New Morphological Aspects and Phylogenetic Considerations Of

Total Page:16

File Type:pdf, Size:1020Kb

New Morphological Aspects and Phylogenetic Considerations Of Neotropical Entomology ISSN: 1519-566X journal homepage: www.scielo.br/ne SYSTEMATICS, MORPHOLOGY AND PHYSIOLOGY New Morphological Aspects and Phylogenetic Considerations ofCicindis Bruch (Coleoptera: Carabidae: Cicindini) S Roig-Juñent, S Sallenave, FA Agrain Lab de Entomología, Instituto Argentino de Investigaciones de las Zonas Áridas – IADIZA, CCT-CONICET, Mendoza, Argentina Keywords Abstract Cladistics, Cicindis horni, morphology, phylogeny Cicindis Cicindis horni Correspondence Bruch is a monospecific genus of carabid beetles endemic to Federico A Agrain, Lab de Entomología, Argentina. In this contribution, Bruch is re-described, Instituto Argentino de Investigaciones de las with addition of new morphological features of male internal sac, Zonas Áridas – IADIZA, CCT-CONICET Mendoza, Cicindis CC 507, 5500 Mendoza, Argentina; saroig@ female genital tract and elytral closure. New information on the mendoza-conicet.gov.ar species’ habitat and distribution is also provided. The phylogenetic placement and relationships of within the family Carabidae Edited by Roberto A Zucchi – ESALQ/USP are discussed on the basis of a cladistic analysis. Terminal taxa included representatives of all subfamilies of Carabidae and Received 27 October 2010 and accepted 13 supertribes of Carabinae, with a major samplingCicindis of those taxa December 2010 considered to be closely related to Cicindini by previous authors. The phylogenetic analysisCicindis shows the basal position of in a clade that includes Ozaeninae, Omophronini, Scaritinae and Conjuncta. A close relationship of with Ozaenini + Metriini is supported by the particular closure of the procoxa and the ventral position of the oviduct with respect to the spermatheca. Introduction Cicindis such as Cnemalobini (Roig-Juñent 1993), Notiokasini (Kavanaugh & Nègre 1983), and Cicindini (Kavanaugh The monotypic genus Bruch constitutes one & Erwin 1991) which are related to holarctic or tropical of the several enigmatic carabid beetles endemic to carabids. Archaeocindisthe southern regions of South America. It is classified Beyond the particular pattern of distribution of the within the tribe Cicindini together with the genus tribe Cicindini, with one speciesCicindis in SouthArchaeocicindis America and Chaudoir. Southern southamerican carabid other in Iran, the unusual combination of morphological beetles (as other austral American insects groups) are characters exhibited by and phylogentically related with the carabid fauna from other had led taxonomists to propose appreciably different regions of the world. Southern southamerican carabids Cicindishypotheses about its relationship with other carabid such as zolines, migadopines, and broscines are related groups. When Bruch (1908) described the genus to groups occurring in other austral continents (Jeannel , he considered it to be related to Nebriini and 1938, 1967, Darlington Jr 1965,Systolosoma Roig-Juñent & Cicchino Omphronini. Other classification schemes considered 2001). Other membersPycnochila of the southern South America this genus to be a unique taxon within the tribe Cicindini, fauna such as trachypachids ( Solier) and related to Ozaenini and Metriini (Bänninger 1925, Bruch omines (the genus Motschulsky ofet theal tribe 1927, Kryzhanovsky 1976, Reichardt 1977). Erwin & Megacephalini) are relictual lineages related to groups Sims (1984) classified Cicindini within the supertribe also occurring in North America (Roig-Juñent 2008). Nebriitae, subfamily Carabinae, along with the tribes NeotropIn southern Entomol South 40(3): America 331-344 there© 2011 are Sociedade also Pangean Entomológica taxa do BrasilNebriini, Notiokasini, Opisthiini, and Notiophilini. Later,331 Morphology and Phylogeny of Cicindis Roig-Juñent et al Erwin (1985) hypothesized that Cicindini were closely Washington D.C, USA (Terry Erwin) (USNM). related to the tribe Notiophilini. Finally, Kavanaugh & Dissections were made following the techniques used Erwin (1991) modified Kryzhanovsky’s classification in previous contributions of Carabidae (Roig-Juñent scheme by elevating Cicinditae to the supertribe level 2000). Drawings were made with camera lucida adapted and placing it taxonomically between Nebriitae and to a stereomicroscope. Elytral structures were examined Elaphritae. and photographed under a compound microscope. Kavanaugh (1998) presented a phylogenetic A tranverse section of the elytron was made using a analysis includingOmophron both genera of the tribe Cicindini,Cicindela microtome after inclusion of the elytron in paraplast and proposed thatOmus the tribe is the sister group of a clade solution. Scanning electron microscope pictures were Scaphinotuscomprising Latreille (Omophronini),Carabus taken using a LEO 1450 VP microscope. Terminology used L. (Cicindelini), Eschscholtz (Megacephalini), follows previous revisions (Deuve 1988, 1993, Liebherr Latreille (Cychrini), and L. (Carabini). & Will 1998, Roig-Juñent 1998, 2000, Roig-Juñent & Because representatives of Ozaeninae and other carabid CicchinoCladistic 2001). analyses subfamilies such as Psydrinae were not included in Kavanaugh’s analysis, the relationships of Cicindini with these taxa were not tested. Cicindis In our analyses we included representatives of all Liebherr & Will (1998) in a phylogenetic analysis using the supertribes of Carabinae and of the other carabid characters from female genitalia found as part of Cicindissubfamilies, especially those for which previous authors a polytomy with Migadopini, Amblytelina, Carabidae proposed closer phylogenetic relationships with Limbata, and a monophyletic group conformed by . Online Supplementary Material Siagonini, Cychrini, Pamborini, Carabini, and Cicindelini. For the cladistic analysis, a total of 50 adult Liebherr & Will (1998) considered Cicindini in a middle morphological characters ( level grade because it posses gonocoxal rami, but lacks 2) were scored for 27 species belonging to six subfamilies harpalidian type of abdomen. These authors also pointed and 20 tribes. These species represent all the subfamilies out the absence of accessory spermathecal gland. proposed by Erwin & Sims (1984)i e 10 and1 20 of the 86 tribes. Representatives of the tribe Cicindini have not Characters in the text are referred to by number and their been included in other phylogeneticet al analyses using states appear in superscript ( . ). etmorphological al (e.g. Beutel 1998, Kavanaugh 1998), or A representative species of the family Trachypachidae, molecular data (Maddison 1998, 1999, 2009, Balke regarded as the sister taxon of Carabidae in previous 2005). Cicindis horni Bruch, such as works (Erwin 1985, Beutel 1998, Kavanaugh 1998, Roig- The main objectives of this paper are to describe new Juñent 1998), was used to root the tree. morphological features of Morphological characters used in this analysis male and female internal structures and the particular correspond to those proposed for the higher classification closure of the elytra, and to performCicindis a preliminary of Carabidae in previous studies (Sloane 1923, Jeannel cladistic analysis based on adult morphology in order to 1941, 1955, Bell 1967, Erwin 1985, Nichols 1985, Deuve explore the phylogenetic placement of within the 1993, Baehr 1998, Liebherr & Will 1998, Roig-Juñent & family Carabidae. Cicchino 2001). All characters were considered to be Material and Methods Online Supplementary Material 3 non-additive (unordered). The data matrix is presented asData the analysis . C horni The description of the morphological variability of . et al is based on examination of 25 males and 14 females.Online Phylogenetic analyses were performed using parsimony SupplementarySeveral specimens Material of 25 other1 carabid and trachypachid software TNT (Goloboff 2003). The data set was species were studied for the cladistic analysis (See analyzed using two procedures: (a) equally weighted ). Material for this study was character analysis, and (b) implied weighting method borrowed from entomological collections of the following (Goloboff 1993), exploring the topologies obtained with institutions: Instituto Argentino de Investigaciones de different K (constant concavity) values from K = 1 to Zonas Áridas Mendoza, Argentina (Sergio Roig-Juñent) K = 6. All analyses were conducted using a traditional (IADIZA), Museo Argentino de Ciencias Naturales, heuristic search on the base of Wagner trees, 100 random “Bernardino Rivadavia,” Buenos Aires, Argentina (Arturo addition sequences, followed by the tree-bisection Roig- Alsina) (MACN), Museo de Ciencias Naturales de La reconnection (TBR) swapping algorithm, saving 100 Plata, La Plata, Argentina (Alberto Abramovich) (MLPA), trees per replicate. Branch robustness was assessed University of Nebraska State Museum, USA (Brett Ratcliffe) by standard Bootstrapping and Jackknifing (removal 332(UNSM), National Museum of Natural History, Smithsonian,Neotrop probability Entomol 40(3): = 36),331-344 with © 2011500 Sociedadereplicates, Entomológica searching doamong Brasil Roig-Juñent et al Morphology and Phylogeny of Cicindis trees with traditional search for the equally weighted analysis. Bremer support and symmetric resampling (change probability = 33) were used as support values for implied weighting analyses since neither of these two measures is distorted by weight. All support numbers are given as relative values. Redescription Characters not described in Kavanaugh & Erwin (1991) Systematicare provided. remarks C horni The new material of . shows some interesting morphological
Recommended publications
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Coleoptera: Carabidae) Assemblages in a North American Sub-Boreal Forest
    Forest Ecology and Management 256 (2008) 1104–1123 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Catastrophic windstorm and fuel-reduction treatments alter ground beetle (Coleoptera: Carabidae) assemblages in a North American sub-boreal forest Kamal J.K. Gandhi a,b,1, Daniel W. Gilmore b,2, Steven A. Katovich c, William J. Mattson d, John C. Zasada e,3, Steven J. Seybold a,b,* a Department of Entomology, 219 Hodson Hall, 1980 Folwell Avenue, University of Minnesota, St. Paul, MN 55108, USA b Department of Forest Resources, 115 Green Hall, University of Minnesota, St. Paul, MN 55108, USA c USDA Forest Service, State and Private Forestry, 1992 Folwell Avenue, St. Paul, MN 55108, USA d USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 5985 Hwy K, Rhinelander, WI 54501, USA e USDA Forest Service, Northern Research Station, 1831 Hwy 169E, Grand Rapids, MN 55744, USA ARTICLE INFO ABSTRACT Article history: We studied the short-term effects of a catastrophic windstorm and subsequent salvage-logging and Received 9 September 2007 prescribed-burning fuel-reduction treatments on ground beetle (Coleoptera: Carabidae) assemblages in a Received in revised form 8 June 2008 sub-borealforestinnortheasternMinnesota,USA. During2000–2003, 29,873groundbeetlesrepresentedby Accepted 9 June 2008 71 species were caught in unbaited and baited pitfall traps in aspen/birch/conifer (ABC) and jack pine (JP) cover types. At the family level, both land-area treatment and cover type had significant effects on ground Keywords: beetle trap catches, but there were no effects of pinenes and ethanol as baits.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Current Classification of the Families of Coleoptera
    The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations.
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Vespula Germanica ) on the Native Arthropod Community of North-West Patagonia, Argentina: an Experimental Study
    Ecological Entomology (2008), 33, 213–224 DOI: 10.1111/j.1365-2311.2007.00952.x The impact of an exotic social wasp ( Vespula germanica ) on the native arthropod community of north-west Patagonia, Argentina: an experimental study PAULA SACKMANN 1 , ALEJANDRO FARJI-BRENER 1 a n d JUAN CORLEY 2 1 Laboratorio Ecotono, INIBIOMA, CRUB-Universidad Nacional del Comahue/CONICET, Pasaje Gutiérrez 1125, Bariloche, Río Negro, Argentina and 2 Laboratorio de Ecología de Insectos EEA INTA Bariloche, Río Negro, Argentina Abstract . 1. Biological invasions are usually thought to have a negative impact on native communities. However, data supporting this idea are often based on comparative studies between invaded and non-invaded areas, and are spatially and temporally limited. 2. The present study experimentally assessed the impact of an exotic wasp, Vespula germanica , on the native arthropod community of north-west Patagonia during 3 years in an area of 80 ha. Vespula germanica is an exotic social vespid that invaded north-west Patagonia 20 years ago. It has been suggested that its populations affect native arthropods because of its broad diet and also because Patagonia lacks natural enemies and potential competitors for these wasps. 3. Using wasp-specific toxic baits, V. germanica abundance was reduced in five sites of native woodlands during 3 consecutive years. The abundance, species richness, and composition of arthropods between non-poisoned (control) and poisoned sites was then compared, both before and after the wasps were poisoned. 4. Wasp abundance represented 6% of the total arthropod catches in non-poisoned sites and was reduced, on average, by 50% in the treated areas.
    [Show full text]
  • Description and Phylogenetic Relationships of Two New Species of Baripus (Coleoptera: Carabidae: Broscini) and Considerations Regarding Patterns of Speciation
    ANNALS OF CARNEGIE MUSEUM VOL . 77, NU M BER 1, PP. 211–227 30 JUNE 2008 DESCRIPTION AND PHYLOGENETIC RELATIONSHIPS OF TWO NEW SPECIES OF BARIPUS (COLEOPTERA: CARABIDAE: BROSCINI) AND CONSIDERATIONS REGARDING PATTERNS OF SPECIATION SERGIO A. ROIG -JUÑENT Laboratorio de Entomología. Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA). Avenida Ruiz Leal s/n – Pq. Gral. San Martín, 5500 – Mendoza, Argentina [email protected] FEDERICO AGR A IN * [email protected] RODOL F O CA RR A R A * [email protected] EIDER RUIZ -MA NZ A NO S * [email protected] MA RCELO F. TOGNELLI * [email protected] ABSTRACT Baripus Dejean is a genus of the family Carabidae restricted to southern South America. Three subgenera are recognized within the genus; one of them, Cardiophthalmus Curtis, is endemic to the Patagonian Steppe. Together with the members of the genus Cnemalobus Guérin-Ménéville, these beetles are the largest Carabidae of the Patagonian Steppe. New studies in the northern region of Patagonia, the Payunia, reveal the presence of two new species, Baripus (Cardiophthalmus) nevado, new species, and Baripus (Cardiophthalmus) precordillera, new species, restricted to isolated montane habitats. In this paper, we provide morphological descriptions of the new taxa with illustrations of male and female genitalia. We also conducted a phylogenetic analysis including all known species of Baripus. The cladistic analysis showed that B. (C.) mendozensis, B. (C.) nevado and B. (C) precordillera constitutes a monophyletic group of species. These three species are allopatric, but B. (C.) mendozensis and B. (C.) nevado ranges are in close proximity.
    [Show full text]
  • The Morphological Evolution of the Adephaga (Coleoptera)
    Systematic Entomology (2019), DOI: 10.1111/syen.12403 The morphological evolution of the Adephaga (Coleoptera) ROLF GEORG BEUTEL1, IGNACIO RIBERA2 ,MARTIN FIKÁCEˇ K 3, ALEXANDROS VASILIKOPOULOS4, BERNHARD MISOF4 andMICHAEL BALKE5 1Institut für Zoologie und Evolutionsforschung, FSU Jena, Jena, Germany, 2Institut de Biología Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain, 3Department of Zoology, National Museum, Praha 9, Department of Zoology, Faculty of Science, Charles University, Praha 2, Czech Republic, 4Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany and 5Zoologische Staatssammlung, Munich, Germany Abstract. The evolution of the coleopteran suborder Adephaga is discussed based on a robust phylogenetic background. Analyses of morphological characters yield results nearly identical to recent molecular phylogenies, with the highly specialized Gyrinidae placed as sister to the remaining families, which form two large, reciprocally monophyletic subunits, the aquatic Haliplidae + Dytiscoidea (Meruidae, Noteridae, Aspidytidae, Amphizoidae, Hygrobiidae, Dytiscidae) on one hand, and the terrestrial Geadephaga (Trachypachidae + Carabidae) on the other. The ancestral habitat of Adephaga, either terrestrial or aquatic, remains ambiguous. The former option would imply two or three independent invasions of aquatic habitats, with very different structural adaptations in larvae of Gyrinidae, Haliplidae and Dytiscoidea. Introduction dedicated to their taxonomy (examples for comprehensive studies are Sharp, 1882; Guignot, 1931–1933; Balfour-Browne Adephaga, the second largest suborder of the megadiverse & Balfour-Browne, 1940; Jeannel, 1941–1942; Brinck, 1955, > Coleoptera, presently comprises 45 000 described species. Lindroth, 1961–1969; Franciscolo, 1979) and morphology. The terrestrial Carabidae are one of the largest beetle families, An outstanding contribution is the monograph on Dytiscus comprising almost 90% of the extant adephagan diversity.
    [Show full text]
  • Carabidae (Insecta: Coleoptera): Catalogue
    INVERTEBRATE SYSTEMATICS ADVISORY GROUP REPRESENTATIVES OF LANDCARE RESEARCH Dr D.R. Penman Landcare Research Lincoln Agriculture & Science Centre P.O. Box 69, Lincoln, New Zealand Dr T.K. Crosby and Dr M.-C. Larivière Landcare Research Mount Albert Research Centre Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson Ecology and Entomology Group Soil, Plant, and Ecological Sciences Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF MUSEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS INSTITUTIONS Dr J.F. Lawrence CSIRO Division of Entomology G.P.O. Box 1700, Canberra City A.C.T. 2601, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Mount Albert Research Centre Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 43 Carabidae (Insecta: Coleoptera): catalogue A. Larochelle and M.-C. Larivière Landcare Research, Private Bag 92170, Auckland, New Zealand [email protected] [email protected] Manaaki W h e n u a PRESS Lincoln, Canterbury, New Zealand 2001 4 Larochelle & Larivière (2001): Carabidae (Insecta: Coleoptera) catalogue Copyright © Landcare Research New Zealand Ltd 2001 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication LAROCHELLE, André, 1940– Carabidae (Insecta: Coleoptera): catalogue / A. Larochelle and M.-C. Larivière – Lincoln, Canterbury, N.Z.
    [Show full text]
  • Molecular Phylogenetics of the Superfamily Curculionoidea (Insecta: Coleoptera)
    Molecular Phylogenetics of the Superfamily Curculionoidea (Insecta: Coleoptera) Conrad Paulus Dias Trafford Gillett A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of East Anglia Norwich, Norfolk, England March 2014 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there-from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. 1 Molecular Phylogenetics of the Superfamily Curculionoidea (Insecta: Coleoptera) Conrad Paulus Dias Trafford Gillett March 2014 Thesis abstract This thesis examines higher-level evolutionary history within the superfamily Curculionoidea, the most speciose family-level taxon, which includes beetles commonly known as weevils. This is achieved using a phylogenetic approach incorporating the largest datamatrix yet employed for weevil molecular systematics, and includes an investigation into the prospect of obtaining short phylogenetically informative amplicons from archival museum specimens. Newly obtained DNA sequence data is analysed from a variety of mitochondrial and nuclear loci, including 92 mitogenomes assembled through the approach of next-generation sequencing of pooled genomic DNA. The resulting trees are used to test previous morphological- and molecular-based hypotheses of weevil relationships and classification schemes. Mitogenomic-derived trees reveal topologies that are highly congruent with previous molecular studies, but that conflict with some morphological hypotheses. Strong nodal support strengthens inferences into the relationships amongst most weevil families and suggests that the largest family, the Curculionidae, is monophyletic, if the subfamily Platypodinae is excluded.
    [Show full text]
  • Studies on Neotropical Fauna and Environment Study on The
    This article was downloaded by: [Russian Academy of Sciences] On: 07 March 2014, At: 00:24 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Studies on Neotropical Fauna and Environment Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/nnfe20 Study on the systematic position of Systolosoma breve Solier (Adephaga: Trachypachidae) Based on characters of the thorax Rolf G. Beutel a a Institut für Spezielle Zoologie und Evolutionsbiologie , FSU Jena , Erbertstraße 1, 07743, Jena, Germany Published online: 19 Nov 2008. To cite this article: Rolf G. Beutel (1994) Study on the systematic position of Systolosoma breve Solier (Adephaga: Trachypachidae) Based on characters of the thorax, Studies on Neotropical Fauna and Environment, 29:3, 161-167, DOI: 10.1080/01650529409360928 To link to this article: http://dx.doi.org/10.1080/01650529409360928 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
    [Show full text]
  • Neotropical Entomology ISSN: 1519-566X Journal Homepage
    Neotropical Entomology ISSN: 1519-566X journal homepage: www.scielo.br/ne SYSTEMATICS, MORPHOLOGY AND PHYSIOLOGY New Morphological Aspects and Phylogenetic Considerations ofCicindis Bruch (Coleoptera: Carabidae: Cicindini) S Roig-Juñent, S Sallenave, F Agrain Lab de Entomología, Instituto Argentino de Investigaciones de las Zonas Áridas – IADIZA, CCT-CONICET, Mendoza, Argentina Keywords Abstract Cladistics, Cicindis horni, morphology, phylogeny Cicindis Cicindis horni Correspondence Bruch is a monospecific genus of carabid beetles endemic to Federico Alejandro Agrain, L a b Argentina. In this contribution, Bruch is re-described, de Entomología, Instituto Argentino de with addition of new morphological features of male internal sac, Investigaciones de las Zonas Áridas – IADIZA, Cicindis CCT-CONICET Mendoza, CC 507, 5500 female genital tract and elytral closure. New information on the Mendoza, Argentina; saroig@mendoza- species’ habitat and distribution is also provided. The phylogenetic conicet.gov.ar placement and relationships of within the family Carabidae are discussed on the basis of a cladistic analysis. Terminal taxa Edited by Roberto A Zucchi – ESALQ/USP included representatives of all subfamilies of Carabidae and supertribes of Carabinae, with a major samplingCicindis of those taxa Received 27 October 2010 and accepted 13 considered to be closely related to Cicindini by previous authors. The December 2010 phylogenetic analysisCicindis shows the basal position of in a clade that includes Ozaeninae, Omophronini, Scaritinae and Conjuncta. A close relationship of with Ozaenini + Metriini is supported by the particular closure of the procoxa and the ventral position of the oviduct with respect to the spermatheca. Introduction Cicindis such as Cnemalobini (Roig-Juñent 1993), Notiokasini (Kavanaugh & Nègre 1983), and Cicindini (Kavanaugh The monotypic genus Bruch constitutes one & Erwin 1991) which are related to holarctic or tropical of the several enigmatic carabid beetles endemic to carabids.
    [Show full text]