Croat T. B., 1988, Ecology and Life Forms of Araceae, Aroideana 11(3-4)

Total Page:16

File Type:pdf, Size:1020Kb

Croat T. B., 1988, Ecology and Life Forms of Araceae, Aroideana 11(3-4) 4 AROIDEANA, Vol. 11, No.3 Ecology and Life Forms of Araceae Thomas B. Croat Missouri Botanical Garden RO.Box299 st. Louis, Missouri 63166-0299 INTRODUCTION casts a darker shadow) where a physio­ Araceae, a family of herbaceous mono­ logical change takes place allowing them cotyledons with 106 genera, is a com­ to grow toward light (Strong & Ray, plex group in terms of life form and 1975). They grow as appressed epi­ ecology. The family is widespread, with phytes on trees or as vines in the canopy. almost an equal number of genera in Others begin their lives as true epi­ both the Old and New Worlds, but with phytes, some reconverting to hemiepi­ the majority of species occurring in the phytes by producing long, dangling roots New World tropics. A few genera range contacting the forest floor below. into north temperate regions with one species ranging to at least 63 degrees Some species, especially members of north latitude. Few aroids range into subfamily Monsteroideae, have heterob­ temperate regions of the southern hemi­ lastic development with leaf and stem sphere; the most southernly being Pistia morphology reflecting the differences in stratiotes L., which can be found through their growth phases. Juvenile plants may 36 degrees south latitude in Argentina. produce a small terrestrial rosette of The family occupies a wide variety of life leaves, then grow rapidly, producing a zones and habitats throughout its range, few small leaves on long internodes. The extending from tropical dry to pluvial preadult leaves of the first hemiepiphytic rainforest, but also ranges into subarctic phase of such plants are often very marshes, tropical swamps, cloud forests, distinct from the adult leaves. Many such cold windswept montane plains and species are able to convert again and semi-arid to arid coastal plains. The again from adult growth (consisting of family has many species which will not short, thick internodes) back to juvenile tolerate any degree of frost or cold such growth (with elongate internodes bear­ as Anthurium brownei Masters, as well ing smaller leaves), either to establish as some, like Symplocarpus foetidus (L.) more adult plants with a rosette of leaves Nutt., which actually emerge from snow­ or to survive the dynamics of an ever­ covered ground. changing forest, complete with treefalls The most interesting aspect of the and falling branches (Ray, 1987). Other family's ecology is the diversity of adap­ hemiepiphytic species are vines which tive life forms. These range from sub­ branch and produce growth throughout merged to free-floating, and emergent the lower and middle levels of the aquatics to terrestrial plants and to canopy. These species (e.g., Philoden­ epilithic or epiphytic forms which may dron scandens K Koch & Sellow) ac­ be true epiphytes or hemiepiphytic complish long-term survival by having a (growing on trees but rooted in soil). portion of their biomass in a part of the Hemiepiphytism is diverse itself, with canopy which survives any particular some species beginning their lives as treefall (Pefialosa, 1975). Even true epi­ terrestrial seedlings, then growing phytes rarely succumb promptly to a fall skototropically (toward darkness) until from their host tree, but instead con­ they arrive at the nearest suitable tree tinue to flower and fruit on the ground ( usually a relatively large one which for a limited time. T. Croat, 1988 5 DISCUSSION by only one genus, with one pantropic The following is an outline and discus­ and variable species. Pistia stratiotes L. sion of life form diversity in the Araceae has a short stem and a rosette of (see Appendix III for a glossary of aerenchymatous, buoyant leaves, with a terms): cluster of fine, hair-like roots below. It 1. Aquatic plants occurs mainly at lower elevations and 1.1 Submerged aquatics inhabits mostly open, fresh waters at the 1.2 Free-floating aquatics edges of slow-moving streams, lakes and 1.3 Emergent aquatics ponds. This species is remarkably suc­ 2. Terrestrial plants cessful in using mostly vegetative repro­ 3. Epilithic plants duction, often totally clogging small to 4. Epiphytic plants large waterways in a short period of 4.1 Hemiepiphytes time. Vines Appressed climbers 1.3 Emergent Aquatics 4.2 Epiphytes Emergent aquatiCS make up a very large group within Araceae. Many genera 1.1 Submerged Aquatics have at least some species which spend Jasarum steyermarkii Bunting has per­ all or part of their lives rooted in manently submerged leaves and is the standing or moving water. Temperate only true example of this life form North America is particularly rich in among neotropical Araceae. It grows aquatiC or semiaquatic genera. Most, rooted in moving streams on the escarp­ including Acorus, Calla, Lysichiton, ment of the Guayana Highland where it Orontium, Peltandra and Symplocar­ is endemic (Bogner, 1985). When it pus, grow in swampy or marshy areas, flowers, the scape is protruded above lakes, ponds, or along the edges of the level of the water. Many rheophytes, creeks. Arisaema triphyllum (L.) Torr. however, may spend a portion of their is also reported as sometimes occurring lives underwater with no apparent harm, in swampy areas (Small, 1933; Correll & but flowering occurs when the plants are Correll, 1972). mostly emerged and have only their Some emergent aquatics, e.g., Mon­ short stems below water. Species of trichardia arborescens (L.) Schott, Pel­ Acorus, Anubias, Lagenandra, Spa­ tandra virginica (L.) Kunth, Cryptoco­ thiphyllum and especially Cryptocoryne ryne ciliata (Roxb.) Fischer ex. Schott are used as aquarium plants and may be (D. Nicolson, pers. comm.) and Typhon­ submerged completely for indefinite pe­ odorum lindleyanum Schott O. Bogner, riods of time without apparent injury. pers. comm.), occur in tidal zones. Even Dieffenbachia has been used in While most emergent aquatiC genera aquaria (D. Nicolson, pers. comm.) in the neotropics are well-rooted, terres­ The Asian tropics, in contrast to the trial plants, some are epilithic, such as a American tropics, have large numbers of rheophytic group of Anthurium (A. submerged aquatics, the most important andicola Liebm., A. sytsmae Croat, A. being the genus Cryptocoryne. Members rupicola Croat and A. antioquiense of this genus spend most of their lives in Engl.) and SpathiphyUum (S. quin­ shallow water, but typically flower at diuense Engl.), although the percentage periods of low water (when their leaves of rheophytic species for each genus is have emerged above water level) or low. when the water level is low Oacobson, The Asian tropics, on the other hand, 1980, 1982;). Bogner, pers. comm.). are much richer in rheophytic plants. Aridarum, Bucephalandra, Cryptoco­ 1.2 Free-floating Aquatics ryne, Furtadoa, Heteroaridarum, Hotta­ Free-floating aquatics are represented rum, Lagenandra, Phymatarum, Pipto- 6 AROIDEANA, Vol. 11, No.3 spatha, some Homalomena and some considered aquatiC in the true sense. Schismatoglottis, have the majority, or Many are, in fact, principally epiphytic all, of their species occurring along or in genera which find steep, well-drained streams, frequently clinging to rocks on stream banks good substitutes for the stream banks (van Steenis, 1981). normal epiphytic habit (see below). The majority of emergent aquatic plants are not rheophytic, but rather 2. Terrestrial Plants occur in flowing or standing water. The terrestrial habit is predominant Among the New World genera, which for aroids on a world-wide basis. Terres­ are nearly always found growing in trial genera are the most diverse ecologi­ water, are Dracontioides, Montrichar­ cally, occurring in humid to very dry dia and Urospatha. Other genera, such as habitats, in secluded forest understory Diejjenbachia, Philodendron and Spa­ and in open, exposed areas. While most thiphyllum have some species growing genera comprise mainly understory in aquatic or marshy situations. An­ plants in primary forest, some range into aphyllopsis (A. Hay, 1989) grows along savannas, exposed steppes, alpine mead­ streams or in swampy areas in the ows and even into semidesert areas. understory and survives partly underwa­ Terrestrial aroids range in habit from ter part of the year. Homalomena some­ caulescent plants (Diejjenbachia and times occurs in varzea forest in the Aglaonema) to tuberous plants (Amor­ Amazon basin, and survives underwater phophallus, Arum and Dracontium), to conditions for long periods, then toler­ rhizomatous (rarely also reported as ates swampy situations until the water cormose - see Colocasia, Therio­ fully recedes. phonum or 1jIphonium in Appendix II.) In addition to the rheophytic genera and to subscandent plants ( Cercestis and mentioned above, there are a number of Culcasia). other, chiefly emergent aquatics in Asia A large percentage of terrestrial aroids usually growing along streams or in have rhizomes, or short stems with short swamps. They differ in that they are not internodes, which usually creep over the usually clinging to rocks or to steep surface of the soil or just beneath the soil banks, but are rooted along the edges of surface. Rhizomes may be deeply rooted, water courses and usually have subterra­ as in Cyrtosperma and Spathiphyllum, nean root systems. These include most but most are weakly or loosely rooted. A species of Cryptocoryne, Cyrtosperma, few species of Anthurium (e.g., A. as well as Anubias, Aglaodorum (in ochranthum K Koch, A. pluricostatum brackish water), Lagenandra, Lasia and Croat & Baker) and Philodendron (e.g., Podolasia. P. grandipes K Krause) are deeply
Recommended publications
  • LD5655.V855 1924.M377.Pdf
    A STUDY OF BACILLUS AROIDEAE 'l'OWNSEND, THE CAUSE OF A SOFT ROT OF TOMATO, AN:) B. CAROTOVORUS JONES. A thesis 811.bmitted as partial requirement for the degree of Master of Science in Botany by A.B.Massey Reprinted from PHYT0PATH0L0GY, Vol. XIV, October, 1924. A STUDY OF BACILLUS AROIDEAE, TOWNSEND, THE CAUSE OF A SOFT ROT OF TOMATO, AND B. CAROTOVORUS JONES A. B. MASSEY! \Vl'l'll Tlll:EE FIGURES IN THE TEXT INTRODUCTION In the summer of 1918, at Blacksburg, Virginia, there developed a con- siderable amount of a soft rot of tomatoes. This occurre<l in experimental plots which were designated to study the control of septoria leaf blight, and the soft rot of the fruit developed into an important factor. I~ describing these experiments Fromme (2) states: "Practically all of the unsoundness of the fruit was caused by bacterial soft rot, a disease which is exceedingly common and often very destructive in tomato fields in Vir- ginia." Isolations from diseased fruits made by S. A. Wingard (15) proved a bacterium to be the causative agent. Its growth in pure culture resembled that of the group of bacteria which causes soft rots of plants but it could not be readily as!ligned to any of the describe<l species of this group. There has been only casual mention of a bacterial soft rot of tomato in literature, and the distinguishing features of the organisms which might be responsible have not been as sharply defined as is desirable. It was decided, therefore, to un<lcrtake comparative studies of the organism in question together with some of the non-chromogenic soft rot forms.
    [Show full text]
  • Araceae) in Bogor Botanic Gardens, Indonesia: Collection, Conservation and Utilization
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 140-152 DOI: 10.13057/biodiv/d190121 The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization YUZAMMI Center for Plant Conservation Botanic Gardens (Bogor Botanic Gardens), Indonesian Institute of Sciences. Jl. Ir. H. Juanda No. 13, Bogor 16122, West Java, Indonesia. Tel.: +62-251-8352518, Fax. +62-251-8322187, ♥email: [email protected] Manuscript received: 4 October 2017. Revision accepted: 18 December 2017. Abstract. Yuzammi. 2018. The diversity of aroids (Araceae) in Bogor Botanic Gardens, Indonesia: Collection, conservation and utilization. Biodiversitas 19: 140-152. Bogor Botanic Gardens is an ex-situ conservation centre, covering an area of 87 ha, with 12,376 plant specimens, collected from Indonesia and other tropical countries throughout the world. One of the richest collections in the Gardens comprises members of the aroid family (Araceae). The aroids are planted in several garden beds as well as in the nursery. They have been collected from the time of the Dutch era until now. These collections were obtained from botanical explorations throughout the forests of Indonesia and through seed exchange with botanic gardens around the world. Several of the Bogor aroid collections represent ‘living types’, such as Scindapsus splendidus Alderw., Scindapsus mamilliferus Alderw. and Epipremnum falcifolium Engl. These have survived in the garden from the time of their collection up until the present day. There are many aroid collections in the Gardens that have potentialities not widely recognised. The aim of this study is to reveal the diversity of aroids species in the Bogor Botanic Gardens, their scientific value, their conservation status, and their potential as ornamental plants, medicinal plants and food.
    [Show full text]
  • 2007 Vol. 10, Issue 1
    Department of Botany & the U.S. National Herbarium TheThe PlantPlant PressPress New Series - Vol. 10 - No. 1 January-March 2007 Botany Profile Taking Aim at the GSPC Targets By Gary A. Krupnick and W. John Kress n 2002, the Convention on Biologi- are the contributions that the Department The data and images of more than cal Diversity (CBD), a global treaty has made towards achieving the 16 targets 95,000 type specimens of algae, Isigned by 188 countries addressing since the Strategy’s inception in 2002. lichens, bryophytes, ferns, gymno- the conservation and sustainable use of sperms and angiosperms are available on biological diversity, adopted the Global Understanding and Documenting Plant USNH’s Type Specimen Register at Strategy for Plant Conservation (GSPC), Diversity <http://ravenel.si.edu/botany/types/>. A the first CBD document that defines Target 1: A widely accessible working multi-DVD set containing images of specific targets for conserving plant list of known plant species, as a step 89,000 vascular type specimens from diversity. The 16 targets are grouped towards a complete world flora USNH has been produced and distrib- under five major headings: (a) under- uted to institutions around the world. In standing and documenting plant diversity; One of the Department’s core mis- addition, data from 778,054 specimen (b) conserving plant diversity; (c) using sions is to discover and describe plant life records have been inventoried in the plant diversity sustainably; (d) promoting in marine and terrestrial environments. EMu catalogue software. education and awareness about plant Thus, one primary objective is to conduct In addition, USNH is a partner in diversity; and (e) building capacity for field work in poorly known areas of high producing the Global Working Check- the conservation of plant diversity.
    [Show full text]
  • CGGJ Vansteenis
    BIBLIOGRAPHY : ALGAE 3957 X. Bibliography C.G.G.J. van Steenis (continued from page 3864) The entries have been split into five categories: a) Algae — b) Fungi & Lichens — c) Bryophytes — d) Pteridophytes — e) Spermatophytes 8 General subjects. — Books have been marked with an asterisk. a) Algae: ABDUS M & Ulva a SALAM, A. Y.S.A.KHAN, patengansis, new species from Bang- ladesh. Phykos 19 (1980) 129-131, 4 fig. ADEY ,w. H., R.A.TOWNSEND & w„T„ BOYKINS, The crustose coralline algae (Rho- dophyta: Corallinaceae) of the Hawaiian Islands. Smithson„Contr„ Marine Sci. no 15 (1982) 1-74, 47 fig. 10 new) 29 new); to subfamilies and genera (1 and spp. (several key genera; keys to species„ BANDO,T„, S.WATANABE & T„NAKANO, Desmids from soil of paddyfields collect- ed in Java and Sumatra. Tukar-Menukar 1 (1982) 7-23, 4 fig. 85 species listed and annotated; no novelties. *CHRISTIANSON,I.G., M.N.CLAYTON & B.M.ALLENDER (eds.), B.FUHRER (photogr.), Seaweeds of Australia. A.H.& A.W.Reed Pty Ltd., Sydney (1981) 112 pp., 186 col.pl. Magnificent atlas; text only with the phyla; ample captions; some seagrasses included. CORDERO Jr,P.A„ Studies on Philippine marine red algae. Nat.Mus.Philip., Manila (1981) 258 pp., 28 pi., 1 map, 265 fig. Thesis (Kyoto); keys and descriptions of 259 spp„, half of them new to the Philippines; 1 new species. A preliminary study of the ethnobotany of Philippine edible sea- weeds, especially from Ilocos Norte and Cagayan Provinces. Acta Manillana A 21 (31) (1982) 54-79. Chemical analysis; scientific and local names; indication of uses and storage.
    [Show full text]
  • AMYDRIUM ZIPPELIANUM Araceae Peter Boyce the Genus Amydrium Schott Contains Five Species of Creeping and Climbing Aroids Occurring from Myanmar to Papua New Guinea
    McVean, D.N. (1974). The mountain climates of SW Pacific. In Flenley, J.R. Allitudinal Zonation in Malesia. Transactions of the third Aberdeen-Hull Symposium on Malesian Ecology. Hull University, Dept. of Geography. Miscellaneous Series No. 16. Mueller, F. van (1889). Records ofobservations on Sir William MacGregor’s highland plants from New Guinea. Transactions of the RoyalSocieQ of Victoria new series I(2): 1-45. Royen, P. van (1982). The Alpine Flora ofNew Guinea 3: 1690, pl. 140. Crarner, Vaduz. Schlechter, R. (1918). Die Ericaceen von Deutsch-Neu-Guinea. Botanische Jahrbiicher 55: 137- 194. Sinclair, I. (1984). A new compost for Vireya rhododendrons. The Planlsman 6(2): 102-104. Sleumer, H. (1949). Ein System der Gattung Rhododendron L. Botanische Jahrbiicher 74(4): 5 12-5 I 3. Sleumer, H. (1960). Flora Malesiana Precursores XXIII The genus Rhododendron in Malaysia. Reinwardtia 5(2):45-231. Sleumer, H. (1961). Flora Malesiana Precursores XXIX Supplementary notes towards the knowledge of the genus Rhododendron in Malaysia. Blumea 11(I): 113-131, Sleumer, H. (1963). Flora Malesianae Precursores XXXV. Supplementary notes towards the knowledge ofthe Ericaceae in Malaysia. Blumea 12: 89-144. Sleumer, H. (1966). Ericaceae. Flora Malesiana Series I. G(4-5): 469-914. Sleumer, H. (1973). New species and noteworthy records ofRhododendron in Malesia. Blumea 21: 357-376. Smith,J..J. (1914). Ericaceae. Nova Guinea 12(2): 132. t. 30a, b. Brill, Leiden. Smith,J.J. (1917). Ericaceae. Noua Guinea 12(5):506. Brill, Leiden. Stevens, P.F. (1974). The hybridization and geographical variation of Rhododendron atropurpureum and R. woniersleyi. Proceedings ofthe Papua New Guinea ScientificSociety.
    [Show full text]
  • The Philippine Men & Women of Science | Volume XXVII
    The Philippine Men & Women of Science | Volume XXVII The Philippine Men & Women of Science | Volume XXVII The PHILIPPINE MEN AND WOMEN OF SCIENCE Volume 27, December 2013 issue is published by the Science and Technology Information Institute – Department of Science and Technology (STII-DOST), General Santos Ave., Bicutan, Taguig City, Philippines. Editorial Board and Staff: Raymund E. Liboro, Assistant Secretary and Officer-in-Charge; Rosie A. Almocera, Chief, Information Resources and Analysis Division (IRAD); Geraldine B. Ducusin, Supervising Science Research Specialist; Josefina A. Mahinay, Science Research Specialist II (Scientist Database Manager); Marievic V. Narquita, Science Research Specialist II and Robelyn M. Cruz, Science Research Specialist II (IT Support Staff); Annie Lyn D. Bacani and Jeffrey T. Centeno, Document specialist. Copyleft (Q) 2012 by the Science and Technology Information Institute. This content is free for use by the public for education and research purposes only but not for commercial profit. Payment, if required, is for the subsidized costs of paper and printing only. Attribution to the Science and Technology Information Institute as the publisher is required at all times. Disclaimer: Utmost concern for accuracy and quality is taken in production of this content but the Science and Technology Information Institute waives responsibility from any adverse effect that may result from the inappropriate use of this content. Preface The Philippine Men and Women of Science is one of the in-house publications generated from the Scientists Database, being maintained by the Science and Technology Information Institute (STII), the information arm of the Department of Science and Technology (DOST). It contains bio- bibliographical information of the living scientists who have excelled in their careers with their scientific and technical contributions published in various scientific and technical journals here and abroad.
    [Show full text]
  • Leaf Variegation in Caladium Steudneriifolium (Araceae): a Case of Mimicry?
    Evol Ecol (2009) 23:503–512 DOI 10.1007/s10682-008-9248-2 ORIGINAL PAPER Leaf variegation in Caladium steudneriifolium (Araceae): a case of mimicry? Ulf Soltau Æ Stefan Do¨tterl Æ Sigrid Liede-Schumann Received: 27 November 2007 / Accepted: 25 February 2008 / Published online: 6 March 2008 Ó Springer Science+Business Media B.V. 2008 Abstract The leaves of Caladium steudneriifolium (Araceae) of the understorey of a submontane rainforest in the Podocarpus National Park (South East Ecuador, 1,060 m a.s.l.) are plain green or patterned with whitish variegation. Of the 3,413 individual leaves randomly chosen and examined in April 2003, two-thirds were plain green, whereas one third were variegated (i.e., whitish due to absence of chloroplasts). Leaves of both morphs are frequently attacked by mining moth caterpillars. Our BLAST analysis based on Cytochrome-c-Oxidase-subunit-1 sequences suggests that the moth is possibly a member of the Pyraloidea or another microlepidopteran group. It was observed that the variegated leaf zones strongly resemble recent damages caused by mining larvae and therefore may mimic an attack by moth larvae. Infestation was significantly 4–12 times higher for green leaves than for variegated leaves. To test the hypothesis that variegation can be interpreted as mimicry to deter ovipositing moths, we first ruled out the possibility that variegation is a function of canopy density (i.e., that the moths might be attracted or deterred by factors unrelated to the plant). Then plain green leaves were artificially variegated and the number of mining larvae counted after 3 months.
    [Show full text]
  • Size Variations of Flowering Characters in Arum Italicum (Araceae)
    M. GIBERNAU,]. ALBRE, 2008 101 Size Variations of Flowering Characters in Arum italicum (Araceae) Marc Gibernau· and Jerome Albre Universite Paul Sabatier Laboratoire d'Evolution & Diversite Biologique (UMR 5174) Bat.4R3-B2 31062 Toulouse cedex 9 France *e-mail: [email protected] ABSTRACT INTRODUCTION In Arum, bigger individuals should An extreme form of flowering character proportionally invest more in the female variations according to the size is gender function (number or weight of female modification, which occurs in several flowers) than the male. The aim of this species of Arisaema (Clay, 1993). Individ­ paper is to quantify variations in repro­ ual plant gender changes from pure male, ductive characters (size of the spadix when small, to monoecious (A. dracon­ parts, number of inflorescences) in rela­ tium) or pure female (A. ringens) when tion to plant and inflorescence sizes. The large (Gusman & Gusman, 2003). This appendix represents 44% of the spadix gender change is reversible, damaged length. The female zone length represents female individuals will flower as male the 16.5% of the spadix length and is much following year (Lovett Doust & Cavers, longer than the male zone (6%). Moreover 1982). These changes are related to change these three spadix zones increase with in plant size and are explained by the plant vigour indicating an increasing size-advantage model. The size-advantage investment into reproduction and pollina­ model postulates a sex change when an tor attraction. It appears that the length of increase in body size is related to differen­ appendix increased proportionally more tial abilities to produce or sire offspring than the lengths of the fertile zones.
    [Show full text]
  • Micropropagation of Anubias Barteri Var. Nana from Shoot Tip Culture and the Analysis of Ploidy Stability
    Available online at www.notulaebotanicae.ro Print ISSN 0255-965X; Electronic 1842-4309 Not Bot Horti Agrobo, 2012, 40(2): 148-151 Notulae Botanicae Horti Agrobotanici Cluj-Napoca Micropropagation of Anubias barteri var. Nana from Shoot Tip Culture and the Analysis of Ploidy Stability Kantamaht KANCHANAPOOM1*, Panyaros CHUNUI2 , Kamnoon KANCHANAPOOM2 1 Prince of Songkla University, Faculty of Science, Department of Molecular Biotechnology and Bioinformatics, Hat Yai, Songkhla, 90112 Thailand;[email protected] (*corresponding author) 2 Prince of Songkla University, Faculty of Science, Department of Biology, Plant Biotechnology Research Unit, Hat Yai, Songkhla, 90112 Thailand; [email protected] Abstract Plant regeneration of Anubias barteri var. Nana was achieved through organogenesis in shoot tip cultures. Multiple shoots were induced from cultured shoot tips on a modified MS (Murashige and Skoog, 1962) medium supplemented with BA and kinetin. The maximum green shoot numbers were best obtained on MS medium containing 3 mg/L BA with 5 shoots. Rooting in all regenerated shoots was promoted on MS medium devoid of plant growth regulators or kinetin singly. Acclimatization and survival when transferred to field conditions were shown to be 100% in the regenerated plants. Cytological and flow cytometric analyses of the mother plants and in vitro grown plants derived from 5 years old cultures showed no differences in ploidy level, they were all diploid (2n = 2x = 48) with a 2C peak indicating that ploidy alteration did not occur. Keywords: aquatic plant, Araceae, flow cytometry, nuclear DNA content Introduction Materials and methods Plant materials The genus Anubias of the family Araceae is divided Young plantlets of A.
    [Show full text]
  • The Evolution of Pollinator–Plant Interaction Types in the Araceae
    BRIEF COMMUNICATION doi:10.1111/evo.12318 THE EVOLUTION OF POLLINATOR–PLANT INTERACTION TYPES IN THE ARACEAE Marion Chartier,1,2 Marc Gibernau,3 and Susanne S. Renner4 1Department of Structural and Functional Botany, University of Vienna, 1030 Vienna, Austria 2E-mail: [email protected] 3Centre National de Recherche Scientifique, Ecologie des Foretsˆ de Guyane, 97379 Kourou, France 4Department of Biology, University of Munich, 80638 Munich, Germany Received August 6, 2013 Accepted November 17, 2013 Most plant–pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. An- tagonistic plant–pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was recon- structed as probably rewarding albeit with low confidence because information is available for only 56 of the 120–130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precon- dition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences.
    [Show full text]
  • 7.5 X 11.5.Doubleline.P65
    Cambridge University Press 978-0-521-69466-7 - Seedling Ecology and Evolution Edited by Mary Allessio Leck, V. Thomas Parker and Robert L. Simpson Index More information Index ABA, see abscisic acid A. corniculatum, 69, 151 AM, see arbuscular mycorrhizae Abies, 36, 119, 265 Aegilops triuncialis, 304 Amaranthaceae, 44, 384 A. alba, 152 Aegle marmelos, 26 Amaranthus A. amabilis, 202 aerenchyma, 37, 162 A. cannabinus, 383, 384 A. concolor, 257--9, 268 Aesculus hippocastanum, 151 A. hypochondriacus, 44 A. lasiocarpa, 383 Aetanthus, 92, 94 Amaryllidaceae, 53 Abrotenella linearis var. apiculata, 53 Agathis dammara, 49 Amborella, 135, 141, 143, 146 abscisic acid (ABA), 35, 153, 155, 156, Agavaceae, 19, 316, 320 A. trichopoda, 142, 143 159, 160--4, 167, 168, 169 Agave, 316 Ambrosia trifida, 5, 7, 383, 384 Abutilon theophrastii, 7 Aglaodorum griffithii, 55 Ammophila Acacia, 46, 187, 212 Agrimonia A. arenaria, 73 A. mangium, 298 A. eupatoria, 277 A. breviligulata, 77 A. oraria, 26 A. procera, 277 Amorphophallus albus, 151 A. papyrocarpa, as patch formers, Agropyron amphibious plants, 37 67, 319 A. cristatum, 302 Amphibolis antarctica, 38, 43, 55 A. tortillis, 328 A. desertorum, and restoration, 356, Amphicarpum purshii, 29 A. verticillata, 36 366 amphicarpy, 29 Acanthaceae, 318 A. smithii, 366 Amsinckia intermedia, 42 Acaulaspora, and facilitating Ailanthus altissima, 297, 304 Amyema preisii, 54 restoration, 366 Aizoaceae, 301, 309, 310, 318 Anacardiaceae, 6, 32, 49, 51, 151, acclimation, 186 Aizoon hispanicum, 318 271 Acer, 7, 39, 198, 201, 204, 206 Albizia, 46 Anacharis occidentalis, 48 A. platanoides, 297 A. lophantha, 49 Anastatica hierochuntica, 66, 318 A. pseudoplatanus, 42 Albuca fastigiata, 11 anchorage, 85 A.
    [Show full text]
  • Araceae), with P
    Taxonomic revision of the threatened African genus Pseudohydrosme Engl. (Araceae), with P. ebo, a new, critically endangered species from Ebo, Cameroon Martin Cheek1, Barthélemy Tchiengué2 and Xander van der Burgt3 1 Royal Botanic Gardens, Kew, Richmond, UK 2 Institute of Agronomic Research and Development, Herbier National Camerounais, Yaoundé, Centrale, Cameroon 3 Identification & Naming, Royal Botanic Gardens, Kew, Richmond, Surrey, UK ABSTRACT This is the first revision in more than 100 years of the African genus Pseudohydrosme, formerly considered endemic to Gabon. Closely related to Anchomanes, Pseudohydrosme is distinct from Anchomanes because of its 2-3-locular ovary (vs. unilocular), peduncle concealed by cataphylls at anthesis and far shorter than the spathe (vs. exposed, far exceeding the spathe), stipitate fruits and viviparous (asexually reproductive) roots (vs. sessile, roots non-viviparous), lack of laticifers (vs. laticifers present) and differences in spadix: spathe proportions and presentation. However, it is possible that a well sampled molecular phylogenetic analysis might show that one of these genera is nested inside the other. In this case the synonymisation of Pseudohydrosme will be required. Three species, one new to science, are recognised, in two sections. Although doubt has previously been cast on the value of recognising Pseudohydrosme buettneri, of Gabon, it is here accepted and maintained as a distinct species in the monotypic section, Zyganthera. However, it is considered to be probably globally extinct. Pseudohydrosme gabunensis, type species of the genus, also Gabonese but probably extending to Congo, is maintained in Sect. Pseudohydrosme together with Pseudohydrosme ebo sp.nov. of the Ebo Forest, Submitted 13 October 2020 Littoral Region, Cameroon, the first addition to the genus since the nineteenth Accepted 11 December 2020 century, and which extends the range of the genus 450 km north from Gabon, into 11 February 2021 Published the Cross-Sanaga biogeographic area.
    [Show full text]