Questions 1. What are the advantages of propagating annual vegetables in a greenhouse or similar climate control structure compared to direct seeding crops? 2. What conditions must be met for a seed to successfully germinate and grow into a viable seedling? 3. What are the key environmental conditions that facilitate germination and influence seedling development of annual vegetables? 4. What are the characteristics of seedlings when ready for transplanting to the field or garden? What actions may growers take to prepare seedlings for transplanting into the garden or field? 5. What is the most effective way to manage/prevent the development of pest and diseases in a propagation facility? Where would you seek information to identify pests or pathogens and to find Organic Materials Review Institute- (OMRI-)/National Organic Program-certified active control options if pest and or diseases should affect your seedlings? A. Sexual Propagation 1. Definition: The intentional reproduction of a new generation of plants by the germination and growth of seeds that were created in the previous generation through the fertilization of a plant ovary via the union of male and female sex cells. Results in a genetically unique plant generation. For comparison, asexual propagation is the reproduction of plants by means of division, cuttings, tissue culture, etc. This process occurs in nature, but is a primary method for reproducing many ornamental cultivars and the vast majority of fruits, berries, and nuts. Clonal or asexual propagation results in a new generation of plants genetically identical to the parent or source plant, thus carrying forward all desirable/known characteristics in a predictable manner. 2. Types of plants grown from seed a) Annuals: Plants that germinate, grow vegetatively, flower, and produce seeds, thus completing their entire life cycle within a single year. Sexual propagation (propagation using seeds) is the only practical means of propagation for annuals. b) Biennials: Plants that complete their entire life cycle within two years. Growth is primarily vegetative in year one. In year two, growth is directed primarily toward reproduction in response to vernalization: The process wherein plants are exposed to decreasing day length and temperature followed by increasing day length and temperature. This process occurs in temperate climates when plants go from one growing season, through Winter and into the following Spring. Sexual propagation is the only practical means of reproducing biennial crops. Unit 1.3 | Part 1 – 99 Lecture 1: Seed Biology, Germination, & Development Propagation/Greenhouse Management c) Perennials: Plants that live more than two years. Once beyond their juvenile life phase, perennials grow vegetatively, flower, and produce seeds every year. The life span of perennials depends on the genetics of the species and the environmental conditions in which the plants are growing. By definition, perennials can live three to thousands of years, but lifespan within a particular species tends to vary. Perennials can be grown from seed, although many are reproduced asexually/vegetatively to hasten maturity, maintain genetic uniformity, and therefore retain desired morphological characteristics. 3. Open pollinated (OP) and hybrid seed (see also Appendix 1, Characteristics of Open- Pollinated (OP) and Hybrid Seed) a) Open-pollinated seed:
Recommended publications
  • Plant Physiology
    PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant .....................................................................................................
    [Show full text]
  • Gillespie County Horticulture Newsletter
    Gillespie Horticulture Newsletter County Winter 2017/2018 Introduction Preview Recent Chill Hours Pg. 2 Yay, it’s cold! As much as I prefer warm- er weather, the cold weather has its uses too. Starting your own Pg. 3 Hopefully we will get enough cold weather to Transplants from give the peach trees enough chilling, and kill off all those cucumber beetles. Seed This newsletter will be a shorter one than normal, because the next one is scheduled Come join the Mas- Pg. 5 to come out in March. Read on to learn more ter Gardeners about the different methods for counting chill hours in peaches, how to start transplants for The Plantastic Veg- Pg. 6 your garden, program announcements and more! etable Gardening If you have any questions about any of Mini-Seminar the topics or programs in this newsletter, please email these to me at eliza- Pecan Show Results Pg. 7 [email protected] or call us at the extension office at 830-997-3452. Strange Tales of Pg. 8 One warning about calling our office. Our phone system is currently dropping calls Horticulture unexpectedly. If your call is dropped while be- ing transferred or while speaking to a staff Program An- Pg. 10 member, please call us back or we will call you nouncements back. We apologize for the issue and appreciate your patience. Garden Calendar Pg. 11 Name that Plant Pg. 12 Page 1 Winter 2017/2018 Gillespie County Horticulture Newsletter Recent Chill Hours If your peach trees didn’t produce fruit in 2017, it was proba- bly due to a lack of chilling.
    [Show full text]
  • What Better Plants Are Grown on Grown Are Plants Better What
    GroWSToNe what better plants are grown on 100% Recycled. 100% American Made. www.growstone.com 100% Recycled. 100% American Made. Growstone Hydroponic Growth Mediums and Super Soil Aerators are a horticultural, scientific and environmental win-win-win. Growstones are an effective alternative to perlite and Hydroton®. They guarantee a considerably higher aeration and faster drainage than perlite, while simultaneously holding more water than Hydroton. Growstones provide: Other Growstones characteristics are: 3 times more water than Hydroton® High porosity and aeration Over 70% more aeration than perlite Proven yields ‘as-good-as’ the industry standards 4 times more aeration than coco coir Can satisfy a wide range of plant requirements for different growing systems and climates Made from 100% recycled glass The perfect balance of air and water Not strip-mined like Hydroton® and perlite Growstones highly porous media associate a good water holding Inert capacity to high air-filled porosity. At field capacity, Growstones pH neutral after preparation hold 30% water within its pores and 50% air by volume within its 100% non-toxic and chemical free inner and inter aggregate spaces. This water to air ratio maximizes Lightweight, dust-free water availability and aeration to your plant roots. It also Impossible to over water facilitates drainage making it impossible to over irrigate. Does not float to top when irrigated Non-degradable Non-compacting Average Water Holding Capacity Reusable Air Filled Porosity of Substrates After Drainage Made in the USA “What growers like about “Our Rocks Growstones are they hold a lot of oxygen and moisture. Don’t Roll” And the fact they are recycled —Andrew makes them even better.” Founder & Inventor of Growstone Santa Fe, New Mexico —Dylan | Deep Roots Hydroponics Garden Supply | Sebastopol, California Propagation How to Use Growstones Place your seeds in any propagation media.
    [Show full text]
  • Botany for Gardeners Offers a Clear Explanation of How Plants Grow
    BotGar_Cover (5-8-2004) 11/8/04 11:18 AM Page 1 $19.95/ £14.99 GARDENING & HORTICULTURE/Reference Botany for Gardeners offers a clear explanation of how plants grow. • What happens inside a seed after it is planted? Botany for Gardeners Botany • How are plants structured? • How do plants adapt to their environment? • How is water transported from soil to leaves? • Why are minerals, air, and light important for healthy plant growth? • How do plants reproduce? The answers to these and other questions about complex plant processes, written in everyday language, allow gardeners and horticulturists to understand plants “from the plant’s point of view.” A bestseller since its debut in 1990, Botany for Gardeners has now been expanded and updated, and includes an appendix on plant taxonomy and a comprehensive index. Twodozen new photos and illustrations Botany for Gardeners make this new edition even more attractive than its predecessor. REVISED EDITION Brian Capon received a ph.d. in botany Brian Capon from the University of Chicago and was for thirty years professor of botany at California State University, Los Angeles. He is the author of Plant Survival: Adapting to a Hostile Brian World, also published by Timber Press. Author photo by Dan Terwilliger. Capon For details on other Timber Press books or to receive our catalog, please visit our Web site, www.timberpress.com. In the United States and Canada you may also reach us at 1-800-327-5680, and in the United Kingdom at [email protected]. ISBN 0-88192-655-8 ISBN 0-88192-655-8 90000 TIMBER PRESS 0 08819 26558 0 9 780881 926552 UPC EAN 001-033_Botany 11/8/04 11:20 AM Page 1 Botany for Gardeners 001-033_Botany 11/8/04 11:21 AM Page 2 001-033_Botany 11/8/04 11:21 AM Page 3 Botany for Gardeners Revised Edition Written and Illustrated by BRIAN CAPON TIMBER PRESS Portland * Cambridge 001-033_Botany 11/8/04 11:21 AM Page 4 Cover photographs by the author.
    [Show full text]
  • How to Grow a Complete Diet with Permaculture Principles: Tropical Subsistence Gardening
    Plant Aloha Sustainable Farming Series Wade Bauer of Malama Aina Permaculture facilitating Thursday Feb 16, 2017 hawaiiansanctuary.com/plantaloha How to Grow a Complete Diet with Permaculture Principles: Tropical Subsistence Gardening. 24 class series, part 7 Plant Propagation & Home Nursery Maintenance: Learn how to grow all kinds of food plants from seed, cuttings, division, and more. Learn which trees are “true to seed” and which need grafting to produce. Acknowledgements: A special thanks to Hawaiian Sanctuary, County of Hawaii Research and Development and all others involved to make these classes a reality! We are still looking for support to complete and enhance this amazing FREE program. Please give what you can: hawaiiansanctuary.com/donate Introduction: Different plants require different methods of propagation. Propagation from Seed: Planting seeds: As a general rule for planting depth, plant seeds 2.5 times their width. Keep soil moist but not waterlogged. Potting soil has ideal drainage and moisture retention and is free from weed seeds and diseases. Direct seeding: Fast growing garden plants (often with larger seeds) are usually planted directly into their permanent location. For example, beans, pumpkin, radish, Seed in nursery: Plants that are slow growing in the begining may be easier to start in 3-4 in. pots in the nursery and then planted out when about 6 in. tall. Ex. kale, tomatoes, eggplant, peppers, or if fruit trees potted into bigger pots till they are 1 to 3 ft tall. Planting fruit trees from seed: Many varieties of tropical fruit trees seeds may die if allowed to dry out. Planting seeds as quickly as possible is a good rule of thumb.
    [Show full text]
  • Tree Seedling Availability, Planting, and Initial Care
    F-5024 Tree Seedling Availability, Planting, and Initial Care William G. Ross Assistant Professor Oklahoma Cooperative Extension Fact Sheets Extension Forestry Specialistst are also available on our website at: http://www.osuextra.com Introduction This is the second in a series of three publications addressing the topic of forest stand establishment. If one is Bareroot not sure of what seedlings to plant or of what forest product to Most nurseries that sell seedlings produce some form of produce, it may be beneficial to read the first publication in this bareroot stock. Bareroot seedlings, as the name describes, is series, titled “Tree Planting Objectives and the Seedling a seedling with only the stem and the root supplied to the Selection Process.” landowner for planting. The major advantages of bareroot There are four points toconsider to identify management stock are the relative ease of production in the nurseries, the objectives. These are listed in brief form below. relative low cost to landowner, the relative ease of planting, and the ability to mechanize many of the operations in the 1. Identify the growing region where land is located. seedling production method. 2. Identify the soil types and moisture regimes located on the Shortcomings of bareroot seedlings include the vulner- land. ability of the scedling to the uncontrollable nursery environ- 3. Identify those objectives feasible and within the bounds of ment, exposure of the root system to harsh environmental the above environmental constraints. conditions after lifting, and the requirement of a large, sea- 4. Identify those tree species that, when managed correctly, sonal labor force to plant the seedlings.
    [Show full text]
  • Life Cycles of Plants
    Life Cycles of Plants Flowering plants produce flowers. The flowers later become fruit. Inside the fruit, we can find seeds. The fruit protect the seeds. Seeds can develop into new plants. The life cycle of flowering plants follows the three stages of seed-seedling-adult. Seed Seedling (Young plant) Stage 1: The plant begins Stage 2: The young plant that grows is known as a its life as a seed. With seedling. enough air, food, water and the right temperature, At first, the seedling obtains its food from the seed the seed will begin to leaves. germinate or grow. When the true leaves start to grow, the plant is ready to make its own food by the process of photosynthesis. The seed leaves will shrivel and fall off. Roots grow deep down into the ground to obtain water and mineral salts needed for the plant. The plant will grow towards the sunlight. The shoot grows upwards to obtain maximum sunlight. When the true leaves appear, the plant is ready to make its own food. Seed leaves provide the plant with food before the true leaves develop. Roots grow downwards to absorb water and mineral salts from the ground. They hold the plant firmly in the soil. Adult plant Stage 3: As the plant grows, it develops flowers which later become fruit. There are seeds inside the fruit. The seeds will fall to the ground and develop into new plants. The life cycle then repeats itself. Life cycle of a flowering plant Adapted: PSLE Science Partner A Complete Guide to L&U Block © Singapore Asia Publishers Pte Ltd.
    [Show full text]
  • Green Technologies, Innovations and Practice in the Agricultural Sector
    Green Technologies, Innovations and Practice in the Agricultural Sector Shared Prosperity Dignified Life GREEN TECHNOLOGIES, INNOVATIONS AND PRACTICES IN THE AGRICULTURAL SECTOR E/ESCWA/SDPD/2019/INF.8 The Arab region faces many challenges including severe water scarcity, rising population, increasing land degradation, aridity, unsustainable energy consumption, food insecurity and deficiency in waste management. These challenges are expected to worsen with the negative impact of climate change, the protracted crises plaguing the region and the rapidly changing consumption patterns. Some of these challenges, however, can still be mitigated with the judicious use of appropriate technologies, practices and innovative ideas so as to transform depleted, wasted or overlooked resources into new opportunities for revenue generation, livelihood improvement and resource sustainability. Innovation and technology are the main drivers of economic growth and societal transformation through enhanced efficiency, connectivity and access to resources and services. Yet, current growth models have led to environmental degradation and depletion of natural resources. Such environmental technologies and innovations may result in what is often referred to as “green technologies or practices” or “clean technologies”. These technologies and innovations may help bridge the gap between growth and sustainability as they reduce unfavorable effects on the environment, improve productivity, efficiency and operational performance. It is high time the region brought this
    [Show full text]
  • Malama `Āina: a Conversation About Maui's Farming Future
    MALAMA `INA: A CONVERSATION ABOUT MAUI’S FARMING FUTURE A PROJECT OF THE MAUI TOMORROW FOUNDATION Looking towards Iao Valley Prepared for Maui Tomorrow Foundation, Inc. March 8, 2016 Report by Permaculture Design International LLC Copyright 2016 by Maui Tomorrow Foundation, Inc. rural lifestyle. Table of Contents FARM ENTERPRISE OPPORTUNITIES 28 INTRODUCTION 1 A Brief Overview of Maui’s “Central Valley” CONCLUSION 35 and Sugarcane 2 REGENERATIVE AGRICULTURE 3 APPENDICES 36 Climate Change and Regenerative Agriculture 5 Regenerative Agricultural Land Use Potential and Transition Strategy 6 Transition to Regenerative Agriculture 9 Mainframe Design 13 Methods to Reduce Overhead 13 Livestock and Holistic Management 14 16 Case Studies and Precedents 17 19 Biofuels 20 WATER AND SOIL 22 Water 22 Soil 24 Soil Building Strategies and Bioremediation 25 Cover illustration by Silvia Yordanova Copyright 2016 by Maui Tomorrow Foundation, Inc. INTRODUCTION - love and respect the land, make it yours and claim stewardship for it keep large tracts of contiguous farmland intact, and make farming more affordable. Maui’s - care for and nurture the land farming future is tied to this land. so it can give back all we need to sustain life for ourselves and our future generations people moving forward? For 150 years Maui -Puanani Rogers, Ho`okipa Network agriculture has been large-scale, mono-crop, chemical dependent, and export oriented. Beloved Maui is at a crossroads. The January Laguna Blanca, Argentina. Twelve years after transi- Can a new farming model bring both economic 2016 announcement by Alexander and Baldwin (A&B) that Hawaiian Commercial http://www.tompkinsconservation.org/farm_laguna_ & Sugar (HC&S) will be ending their 36,000 blanca.htm concerned about the loss of jobs for so many families, and want to see Maui’s agricultural wide open to a much-needed conversation legacy continue.
    [Show full text]
  • New Insights on the Main Factors That Guide Seed Dormancy and Germination
    G C A T T A C G G C A T genes Review From the Outside to the Inside: New Insights on the Main Factors That Guide Seed Dormancy and Germination Chiara Longo †, Soyanni Holness †, Veronica De Angelis, Andrea Lepri, Sara Occhigrossi, Veronica Ruta and Paola Vittorioso * Department Biology and Biotechnology C. Darwin, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy; [email protected] (C.L.); [email protected] (S.H.); [email protected] (V.D.A.); [email protected] (A.L.); [email protected] (S.O.); [email protected] (V.R.) * Correspondence: [email protected]; Tel.: +39-064-991-2265 † These authors contributed equally to this work. Abstract: The transition from a dormant to a germinating seed represents a crucial developmental switch in the life cycle of a plant. Subsequent transition from a germinating seed to an autotrophic organism also requires a robust and multi-layered control. Seed germination and seedling growth are multistep processes, involving both internal and external signals, which lead to a fine-tuning control network. In recent years, numerous studies have contributed to elucidate the molecular mechanisms underlying these processes: from light signaling and light-hormone crosstalk to the effects of abiotic stresses, from epigenetic regulation to translational control. However, there are still many open questions and molecular elements to be identified. This review will focus on the different aspects of the molecular control of seed dormancy and germination, pointing out new molecular elements and how these integrate in the signaling pathways already known.
    [Show full text]
  • 2020 MEDIA KIT Currently in Production for Its 11Th Season with 13 Episodes Slated for September-2020 Launch
    2020 MEDIA KIT Currently in production for its 11th season with 13 episodes slated for September-2020 Launch. Growing a Greener World® (GGW) is an award-winning, a public television series, distributed by American Public Televisioin, airing on PBS stations across the country and on CREATE TV, focused on organic gardening, sustainability, and green living. Airing 52 weeks a year in 175 markets across the United States; the series features accessible and cutting-edge topics, compelling and expertly-told stories, and stunning visual imagery for its ever-growing network of broadcast and web communities. Joe Lamp’l (a.k.a. joe gardener), a recognized leader in organic gardening and authority within the sustainability movement, serves as host and executive producer of this inspiring journey. His vast expertise and engaging personality make him ideally suited to connect with audiences. Thanks to multiple TV series; websites, and podcasts, Joe has become a trusted go-to resource for millions in the fields of organic gardening, environmental and eco-friendly living, urban homesteading, farm-to-table growing, harvesting, and preserving the harvest. With nearly 200 episodes already in the archives, the Growing a Greener World® crew travels across the country, from its headquarters north of Atlanta to gardens and farms in nearly every state and beyond. The team captures remarkable stories of visionary people and unique places changing our world for the better, each in their own impactful way. While Growing a Greener World® appeals to traditional audiences with educational content and visually rich storytelling, there is also a noticeably fresh energy in each episode that deeply resonates with younger viewers.
    [Show full text]
  • 1.3 Propagating Crops from Seed and Greenhouse Management
    1.3 Propagating Crops from Seed and Greenhouse Management Introduction 3 Instructor’s Lecture 1 Outline: Seed and Seedling Biology and Cultural Requirements 5 Detailed Lecture 1 Outline for Students 7 Instructor’s Lecture 2 Outline: Propagation Media and Container Formats 11 Detailed Lecture 2 Outline for Students 15 Demonstration 1: Greenhouse Management 21 Instructor’s Demonstration Outline 21 Demonstration 2: Propagation Media 23 Instructor’s Demonstration Outline 23 Demonstration 3: Sowing Seed 25 Instructor’s Demonstration Outline 26 Demonstration 4: Transplanting or “Pricking Out” 27 Instructor’s Demonstration Outline 28 Demonstration 5: Irrigation in Propagation Facilities 29 Instructor’s Demonstration Outline 29 Demonstration 6: Seedling Development and the “Hardening Off” Process 31 Instructor’s Demonstration Outline 31 Assessment Questions and Key 33 Resources 37 Glossary 39 Appendices 1. Seed Viability Chart 41 2. Soil Temperature Conditions for Vegetable Seed Germination 42 3. Examples of Propagation Containers 43 4. Days Required for Seedling Emergence at Various Soil Temperatures 44 5. Approximate Monthly Temperatures for Best Growth and Quality of Vegetable Crops 45 6. Propagation Media— Ingredients and Properties Imparted 46 7. Sample Soil Mix Recipes 47 8. “Pricking Out” Technique, Depth of Planting 48 9. Flat-Grown and Cell-Grown Seedlings 49 10. Propagation and Crop Performance Records Sheet 50 11. Greenhouse Records Sheet 51 2 | Unit 1.3 Propagation/Greenhouse Management Introduction: Propagation/Greenhouse Management UNIT OVERVIEW MODES OF INSTRUCTION Getting plants off to a healthy > LECTURE (2 LECTURES, 2 HOURS EACH) start is critical to successful crop Lecture 1 covers seed biology, and the cultural require- production.This unit introduces ments for germination.
    [Show full text]