Brief History of Computational Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Brief History of Computational Chemistry www.gsjpublications.com Global Scientific Global Scientific Journal of Chemistry Journal of 3 (1) 2020/ 18-22 Chemistry www.gsjpublications.com/gsjc Brief History of Computational Chemistry Nidaa A. Jasim Physical Chemistry, Directorate of Education, Karbala, Iraq. Email Address: [email protected] Received: 2 Oct 2020, Revised: 7 Oct 2020, Accepted: 16 Oct 2020, Online: 13 Nov 2020 Abstract Computational Chemistry is a broad and multifaceted branch of chemistry. It can generally be distinguished by using physics, mathematics, and computers to understand all aspects of chemistry: such as properties of substances and the properties of elements and molecules and their interactions, or to simulate molecular phenomena, or to predict properties of new molecules or phases of matter, Computational chemistry relies on creating an effective mathematical approximation to solve experimental chemistry problems for complex compounds through the use of advanced computer programs at lower cost and faster speed, developing algorithms and making approximations and neglecting integrals in order to arrive at the properties of molecules and in an approximate manner such as total energy, dipole moment, vibrational and reactive frequencies and other spectral properties, and arrive at various minute atomic and subatomic details. Computational chemistry is considered an overlap between computer science and chemistry in order to provide quick and urgent solutions to some complex problems facing chemists and physicists to help them solve laboratory problems.This article deals with a scientific review of the development of computational chemistry, starting with Schrödinger’s equations and the accompanying development of computers and their use by chemists and physicists and the impact of chemistry science with the advancement of computer software and the explosion of knowledge in information technology. The article dealt with the most important software packages used in computational chemistry, the stages of updating them, the difficulties faced by chemists and their attempts to solve complex Schrödinger equations and provide theoretical treatments based on the use of approximations and neglect of some integrals and the types of methods used in quantum chemistry, including AB Initio, which provides us with accurate information about some interactions Chemical that was difficult to follow in the laboratory And methods Semi- empirical that give us less accurate information. Keywords: Brief History, Computational Chemistry, Chemistry 1. Introduction History of Computational Chemistry Bohr's atomic theory. Schrödinger benefited from his experience in In late 1925 Schrödinger developed a mathematics and from De Brogleie's differential equation describing the change suggestions and was able to write his of a physical state with time in order to famous wave equation and his study that overcome the difficulties that appear in Jasim, N. A. Global Scientific Journal of Chemistry 2020/ 3 (1) 19 depends on the wave is called quantum term molecular orbital was introduced by mechanics [1], [2] . Robert Mulliken and the molecular orbital theory became accepted in 1933 as a valid In 1926 And soon after quantum chemistry and useful theory. Hückel was able to use appeared, Paul Dirac explained that the the orbital theory in terms of Quantitative, Schrödinger equation and the laws of based on Lennard Jones' paper [8]. physics can only be applied to simple atoms and molecules such as H, He, H2 During the thirties of the last century and H2+ and The mathematical solution to (1936-1938) the first electromechanical the Schrödinger equation is impossible due computer was invented, and then in 1942 to the difficulty of it. Therefore, theorists an electric computer was invented, so have tried for decades to propose chemists were able to develop a number of mathematical models to calculate the wave computational models to compute a wave function of material by approximate function of modulation in approximate methods. Where Dirac presented the ways [9]. These methods can be arranged number of wave functions for four hierarchically from Hartree- Fok At the complex numbers, in contrast to the bottom of the hierarchy, the less subtle to Schrödinger equation, which describes the the more accurate methods, this success wave function of a single compound has led to the modeling of electronic [3],[4]. behavior in multi-electron molecules .From (1940-1950), electronic computers In the late twenties and early thirties, the were developed by some chemicals British Hartree and the Russian Fock developed an effective method for solving While computer became available for multiple electron problems and called it general use by chemists and physicists of the Hartree- Fock method. It is an iterative the twentieth century (4). In 1955 the HF method and during repetition the average and LCAO chains were linked - MO by electron interaction is calculated. This Clemens CJ Roothaan who was able to method uses the approximate wave write HF equations based on small orbitals function and energy levels in the multi- [10]. electron atoms [5]. (By observing Pauli's exclusion principle). According to this In 1964 Hückel was able to determine the method, the functions of the elementary electron orbital energy in complex wave can be considered as hydrogen hydrocarbon compounds such as butadiene atomic orbitals, and the resulting equations and benzene using a simple linear can be solved numerically using a combination of the atomic orbitals method computer [6]. Sir John Edward and (LCAO) and computers, and the Lennard Jones( 1929 )linear combination experimental methods were replaced by of atomic orbital , or LCAO-MO, were quasi-experimental methods such as developed, a quantum superposition of CNDO [11]. After advances in computer orbitals and a technique for computing technology in the mid-1960s, Robert molecular orbitals in quantum chemistry, Mulliken was able to receive the Nobel and these wave functions are the basic Prize in 1966 for his development of the functions, which describe electrons[7]. theory of molecular orbit. Robert Mulliken was able to use computers in calculations Friedrich Hund, Robert Mulliken, John of the electronic structure of molecules. Slater, and Lenard attempted were Robert Mulliken while receiving the Nobel developed the molecular orbital theory in Prize, announced the major in the years following the establishment of computational chemistry as a recognized the valence bond theory and mainly the specialty. From that time on, theoretical Jasim, N. A. Global Scientific Journal of Chemistry 2020/ 3 (1) 20 computational chemistry began to be used community, and developed another to study complex chemical problems that program Q-Chem, for which he described were difficult to study in chemistry the Gaussian molecular orbital method in laboratories [12] the 1986 book Ab Intio by Leo Radom and Warren Hehre, Paul Schleier and Bebel. The structures of molecules and the way Then, despite the controversy, Popple they interact with each other depend on the returned to update the Gaussian70 program calculations of quantum chemistry. to Gaussian09 and Gaussian09W, and this However, the calculations of quantum program has been used in chemical chemistry are very complex, especially for laboratories by chemists, physicists and multi-electron particles so in the 1960s, engineers to solve many complex Pople and his research group (1960s) equations. This program uses quantum attempted to develop a number of chemistry calculations to provide algorithms that provided vital inputs to the predictions of the properties of molecules computations, including a Gaussian and their behavior in chemical reactions as computer program that provides well as spectroscopic data (NMR, IR, UV, experimental data (rule groups 3IG-6, 6- et (. The Gaussian program continued to be 31G.) This program can provide a updated for 40 years, leading to Gaussian description of the properties of the 16, which is the latest in a series of molecules and the chemical pathway [13], Gaussian programs [16]. This advanced John also worked with his research group program can study all large-sized and during the 1970s on the 3IG-6, 6-31G base multi-electron molecular systems and groups. Pople (1979) was a pioneer in provides accurate information about computational chemistry programs, and his electronic systems. It has been licensed most notable achievement was paper with from different computers and does not Gavachari and Pinkley in which they impose any restrictions on the operations presented a practical algorithm. of the Gaussian 16 In addition, The Gaussian view 6 program has been added Pople was a leader in developing to provide support for all the features of computational methods for solving Gaussian 16 and to increase its vital complex multi-electron systems called capabilities [17]. quantum chemistry methods Ab initio and using basic sets of orbits of the Slater orbit In the 1990s and specifically, 1993: More type or Gaussian orbitals to model the modern functions are added(GGA's and wave function. These calculations were hybrids) to thermochemistry. In 1995: very expensive in the early period of their TDDFT and hybrid DFT methods were use. However, continuous processors made added, and in 1998 the Pople and Walter them very accurate and fast, and today Kuhn won the Nobel Prize. they are very useful in developing most computer chemistry software packages. In Pebel for development of computational 1970, for the first
Recommended publications
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • Quantum Crystallography†
    Chemical Science View Article Online MINIREVIEW View Journal | View Issue Quantum crystallography† Simon Grabowsky,*a Alessandro Genoni*bc and Hans-Beat Burgi*de Cite this: Chem. Sci.,2017,8,4159 ¨ Approximate wavefunctions can be improved by constraining them to reproduce observations derived from diffraction and scattering experiments. Conversely, charge density models, incorporating electron-density distributions, atomic positions and atomic motion, can be improved by supplementing diffraction Received 16th December 2016 experiments with quantum chemically calculated, tailor-made electron densities (form factors). In both Accepted 3rd March 2017 cases quantum chemistry and diffraction/scattering experiments are combined into a single, integrated DOI: 10.1039/c6sc05504d tool. The development of quantum crystallographic research is reviewed. Some results obtained by rsc.li/chemical-science quantum crystallography illustrate the potential and limitations of this field. 1. Introduction today's organic, inorganic and physical chemistry. These tools are usually employed separately. Diffraction and scattering Quantum chemistry methods and crystal structure determina- experiments provide structures at the atomic scale, while the Creative Commons Attribution 3.0 Unported Licence. tion are highly developed research tools, indispensable in techniques of quantum chemistry provide wavefunctions and aUniversitat¨ Bremen, Fachbereich 2 – Biologie/Chemie, Institut fur¨ Anorganische eUniversitat¨ Zurich,¨ Institut fur¨ Chemie, Winterthurerstrasse 190, CH-8057 Zurich,¨ Chemie und Kristallographie, Leobener Str. NW2, 28359 Bremen, Germany. Switzerland E-mail: [email protected] † Dedicated to Prof. Louis J. Massa on the occasion of his 75th birthday and to bCNRS, Laboratoire SRSMC, UMR 7565, Vandoeuvre-l`es-Nancy, F-54506, France Prof. Dylan Jayatilaka on the occasion of his 50th birthday in recognition of their cUniversit´e de Lorraine, Laboratoire SRSMC, UMR 7565, Vandoeuvre-l`es-Nancy, F- pioneering contributions to the eld of X-ray quantum crystallography.
    [Show full text]
  • Quantum Reform
    feature Quantum reform Leonie Mueck Quantum computers potentially offer a faster way to calculate chemical properties, but the exact implications of this speed-up have only become clear over the last year. The first quantum computers are likely to enable calculations that cannot be performed classically, which might reform quantum chemistry — but we should not expect a revolution. t had been an exhausting day at the 2012 International Congress of Quantum IChemistry with countless presentations reporting faster and more accurate methods for calculating chemical information using computers. In the dry July heat of Boulder, Colorado, a bunch of young researchers decided to end the day with a cool beer, but the scientific discussion didn’t fade away. Thoughts on the pros and cons of all the methods — the approximations they involved and the chemical problems that they could solve — bounced across the table, until somebody said “Anyway, in a few years we will have a quantum computer and our approximate methods will be obsolete”. An eerie silence followed. What a frustrating thought! They were devoting their careers to quantum chemistry — working LIBRARY PHOTO RICHARD KAIL/SCIENCE tirelessly on applying the laws of quantum mechanics to treat complex chemical of them offering a different trade-off between cannot do on a ‘classical’ computer, it does problems with a computer. And in one fell accuracy and computational feasibility. not look like all the conventional quantum- swoop, would all of those efforts be wasted Enter the universal quantum computer. chemical methods will become obsolete or as chemists turn to quantum computers and This dream machine would basically work that quantum chemists will be out of their their enormous computing power? like a normal digital computer; it would jobs in the foreseeable future.
    [Show full text]
  • Quantum Chemistry and Spectroscopy – Spring 2018
    CHE 336 – Quantum Chemistry and Spectroscopy – Spring 2018 Instructor: Dr. Jessica Sarver Email: [email protected] Office: HSC 364 (email hours: 8 am – 10 pm) Office Hours: 10am-12pm Tuesday, 2-3pm Wednesday, 10:30-11:30am Friday, or by appointment Course Description (from Westminster undergraduate catalog) Quantum chemistry and spectroscopy is the study of the microscopic behavior of matter and its interaction with electromagnetic radiation. Topics include the formulation and application of quantum mechanical models, atomic and molecular structure, and various spectroscopic techniques. Laboratory activities demonstrate the fundamental principles of physical chemistry. Methods that will be used during the laboratory portion include: polarimetry, UV-Vis and fluorescence spectroscopies, electrochemistry, and computational/molecular modeling. Prerequisites: C- grade in CHE 117 and MTH 152 and PHY 152. Course Outcomes The chemistry major outcomes are: • Describe and explain quantum theory and the three quantum mechanical models of motion. • Describe and explain how these theories/models are applied and incorporated to applications of atomic/molecular structure and spectroscopy. • Describe and explain the principles of four major types of spectroscopy and their applications. • Describe and explain the measurable thermodynamic parameters for physical and chemical processes and equilibria. • Describe and explain how chemical kinetics can be used to investigate time-dependent processes. • Solve mathematical problems based on physical chemical principles and connect the numerical results with these principles. Textbook The text for this course is Physical Chemistry, 10th Ed. by Atkins and de Paula. Readings and problem set questions will be assigned from this text. You are strongly urged to get a copy of this textbook and complete all the assigned readings and homework.
    [Show full text]
  • Computational Chemistry
    G UEST E DITORS’ I NTRODUCTION COMPUTATIONAL CHEMISTRY omputational chemistry has come of chemical, physical, and biological phenomena. age. With significant strides in com- The Nobel Prize award to John Pople and Wal- puter hardware and software over ter Kohn in 1998 highlighted the importance of the last few decades, computational these advances in computational chemistry. Cchemistry has achieved full partnership with the- With massively parallel computers capable of ory and experiment as a tool for understanding peak performance of several teraflops already on and predicting the behavior of a broad range of the scene and with the development of parallel software for efficient exploitation of these high- end computers, we can anticipate that computa- tional chemistry will continue to change the scientific landscape throughout the coming cen- tury. The impact of these advances will be broad and encompassing, because chemistry is so cen- tral to the myriad of advances we anticipate in areas such as materials design, biological sci- ences, and chemical manufacturing. Application areas Materials design is very broad in scope. It ad- dresses a diverse range of compositions of matter that can better serve structural and functional needs in all walks of life. Catalytic design is one such example that clearly illustrates the promise and challenges of computational chemistry. Al- most all chemical reactions of industrial or bio- chemical significance are catalytic. Yet, catalysis is still more of an art (at best) or an empirical fact than a design science. But this is sure to change. A recent American Chemical Society Sympo- sium volume on transition state modeling in catalysis illustrates its progress.1 This sympo- sium highlighted a significant development in the level of modeling that researchers are em- 1521-9615/00/$10.00 © 2000 IEEE ploying as they focus more and more on the DONALD G.
    [Show full text]
  • Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rappoport, Dmitrij, Cooper J. Galvin, Dmitry Zubarev, and Alán Aspuru-Guzik. 2014. “Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.” Journal of Chemical Theory and Computation 10 (3) (March 11): 897–907. Published Version doi:10.1021/ct401004r Accessed February 19, 2015 5:14:37 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12697373 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry Dmitrij Rappoport,∗,† Cooper J Galvin,‡ Dmitry Yu. Zubarev,† and Alán Aspuru-Guzik∗,† Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA, and Pomona College, 333 North College Way, Claremont, CA 91711, USA E-mail: [email protected]; [email protected] Abstract While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for mod- eling complex structures and large-scale chemical systems. Here we present heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in metabolism and prebiotic chemistry.
    [Show full text]
  • Introduction to Quantum Chemistry
    Chem. 140B Dr. J.A. Mack Introduction to Quantum Chemistry Why as a chemist, do you need to learn this material? 140B Dr. Mack 1 Without Quantum Mechanics, how would you explain: • Periodic trends in properties of the elements • Structure of compounds e.g. Tetrahedral carbon in ethane, planar ethylene, etc. • Bond lengths/strengths • Discrete spectral lines (IR, NMR, Atomic Absorption, etc.) • Electron Microscopy & surface science Without Quantum Mechanics, chemistry would be a purely empirical science. (We would be no better than biologists…) 140B Dr. Mack 2 1 Classical Physics On the basis of experiments, in particular those performed by Galileo, Newton came up with his laws of motion: 1. A body moves with a constant velocity (possibly zero) unless it is acted upon by a force. 2. The “rate of change of motion”, i.e. the rate of change of momentum, is proportional to the impressed force and occurs in the direction of the applied force. 3. To every action there is an equal and opposite reaction. 4. The gravitational force of attraction between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. m m F = G × 1 2 r 2 140B Dr. Mack 3 The Failures of Classical Mechanics 1. Black Body Radiation: The Ultraviolet Catastrophe 2. The Photoelectric Effect: Einstein's belt buckle 3. The de Broglie relationship: Dude you have a wavelength! 4. The double-slit experiment: More wave/particle duality 5. Atomic Line Spectra: The 1st observation of quantum levels 140B Dr. Mack 4 2 Black Body Radiation Light Waves: Electromagnetic Radiation Light is composed of two perpendicular oscillating vectors waves: A magnetic field & an electric field As the light wave passes through a substance, the oscillating fields can stimulate the movement of electrons in a substance.
    [Show full text]
  • Computational Analysis of the Mechanism of Chemical Reactions
    Computational Analysis of the Mechanism of Chemical Reactions in Terms of Reaction Phases: Hidden Intermediates and Hidden Transition States ELFI KRAKA* AND DIETER CREMER Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314 RECEIVED ON JANUARY 9, 2009 CON SPECTUS omputational approaches to understanding chemical reac- Ction mechanisms generally begin by establishing the rel- ative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening spe- cies via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by- step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an effi- cient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mech- anism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase.
    [Show full text]
  • Six Phases of Cosmic Chemistry
    Six Phases of Cosmic Chemistry Lukasz Lamza The Pontifical University of John Paul II Department of Philosophy, Chair of Philosophy of Nature Kanonicza 9, Rm. 203 31-002 Kraków, Poland e-mail: [email protected] 1. Introduction The steady development of astrophysical and cosmological sciences has led to a growing appreciation of the continuity of cosmic history throughout which all known phenomena come to being. This also includes chemical phenomena and there are numerous theoretical attempts to rewrite chemistry as a “historical” science (Haken 1978; Earley 2004). It seems therefore vital to organize the immense volume of chemical data – from astrophysical nuclear chemistry to biochemistry of living cells – in a consistent and quantitative fashion, one that would help to appreciate the unfolding of chemical phenomena throughout cosmic time. Although numerous specialist reviews exist (e.g. Shaw 2006; Herbst 2001; Hazen et al. 2008) that illustrate the growing appreciation for cosmic chemical history, several issues still need to be solved. First of all, such works discuss only a given subset of cosmic chemistry (astrochemistry, chemistry of life etc.) using the usual tools and languages of these particular disciplines which does not facilitate drawing large-scale conclusions. Second, they discuss the history of chemical structures and not chemical processes – which implicitly leaves out half of the totality chemical phenomena as non-historical. While it may now seem obvious that certain chemical structures such as aromatic hydrocarbons or pyrazines have a certain cosmic “history”, it might cause more controversy to argue that chemical processes such as catalysis or polymerization also have their “histories”.
    [Show full text]
  • Quantum Mechanics of Atoms and Molecules Lectures, the University of Manchester 2005
    Quantum Mechanics of Atoms and Molecules Lectures, The University of Manchester 2005 Dr. T. Brandes April 29, 2005 CONTENTS I. Short Historical Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 I.1 Atoms and Molecules as a Concept . 1 I.2 Discovery of Atoms . 1 I.3 Theory of Atoms: Quantum Mechanics . 2 II. Some Revision, Fine-Structure of Atomic Spectra : : : : : : : : : : : : : : : : : : : : : 3 II.1 Hydrogen Atom (non-relativistic) . 3 II.2 A `Mini-Molecule': Perturbation Theory vs Non-Perturbative Bonding . 6 II.3 Hydrogen Atom: Fine Structure . 9 III. Introduction into Many-Particle Systems : : : : : : : : : : : : : : : : : : : : : : : : : 14 III.1 Indistinguishable Particles . 14 III.2 2-Fermion Systems . 18 III.3 Two-electron Atoms and Ions . 23 IV. The Hartree-Fock Method : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24 IV.1 The Hartree Equations, Atoms, and the Periodic Table . 24 IV.2 Hamiltonian for N Fermions . 26 IV.3 Hartree-Fock Equations . 28 V. Molecules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35 V.1 Introduction . 35 V.2 The Born-Oppenheimer Approximation . 36 + V.3 The Hydrogen Molecule Ion H2 . 39 V.4 Hartree-Fock for Molecules . 45 VI. Time-Dependent Fields : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48 VI.1 Time-Dependence in Quantum Mechanics . 48 VI.2 Time-dependent Hamiltonians . 50 VI.3 Time-Dependent Perturbation Theory . 53 VII.Interaction with Light : : : : : : : : : : : : : : : : : : : : : : :
    [Show full text]
  • CHEM 743 “Quantum Chemistry” S'15
    CHEM 743 \Quantum Chemistry" S'15 Instructor: Sophya Garashchuk∗ Dept of Chemistry and Biochemistry, University of South Carolina, Columbia y (Dated: January 7, 2015) Syllabus • Learning outcomes: (i) the students will gain theoretical knowledge in quantum mechanics and computer skills enabling them to use modern electronic structure codes and simulations with confidence and intelligence to better understand chemical processes; (ii) the students will be able to set up their own input files and interpret/visualize output files for standard quantum chemistry programs/packages that might be relevant to their research; (iii) the students will improve general critical thinking and problem-solving skills as well as improve their skills of independent computer-aided research through extensive use of electronically available resources. • Prerequisites: CHEM 542 or equivalent, i. e. Physical Chemistry - Quantum Mechanics and Spectroscopy • Classes will take place MW 9:40-10:55 AM at PSC 101. We will work with Maple, Q-Chem, Spartan, ADF Class materials and assignments or links to them will be posted on Blackboard Computer and software support: Jun Zhou [email protected] Ph: (803) 777-5492 College of Arts & Sciences Sumwalt College 228 • Office hours: Tue 10-11 am, GSRC 407. I am generally available Mon-Fri 9:00 AM { 5PM. You can just drop by, call or e-mail to check if I am available, or if you have difficulty reaching me, make an appointment. • The suggested general quantum chemistry textbook is \Introduction to Quantum Mechanics in Chemistry", by M. A. Ratner and G. C. Schatz, Prentice-Hall, New Jersey, 2001. Used copies are available through BN.com.
    [Show full text]
  • NIST Computational Chemistry Comparison and Benchmark Database
    NIST Computational Chemistry Comparison and Benchmark Database A website which compares computed and experimental ideal-gas thermochemical properties http://srdata.nist.gov/cccbdb Russell D. Johnson III Computational Chemistry Group, NIST http://www.nist.gov/compchem How good is that ab initio calculation? For predicting enthalpies. For predicting geometries. For predicting vibrational frequencies. For this molecule. For these molecules. http://srdata.nist.gov/cccbdb CCCBDB Contents • 680 molecules • Enthalpies of formation, Entropies, Geometries, Vibrational frequencies • Experimental values • Computed values • Comparisons • Auxiliary information http://srdata.nist.gov/cccbdb Properties • Energetics – Enthalpies of formation – Atomization enthalpies – Reaction enthalpies – Barriers to Internal Rotation • Entropies – Heat Capacities – Integrated Heat Capacities http://srdata.nist.gov/cccbdb More Properties • Geometries – Bond lengths and angles – Rotational Constants – Moments of Inertia • Vibrational Frequencies – Intensities – Zero point energies http://srdata.nist.gov/cccbdb Even More Properties • Electrostatics – Dipole Moments – Quadrupole Moments – Polarizabilities – Charges • Mulliken •ESP • ChelpG http://srdata.nist.gov/cccbdb Molecules in CCCBDB • Small, gas-phase • Mostly < 7 heavy atoms - hexane • Mostly no atoms with atomic number >17 (chlorine). A dozen Br-containing molecules. • 90 diatomics, 574 polyatomics • 469 organic molecules, – 125 hydrocarbons – 145 CHO species – 16 amides http://srdata.nist.gov/cccbdb Experimental
    [Show full text]