B.F. Windley 1982.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

B.F. Windley 1982.Pdf Developments in Precambrian Geology 7 DEVELOPMENTS AND INTERACTIONS OF THE PRECAMBRIAN AT.MOSPHERE, LITHOSPHERE AND BIOSPHERE DEVELOPMENTS IN PRECAMBRIAN GEOLOGY Advisory Editor B.F. Windley Further titles in this series 1. B.F. WINDLEY and S.M. NAQVl (Editors) Archaean Geochemistry 2. D.R. HUNTER (Editor) Precambrian of the Southern Hemisphere 3. K.C. CONDIE Archean Greenstone Belts 4. A. KRONER (Editor) Precambrian Plate Tectonics 5. Y.P. MEL’NIK Precambrian Banded Iron-formations. Physicochemical Conditions of Formation 6. A.F. TRENDALL and R.C. MORRIS (Editors) Iron-Formation: Facts and Problems DEVELOPMENTS IN PRECAMBRIAN GEOLOGY 7 DEVELOPMENTS AND INTERACTIONS OF THE PRECAMBRIAN ATMOSPHERE, LITHOSPHERE AND BIOSPHERE Compilation of papers based on the presentations of participants at, or contributed by authors unable to attend, the IGCP Projects 157 and 160 meeting at the Universidad Nacional Autonoma de Mexico in Mexico City, Mexico, January 11-14, 1982. Edited by B. NAGY Department of Geosciences, University of Arizona, Tucson, Arizona, U.S.A. R. WEBER AND J.C. GUERRERO lnstitut di Geologia, Universidad Nacional Autdnoma de MeiCico, M6xico City, Mexico and M. SCHIDLOWSKI Max-Planck-lnstitut fur Chemie, Mainz, F. R. of Germany reprinted from Precambrian Geology, vol. 20, nos. 2-4 ELSEVIER, Amsterdam - Oxford - New York - Tokyo 1983 ELSEVIER SCIENCE PUBLISHERS B.V. Molenwerf 1, 1014 AG Amsterdam P.O. Box 21 1, Amsterdam, The Netherlands Distributors for the United States and Canada: ELSEVIER SCIENCE PUBLISHING INC. 52, Vanderbilt Avenue New York, N.Y. 10017 Library of Congress Cataloging in Publication Dnta !,lain entry under title: Developments and internctians of the Precambriar. atmosphere, lithosphere, and biosphere. (Uew1opment.s in Precambrian geslo,;ji ; 7) "Ri,printeil from Precambrian ,px!loSy. vol. 20. nos. 7-14.'' "ICCP Project nos. 157 and 160." Ijibliography: p. 1. &olot:y, Stratii:raphic--Pre-Cambrian--Addresses. c:;.;ays, lectures. I. Nagy, Bartholomew, 1927- 11. Scries. W6'j 3.11117 198! 551.7'1 83-165:10 ISNV o - J t J I it -1 t>c) 40 -4 ISBN 0-444-42240-4 (VOI. 7) ISBN 0-444-41 719-2 (Series) 0 Elsevier Science Publishers B.V., 1983 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or other- wise, without the prior written permission of the publisher, Elsevier Science Publishers B.V., P.O. Box 330, Amsterdam, The Netherlands Printed in The Netherlands V CONTENTS Fore word (Bartholome w Nagy) ..................................... vii Preface (Reinhard Weber and Jose C. Guerrero). .......................... ix Preface (Manfred Schidlowski). ..................................... xi Oxygen and ozone in the early Earth’s atmosphere V.M. Canuto (New York, NY, U.S.A.), J.S. Levine, T.R. Augustsson (Hampton, VA, U.S.A.) and C.L. Imhoff (Greenbelt, MD, U.S.A.) ............ 1 Photochemistry of methane in the Earth’s early atmosphere J.F. Kasting (Boulder, CA, U.S.A.), K.J. Zahnle and J.C.G. Walker (Ann Arbor, M1,U.S.A.). .............................................. 13 Proterozoic aeolian quartz arenites from the Hornby Bay Group, Northwest Territories, Canada: implications for Precambrian aeolian processes G.M. Ross (Ottawa, Ontario, Canada) .............................. 41 Precambrian atmospheric oxygen and banded iron formations: a delayed ocean model K.M. Towe (Washington, DC, U.S.A.) .............................. 53 Tectonic systems and the deposition of iron-formation G.A. Gross (Ottawa, Ontario, Canada) ............................. 63 Archaean chemical weathering at three localities on the Canadian Shield M. Schau and J.B. Henderson (Ottawa, Ontario, Canada) ................. 81 Pedogenetic and diagenetic fabrics in the Upper Proterozoic SarnyBr6 formation (Gourma, Mali) J. Bertrand-Sarfati and A. Moussine-Pouchkine (Montpellier, France) .........117 Rare earth elements in the early Archaean Isua iron-formation, West Greenland P.W.U. Appel (Copenhagen, Denmark) ............................. 135 Primitive Earth environments: organic syntheses and the origin and early evolution of life A. Lazcano (Mexico, Mexico), J. Or6 (Houston, TX, U.S.A.) and S.L. Miller (La Jolla, CA, U.S.A.) ........................................ 151 Natural nuclear reactors and ionizing radiation in the Precambrian I.G. Draganie, Z.D. Draganie (Mexico, Mexico) and D. Altiparmakov (Beograd, Yugoslavia) ............................................... 175 Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence M.O. Dayhoff (Washington, DC, U.S.A.) ............................ 191 Evolution of photoautotrophy and early atmospheric oxygen levels M. Schidlowski (Mainz, W. Germany) .............................. 211 Further sulphur and carbon isotope studies of late Archaean iron-formations of the Canadian shield and the rise of sulfate reducing bacteria H.G. Thode (Hamilton, Ontario, Canada) and A.M. Goodwin (Toronto, Ontario, Canada) .......................................... .229 Filamentous fossil bacteria from the Archaean of Western Australia S.M. Awramik (Santa Barbara, CA, U.S.A.), J.W. Schopf and M.R. Walter (Los Angeles, CA, U.S.A.) ..................................... 249 Pseudo-oolites in rocks of the Ulundi Formation, lower part of the Archaen Fig Tree Group (South Africa) T.O. Reimer (Wiesbaden, W. Germany) ............................. 267 Sedimentary geology and stromatolites of the Middle Proterozoic Belt Supergroup, Glacier National Park, Montana R.J. Horodyski (New Orleans, LA, U.S.A.) .......................... 283 vi The emergence of Metazoa in the early history of life M.F. Glaessner (Adelaide, S.A., Australia) .......................... .319 Distinctive microbial structures and the pre-Phanerozoic fossil record L. Margulis, B.D.D. Grosovsky, J.F. Stolz, E.J. Gong-Collins, S. Lenk (Boston, MA, U.S.A.), D. Read (North Dartmouth, MA, U.S.A.) and A. Lop&-CortBs (Mexico, Mexico) ............................... .335 Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments J.F. Stolz (Boston, MA, U.S.A.) ................................. 371 Stromatolites -the challenge of a term in space and time W.E. Krumbein (Oldenburg, W. Germany) .......................... .385 Stratiform copper deposits and interactions with co-existing atmospheres, hydrospheres, biospheres and lithospheres A.C. Brown and F.M. Chartrand (Montreal, Quebec, Canada) ............. .425 Origin and distribution of gold in the Huronian Supergroup, Canada -the case for Witwatersrand-type paleoplacers D.J. Mossman (Sackville, New Brunswick, Canada) and G.A. Harron (Vancouver, British Columbia, Canada) ............................ .435 vii Fore word This volume contains articles which resulted from the joint meeting of International Geological Correlation Program Projects 157 and 160, held in Mexico City. Pertinent details of the scope and organization of the meeting are described in the Prefaces. For introduction, it seems appropriate to quote from the Presidential Address of Robert Etheridge, F.R.S. to the Geological Society of London. “Time and life are two subjects that at once arrest the attention of all earnest students. Our knowledge of the commencement of either is as indef- inite now as in the days of the earliest investigators. With the succession of sedimentary rock masses in the outer framework of the globe we are perhaps partly familiar. yet yearly some new light is thrown upon the obscure history of the earliest rocks with which we believe ourselves acquainted”. Some of the ideas presented in this are new, and are indeed novel. These should be challenged in print; this is how new scientific insight is acquired. Studies of the Precambrian, having sufficiently wide scope and great depth are still not common. This is a relatively new field of scientific endeavor. As in all young fields of inquiry, entrenched ideas occasionally hamper the evolution of heterodox concepts. This is noteworthy in context of Robert Etheridge’s munificent Presidential Address, which was published in 1881 - one hundred and two years ago. BARTHOLOMEWNAGY This Page Intentionally Left Blank ix Preface This volume contains a set of papers resulting from the second joint meeting of Projects 157 and 160 of the International Geological Correlation Program held in January, 1982, in Mexico City, under the general title “Development and Interactions of the Precambrian Lithosphere, Biosphere and Atmosphere”. In addition, the issue contains some articles by authors who had been invited, but, because of various circumstances were unable to attend the meeting. In 1980, rather surprisingly, the participants of the first common work- shop of IGCP Projects 157 and 160, held at Santa Barbara, California, invited the Geological Institute of the National University of Mexico (UNAM) to organize and host the second common meeting of these projects. Manfred Schidlowski and Erich Dimroth, the chairmen of these projects at the time of the Santa Barbara workshop, provided us with an excellent op- portunity to bring together a large group of outstanding researchers, and to present to this audience the results of several research programs in Precam- brian geology, paleontology and the origins of life, which are being carried on in Mexico. About 40 specialists in astrophysics, microbiology, oceanography and a wide array
Recommended publications
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • Going-To-The-Sun Road Historic District, Glacier National Park
    National Park Service Cultural Landscapes Inventory 2002 Going-to-the-Sun Road Historic District Glacier National Park Table of Contents Inventory Unit Summary & Site Plan Concurrence Status Geographic Information and Location Map Management Information National Register Information Chronology & Physical History Analysis & Evaluation of Integrity Condition Treatment Bibliography & Supplemental Information Going-to-the-Sun Road Historic District Glacier National Park Inventory Unit Summary & Site Plan Inventory Summary The Cultural Landscapes Inventory Overview: CLI General Information: Purpose and Goals of the CLI The Cultural Landscapes Inventory (CLI), a comprehensive inventory of all cultural landscapes in the national park system, is one of the most ambitious initiatives of the National Park Service (NPS) Park Cultural Landscapes Program. The CLI is an evaluated inventory of all landscapes having historical significance that are listed on or eligible for listing on the National Register of Historic Places, or are otherwise managed as cultural resources through a public planning process and in which the NPS has or plans to acquire any legal interest. The CLI identifies and documents each landscape’s location, size, physical development, condition, landscape characteristics, character-defining features, as well as other valuable information useful to park management. Cultural landscapes become approved CLIs when concurrence with the findings is obtained from the park superintendent and all required data fields are entered into a national
    [Show full text]
  • Palaeobiology of the Early Ediacaran Shuurgat Formation, Zavkhan Terrane, South-Western Mongolia
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs To cite this article: Ross P. Anderson, Sean McMahon, Uyanga Bold, Francis A. Macdonald & Derek E. G. Briggs (2016): Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2016.1259272 To link to this article: http://dx.doi.org/10.1080/14772019.2016.1259272 Published online: 20 Dec 2016. Submit your article to this journal Article views: 48 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [Harvard Library] Date: 31 January 2017, At: 11:48 Journal of Systematic Palaeontology, 2016 http://dx.doi.org/10.1080/14772019.2016.1259272 Palaeobiology of the early Ediacaran Shuurgat Formation, Zavkhan Terrane, south-western Mongolia Ross P. Anderson a*,SeanMcMahona,UyangaBoldb, Francis A. Macdonaldc and Derek E. G. Briggsa,d aDepartment of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, Connecticut, 06511, USA; bDepartment of Earth Science and Astronomy, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; cDepartment of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts, 02138, USA; dPeabody Museum of Natural History, Yale University, 170 Whitney Avenue, New Haven, Connecticut, 06511, USA (Received 4 June 2016; accepted 27 September 2016) Early diagenetic chert nodules and small phosphatic clasts in carbonates from the early Ediacaran Shuurgat Formation on the Zavkhan Terrane of south-western Mongolia preserve diverse microfossil communities.
    [Show full text]
  • Joe Curran Microfossils and the Depositional Environment of The
    Joe Curran Microfossils and the Depositional Environment of the Gunflint Iron Formation A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts (Geology) at GUSTAVUS ADOLPHUS COLLEGE 2012 Abstract The Gunflint Iron Formation was deposited during the mid-Paleoproterozoic, shortly after the early Paleoproterozoic Great Oxygenation Event(GOE), when the atmosphere and oceans became oxygenated for the first time. The lowermost portions of the Gunflint Iron Formation contain black, early diagenetic chert with locally abundant microfossils. Reconstructing the life habits and ecology of the microfossil assemblages allows us to better understand the shallow water sedimantary conditions during the post GOE interval. Eosphaera and Kakabekia are two distinctive genera that occur in the Gunflint, but they likely had different habitats. Kakabekia has a morphology similar to iron metabolizing bacteria that live today in anoxic soil microhabitats. In the Gunflint, Kakabekia occurs in association with filamehts and coccoidal microfossils that likely lived in or near stromatolites on the sea floor. The association with this likely iron bacteria and a benthic microbial community suggests that most of the Gunflint microflora was benthic and possibly living in ferruginous, anoxic conditions. In contrast, Eosphaera fossils are rare and not strongly associated with the main community components. Eosphaera’s morphological similarity with the modern alga Volvox suggests that Eosphaera may also have hada photosynthetic metabolism. Eosphaera is plausibly interpreted as an oxygenic photosyhthesizer that lived in an oxic zone above the seafloor. If correct, this interpretation suggests close spatial proximity of oxic and anoxic environments in the Paleoproterozoic iron formations.
    [Show full text]
  • GY 112 Lecture Note Series
    GY 112 Lecture Notes 20: Stromatolites Lecture Goals: A) Cyanobacteria B) Stromatolites C) Invasion Earth! The colonization of terrestrial environments begins. Textbook reference: Levin, Chapter 6 (pages 226-231) and Chapter 10 (page 334) A) Cyanobacteria When last we met, we discussed the “evolution” of the oceans and the Earth’s atmosphere. Were it not for the presence of simple prokaryotic life forms, our oceans and our atmosphere would have remained anaerobic. I may have left you with the impression that the anaerobic prokaryotes of the past were ideally suited for their environment. At first they probably were, but there must have been a time when things became less ideal for them. The first prokaryotes probably just digested whatever organic “food” happened to be around in the oceans they were living in. Yes, they would have been somewhat cannibalistic (if bacteria eating bacteria can be regarded in this fashion). This type of opportunistic feeding method is called heterotrophisis and beasties that eat in this manner are called heterotrophs. Eventually the food would start to run out and this would have likely induced evolutionary changes in the organisms around at the time. If organisms could produce their own food supply, they would have a distinct advantage over those that could not, especially if food supplies started to dwindle. Today we have many organisms that produce their own nutrients. The process is called autotrophisis and the organisms that do this are called autotrophs. Many types of bacteria today use either carbon dioxide, hydrogen sulfide or ammonia to produce the energy that they need to survive.
    [Show full text]
  • July Newsletter
    1 Climb. Hike. Ski. Bike. Paddle. Dedicated to the Enjoyment and Promotion of Responsible Outdoor Adventure. Club Contacts ABOUT THE CLUB: Website: http://rockymountaineers.com Mission Statement: e-mail: [email protected] The Rocky Mountaineers is a non-profit Mailing Address: club dedicated to the enjoyment and The Rocky Mountaineers promotion of responsible outdoor PO Box 4262 Missoula MT 59806 adventures. President: Joshua Phillips Meetings and Presentations: [email protected] Meetings are held the second Wednesday, Vice-President: David Wright September through May, at 6:00 PM at [email protected] Pipestone Mountaineering. Each meeting Secretary: Julie Kahl is followed by a featured presentation or [email protected] speaker at 7:00 PM. Treasurer: Steve Niday [email protected] Activities: Hiking Webmaster: Alden Wright Backpacking [email protected] Alpine Climbing & Scrambling Peak Bagging Newsletter Editor: Forest Dean Backcountry Skiing [email protected] Winter Mountaineering Track Skiing The Mountain Ear is the club newsletter of The Rocky Snowshoeing Mountaineers and is published near the beginning of Snowboarding every month. Anyone wishing to contribute articles of Mountain Biking interest are welcomed and encouraged to do so- contact the editor. Rock Climbing Canoeing & Kayaking Membership application can be found at the end of the Rafting newsletter. Kids Trips Terracaching/Geocaching 2 The Rocky Mountaineers 5th Annual GLACIER CLASSIC ********* Friday, August 28 – Sunday, August 30 Rising Sun Campground, Glacier National Park We invite all members, guests, friends (anyone!) to join us for our 5th Annual Glacier Classic. This year we will base our activities out of the Rising Sun Campground on the north side of St.
    [Show full text]
  • GLACIERS and GLACIATION in GLACIER NATIONAL PARK by J Mines Ii
    Glaciers and Glacial ion in Glacier National Park Price 25 Cents PUBLISHED BY THE GLACIER NATURAL HISTORY ASSOCIATION IN COOPERATION WITH THE NATIONAL PARK SERVICE Cover Surveying Sperry Glacier — - Arthur Johnson of U. S. G. S. N. P. S. Photo by J. W. Corson REPRINTED 1962 7.5 M PRINTED IN U. S. A. THE O'NEIL PRINTERS ^i/TsffKpc, KALISPELL, MONTANA GLACIERS AND GLACIATTON In GLACIER NATIONAL PARK By James L. Dyson MT. OBERLIN CIRQUE AND BIRD WOMAN FALLS SPECIAL BULLETIN NO. 2 GLACIER NATURAL HISTORY ASSOCIATION. INC. GLACIERS AND GLACIATION IN GLACIER NATIONAL PARK By J Mines Ii. Dyson Head, Department of Geology and Geography Lafayette College Member, Research Committee on Glaciers American Geophysical Union* The glaciers of Glacier National Park are only a few of many thousands which occur in mountain ranges scattered throughout the world. Glaciers occur in all latitudes and on every continent except Australia. They are present along the Equator on high volcanic peaks of Africa and in the rugged Andes of South America. Even in New Guinea, which many think of as a steaming, tropical jungle island, a few small glaciers occur on the highest mountains. Almost everyone who has made a trip to a high mountain range has heard the term, "snowline," and many persons have used the word with­ out knowing its real meaning. The true snowline, or "regional snowline" as the geologists call it, is the level above which more snow falls in winter than can he melted or evaporated during the summer. On mountains which rise above the snowline glaciers usually occur.
    [Show full text]
  • From the Gunflint Chert and Its Implications for Eukaryote Origins
    A ‘Giant Microfossil’ from the Gunflint Chert and its Implications for Eukaryote Origins Mark A. S. McMenamin1,*, Aurora Curtis-Hill1, Sophie Rabinow1, Kalyndi Martin1 and Destiny Treloar1 1 Department of Geology and Geography, Mount Holyoke College, South Hadley, Massachusetts, United States *Correspondence: [email protected]; Tel.: 413-538-2280 Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract We report here a ‘giant microfossil’ resembling 2. Geological Setting the conidium of an ascomycete fungus (cf. Alternaria alternata). The specimen is preserved in stromatolitic black The Gunflint Iron Formation is known for its chert of the Gunflint Iron Formation (Paleoproterozoic Eon, microfossiliferous black cherts. These cherts have produced Orosirian Period, ca. 1.9-2.0 Ga) of southern Ontario, compelling evidence for very ancient (ca. 2 Ga) microbial Canada, and the rock that provided the thin section may life [3-11]. Tyler and Barghoorn [3] noted that as “far as we have been collected by Elso Barghoorn as part of the are aware, these [microbes] are the oldest structurally original discovery of the Gunflint microbiota. The large size preserved organisms . and, as such, are of great interest of the fossil sets it apart from other, tiny by comparison, in the evolutionary scheme of primitive life.” This paper [3] Gunflint microfossils. The fossil is 200 microns in length is considered one of the great classics of American earth and has cross walls. Individual cells are 30-46 microns in science (“a benchmark, a monumental ‘first’” [5]).
    [Show full text]
  • Nanoscale Analysis of Pyritized Microfossils Reveals Differential Heterotrophic Consumption in the ∼1.9-Ga Gunflint Chert
    Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ∼1.9-Ga Gunflint chert David Waceya,b,1, Nicola McLoughlina, Matt R. Kilburnb, Martin Saundersc, John B. Cliffb, Charlie Kongd, Mark E. Barleye, and Martin D. Brasierf aDepartment of Earth Sciences and Centre for Geobiology, University of Bergen, N-5007 Bergen, Norway; bAustralian Research Council Centre of Excellence for Core to Crust Fluid Systems, Centre for Microscopy Characterisation and Analysis, and Centre for Exploration Targeting, The University of Western Australia, Crawley, WA 6009, Australia; cCentre for Microscopy Characterisation and Analysis and eAustralian Research Council Centre of Excellence for Core to Crust Fluid Systems and School of Earth and Environment, The University of Western Australia, Crawley, WA 6009, Australia; dElectron Microscopy Unit, University of New South Wales, Kingsford, NSW 2052, Australia; and fDepartment of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom Edited* by Norman H. Sleep, Stanford University, Stanford, CA, and approved April 8, 2013 (received for review January 9, 2013) The 1.88-Ga Gunflint biota is one of the most famous Precambrian transition was prolonged and spatially variable, with oxygenated microfossil lagerstätten and provides a key record of the biosphere surface waters potentially underlain by sulfidic wedges and at a time of changing oceanic redox structure and chemistry. Here, deeper ferruginous waters for much of the mid- to late Prote- we report on pyritized replicas of the iconic autotrophic Gunflintia– rozoic (12, 13). Hence, pyritic microfossils are of interest for Huroniospora microfossil assemblage from the Schreiber Locality, information they may reveal about the geochemical cycles of iron Canada, that help capture a view through multiple trophic levels and sulfur, as well as carbon, at this time.
    [Show full text]
  • Glaciers and Glaciation in Glacier National Park
    Glaciers and Glaciation in Glacier National Park ICE CAVE IN THE NOW NON-EXISTENT BOULDER GLACIER PHOTO 1932) Special Bulletin No. 2 GLACIER NATURAL HISTORY ASSOCIATION Price ^fc Cents GLACIERS AND GLACIATION In GLACIER NATIONAL PARK By James L. Dyson MT. OBERLIN CIRQUE AND BIRD WOMAN FALLS SPECIAL BULLETIN NO. 2 GLACIER NATURAL HISTORY ASSOCIATION. INC. In cooperation with NATIONAL PARK SERVICE DEPARTMENT OF INTERIOR PRINTED IN U. S. A. BY GLACIER NATURAL HISTORY ASSOCIATION 1948 Revised 1952 THE O'NEIL PRINTERS- KAUSPELL *rs»JLLAU' GLACIERS AND GLACIATION IN GLACIER NATIONAL PARK By James L. Dyson Head, Department of Geology and Geography Lafayette College Member, Research Committee on Glaciers American Geophysical Union* The glaciers of Glacier National Park are only a few of many thousands which occur in mountain ranges scattered throughout the world. Glaciers occur in all latitudes and on every continent except Australia. They are present along the Equator on high volcanic peaks of Africa and in the rugged Andes of South America. Even in New Guinea, which manj- veterans of World War II know as a steaming, tropical jungle island, a few small glaciers occur on the highest mountains. Almost everyone who has made a trip to a high mountain range has heard the term, "snowline,"' and many persons have used the word with­ out knowing its real meaning. The true snowline, or "regional snowline"' as the geologists call it, is the level above which more snow falls in winter than can be melted or evaporated during the summer. On mountains which rise above the snowline glaciers usually occur.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history Main articles: History of the Earth and Geological his- chondrules,[1] are a key signature of a supernova ex- tory of Earth plosion. See also: Geologic time scale and Timeline of evolution- ary history of life • 4,567±3 Ma: Rapid collapse of hydrogen molecular For earlier events, see Timeline of the formation of the cloud, forming a third-generation Population I star, Universe. the Sun, in a region of the Galactic Habitable Zone This timeline of natural history summarizes signifi- (GHZ), about 25,000 light years from the center of the Milky Way Galaxy.[2] • 4,566±2 Ma: A protoplanetary disc (from which Earth eventually forms) emerges around the young Sun, which is in its T Tauri stage. • 4,560–4,550 Ma: Proto-Earth forms at the outer (cooler) edge of the habitable zone of the Solar Sys- tem. At this stage the solar constant of the Sun was only about 73% of its current value, but liquid wa- ter may have existed on the surface of the Proto- Earth, probably due to the greenhouse warming of high levels of methane and carbon dioxide present in the atmosphere. Early bombardment phase begins: because the solar neighbourhood is rife with large planetoids and debris, Earth experiences a number of giant impacts that help to increase its overall size. Visual representation of the history of life on Earth as a spiral 2 Hadean Eon cant geological and biological events from the formation of the Earth to the rise of modern humans. Times are listed in millions of years, or megaanni (Ma).
    [Show full text]