Occipitocervical Anatomy Author: Dr Juan Emmerich Editor in Chief: Dr Néstor Fiore Senior Editor: Dr Luiz Gustavo Dal Oglio Da Rocha OBJECTIVES

Total Page:16

File Type:pdf, Size:1020Kb

Occipitocervical Anatomy Author: Dr Juan Emmerich Editor in Chief: Dr Néstor Fiore Senior Editor: Dr Luiz Gustavo Dal Oglio Da Rocha OBJECTIVES CONTINUOUS LEARNING LIBRARY Anatomy Occipitocervical Anatomy Author: Dr Juan Emmerich Editor In Chief: Dr Néstor Fiore Senior Editor: Dr Luiz Gustavo Dal Oglio da Rocha OBJECTIVES CONTINUOUS LEARNING LIBRARY Anatomy Occipitocervical Anatomy ■■ To describe the anatomical areas corresponding to the occipital region and the cervical spine. ■■ To define the important points in the relationship between the spine and the neural axis. ■■ To identify relevant data to be taken into account when considering surgical approaches. ■■ To understand the region’s anatomy in terms of practical data prepared for spine surgeons, important for everyday procedures. Occipitocervical Anatomy. Author: Dr Juan Emmerich 2 CONTENTS 1. Introduction ..........................................................................................................04 Overview ........................................................................................................................................04 2. Bone structure The overall spine .........................................................................................................................06 The occipital ..................................................................................................................................07 Cervical spine ...............................................................................................................................11 3. Articulations The atlanto-occipital joint .........................................................................................................17 The atlanto-axial joint ................................................................................................................18 C2 to C7 joints.............................................................................................................................19 4. Ligaments C0, C1 and C2 ligaments ........................................................................................................22 Ligaments in the C2 to C7 region ........................................................................................24 Anterior longitudinal ligament ................................................................................................26 Posterior longitudinal ligament ..............................................................................................26 Supraspinous ligament .............................................................................................................26 Interspinous ligament ................................................................................................................26 Ligamentum flavum ...................................................................................................................27 5. Basic anatomy Posterior region ...........................................................................................................................28 Anterior and lateral regions .....................................................................................................32 Anatomical projections .............................................................................................................40 6. The spinal cord and spinal nerves Overview ........................................................................................................................................41 Cord characteristics at the occipitocervical level..............................................................43 Spinal nerve characteristics at the occipitocervical level ..............................................43 References ......................................................................................................................45 Occipitocervical Anatomy. Author: Dr Juan Emmerich 3 1. INTRODUCTION Overview These functions define the properties of the spine. ■■ A long extension that runs along the body’s entire axis. The spinal column consists of a chain of overlapping vertebrae with interconnecting ■■ 1 articulations. The spine considered as a complete unit presents the following It has a dual function. characteristics: ■■ ■■ On one hand, it forms the body’s main axis, serving as a link between the an internal channel – the spinal canal – housing the cord and its skull, thorax, abdomen and pelvis, transferring the weight in a standing protective casings; and position from the head, upper limbs and trunk, through the sacroiliac joints, to ■■ intervertebral foramina - lateral openings to allow the passage of spinal the lower limbs. nerves. ■■ On the other hand, it protects the spinal cord, the most caudal segment of Overall, the spine has the capacity for flexo-extensional, rotational and lateral the central nervous system. movements, as well as the capacity to bear axial loads. These capacities increase at more caudal points of the spine, demonstrated by the regional characteristics of the vertebrae. Atlas (C1) Atlas (C1) Atlas (C1) Axis (C2) Axis (C2) Axis (C2) Cervical curve Cervical vertebrae C7 C7 C7 T1 T1 T1 Thoracic vertebrae Thoracic curve T12 T12 T12 L1 L1 L1 Lumbar vertebrae Lumbar curve L5 L5 L5 Sacrum (S1-S5) Sacrum (S1-S5) Sacrum (S1-S5) Sacral curve Coccyx Coccyx Coccyx Anterior view Left lateral view Posterior view Complete view of the spinal column (Sobotta, 1985) Occipitocervical Anatomy. Author: Dr Juan Emmerich 4 2. BONE STRUCTURE The number of vertebrae is usually quite constant, from 33 to 35: This distribution, which is considered typical, is only present in 65% of individuals. ■■ 7 cervical; While the number of cervical and thoracic vertebrae is almost always constant, 2 ■■ 12 thoracic; any variations that do occur are usually in the number of lumbar and sacral vertebrae. In the general population, there is a high incidence of L5 assimilation ■■ 5 lumbar; by the sacrum (sacralization), and often a lack of S1 fusion with the rest of the ■■ 5 sacral vertebrae; and sacral vertebrae, resulting in an additional mobile segment (lumbarization). ■■ 3 to 5 coccygeal vertebrae This topic covers the occipital and cervical vertebrae, while the next topic shall deal with the remaining bone structures which make up the spinal axis. zygomatic arch mastoid process 1. mandibular angle transverse process of atlas 2. 3. 4. hyoid bone 5. anterior tubercle laryngeal prominence posterior tubercle 6. spinous process 7. I. I. I. II. II. III. IV. Collective view of the cranium, cervical spine and thorax (Pernkopf, 1963) IV. V. III. V. IV. Occipitocervical Anatomy. Author: Dr Juan Emmerich 5 Occipital The occipital is an unpaired, medial bone with the following articulations: Two surfaces can be differentiated: the posteroinferior, or exocranial, and the ■■ laterally with the temporal bone; anterosuperior, or endocranial. ■■ posteriorly and superiorly with the parietals bones; The foramen magnum (FM), or occipital hole, is an ample, oval-shaped orifice ■■ anteriorly and superiorly with the sphenoid bone; and with average dimensions of 35 mm in the anteroposterior direction and 30 mm 2 laterally. It has a rounded posterior margin while the anterior border is angular. ■■ inferiorly with the atlas. The posterior section of the FM is neurovascular and the following elements pass through it: frontal crest foramen caecum ■■ meninges; groove for superior sagittal sinus ala cristae galli fronto-ethmoidal suture cristae galli ■■ medulla oblongata transition; pituitary tubercle cribriform plate of ethmoid sphenoid bone dorsum sellae frontal eminences ■■ vertebral arteries; and digital impressions anterior cranial fossa ■■ anterior cranial fossa sphenofrontal suture spinal root of the accessory or spinal nerve. posterior clinoid process frontal bone optic canal superior orbital fissure arterial groove lesser wing of sphenoid bone anterior clinoid process round foramen hypophyseal fossa lingula sphenoidalis carotid groove foramen lacerum sphenosquamous suture arterial groove oval foramen petro-occipital fissure foramen spinosum medial cranial fossa medial body of the sphenoid bone cranial fossa groove for inferior temporal bone, petrosal sinus squamous part petrosquamous suture internal acoustic meatus superior margin of petrous part of temporal bone jugular foramen petrosal lesser parietal bone nerve grooves groove for greater sigmoid sinus jugular process of temporal bone, occipital bone petrous part posterior groove for superior condylar canal petrosal sinus occipitomastoid suture mastoid foramen jugular tubercle hypoglossal anterior surface of petrous canal part of temporal bone spheno-occipital synchondrosis subarcuate fossa groove for transverse sinus superior margin of petrous clivus, basilar portion of the occipital bone part of temporal bone jugular foramen foramen magnum posterior cranial fossa hypoglossal canal occipital bone internal occipital ridge posterior cranial fossa internal occipital protuberance groove for superior sagittal sinus Superior view of the cranium’s base after removing the cranial vault (Sobotta, 1985) Occipitocervical Anatomy. Author: Dr Juan Emmerich 6 Exocranial surface occipital plane external occipital protuberance occipital squama The exocranial surface has its own characteristics. highest nuchal line external occipital crest superior nuchal line lambdoid margin 2 inferior nuchal line nuchal plane lateral portion condylar fossa posterior condylar canal foramen magnum jugular process occipital condyle hypoglossal canal basilar portion Exocranial surface of the occipital bone (Sobotta, 1985) ■■ There is a rectangular lamina
Recommended publications
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • A 1810 Skull of Napoleon Army's Soldier: a Clinical–Anatomical
    Surgical and Radiologic Anatomy (2019) 41:1065–1069 https://doi.org/10.1007/s00276-019-02275-y ORIGINAL ARTICLE A 1810 skull of Napoleon army’s soldier: a clinical–anatomical correlation of steam gun trauma N. Benmoussa1,2 · F. Crampon3,4 · A. Fanous5 · P. Charlier1,6 Received: 5 March 2019 / Accepted: 22 June 2019 / Published online: 28 June 2019 © Springer-Verlag France SAS, part of Springer Nature 2019 Abstract Introduction In the following article, we are presenting a clinical observation of Baron Larrey. In 1804, Larrey was the inspector general of health, as well as the chief surgeon of the imperial Napoleonic Guard. He participated in all of Napoleon’s campaigns. A paleopathological study was performed on a skull from Dupuytren’s Museum (Paris) with a long metal stick in the head. We report here a clinical case as well as the autopsy description of this soldier’s skull following his death. We propose a diferent anatomical analysis of the skull, which allowed us to rectify what we believe to be an anatomical error and to propose varying hypotheses regarding the death of soldier Cros. Materials and methods The skull was examined, observed and described by standard paleopathology methods. Measure- ments of the lesion were performed with metric tools and expressed in centimeters. Historical research was made possible through the collaboration with the Museum of Medicine History-Paris Descartes University. Results Following the above detailed anatomical analysis of the path of the metal rod, we propose various possible lesions in soldier Cros due to the accident. At the inlet, the frontal sinuses could have been damaged.
    [Show full text]
  • Neck Dissection Using the Fascial Planes Technique
    OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY NECK DISSECTION USING THE FASCIAL PLANE TECHNIQUE Patrick J Bradley & Javier Gavilán The importance of identifying the presence larised in the English world in the mid-20th of metastatic neck disease with head and century by Etore Bocca, an Italian otola- neck cancer is recognised as a prominent ryngologist, and his colleagues 5. factor determining patients’ prognosis. The current available techniques to identify Fascial compartments allow the removal disease in the neck all have limitations in of cervical lymphatic tissue by separating terms of accuracy; thus, elective neck dis- and removing the fascial walls of these section is the usual choice for management “containers” along with their contents of the clinically N0 neck (cN0) when the from the underlying vascular, glandular, risk of harbouring occult regional metasta- neural, and muscular structures. sis is significant (≥20%) 1. Methods availa- ble to identify the N+ (cN+) neck include Anatomical basis imaging (CT, MRI, PET), ultrasound- guided fine needle aspiration cytology The basic understanding of fascial planes (USGFNAC), and sentinel node biopsy, in the neck is that there are two distinct and are used depending on resource fascial layers, the superficial cervical fas- availability, for the patient as well as the cia, and the deep cervical fascia (Figures local health service. In many countries, 1A-C). certainly in Africa and Asia, these facilities are not available or affordable. In such Superficial cervical fascia circumstances patients with head and neck cancer whose primary disease is being The superficial cervical fascia is a connec- treated surgically should also have the tive tissue layer lying just below the der- neck treated surgically.
    [Show full text]
  • Copyrighted Material
    C01 10/31/2017 11:23:53 Page 1 1 1 The Normal Anatomy of the Neck David Bainbridge Introduction component’ of the neck is a common site of pathology, and the diverse forms of neck The neck is a common derived characteristic disease reflect the sometimes complex and of land vertebrates, not shared by their aquatic conflicting regional variations and functional ancestors. In fish, the thoracic fin girdle, the constraints so evident in this region [2]. precursor of the scapula, coracoid and clavi- Unlike the abdomen and thorax, there is no cle, is frequently fused to the caudal aspect of coelomic cavity in the neck, yet its ventral part the skull. In contrast, as vertebrates emerged is taken up by a relatively small ‘visceral on to the dry land, the forelimb separated from compartment’, containing the larynx, trachea, the head and the intervening vertebrae speci- oesophagus and many important vessels, alised to form a relatively mobile region – the nerves and endocrine glands. However, I neck – to allow the head to be freely steered in will not review these structures, as they do many directions. not represent an extension of the equine ‘back’ With the exception of the tail, the neck in the same way that the more dorsal locomo- remains the most mobile region of the spinal tor region does. column in modern-day horses. It permits a wide range of sagittal plane flexion and exten- sion to allow alternating periods of grazing Cervical Vertebrae 3–7 and predator surveillance, as well as frontal plane flexion to allow the horizon to be scan- Almost all mammals, including the horse, ned, and rotational movement to allow possess seven cervical vertebrae, C1 to C7 nuisance insects to be flicked off.
    [Show full text]
  • Diagnosis of Atlantoaxial Instability Requires Clinical Suspicion To
    al of S rn pi ou n Henderson Sr and Henderson Jr, J Spine 2017, 6:2 J e Journal of Spine DOI: 10.4172/2165-7939.1000364 ISSN: 2165-7939 Mini Review OMICS International Diagnosis of Atlantoaxial Instability Requires Clinical Suspicion to Drive the Radiological Investigation Fraser C Henderson Sr.1,2* and Fraser C Henderson Jr.3 1Doctors Community Hospital, Lanham, MD, USA 2The Metropolitan Neurosurgery Group, LLC, Chevy Chase, MD, USA 3Medical University of South Carolina, Charleston, SC, USA Introduction bending to the contralateral side, are often injured in motor vehicle collisions, and could be implicated in whiplash-associated disorders Atlantoaxial instability (AAI) occurs as a result of trauma, [15]. Failure of the alar ligament allows a 30% increased rotation to congenital conditions such as os odontoideum, neoplasm, infection the opposite side [16]. The atlantoaxial joint is ill-equipped to handle and degenerative connective tissue disorders such as rheumatoid the required multi-axial movements in the presence of ligamentous arthritis, genetic conditions such as HOX-D3 and Down syndrome, laxity or disruption [17]. Weakness of the muscles and ligaments, and heritable connective tissue disorders, emblematic of which are hormonal changes, infection, immunological problems, and congenital the Ehlers Danlos syndromes (EDS). Prototypical of disorders in dysmorphism may contribute to the overall mechanical dysfunction at which AAI is diagnosed, is rheumatoid arthritis (RA). Prior to the the C1-C2 motion segment. development of effective disease-modifying pharmacotherapies, 88% of RA patients exhibited radiographic evidence of C1-C2 involvement, Hypermobility of the AAJ is common in children, and up to 45° of in whom 49% were symptomatic and 20% myelopathic; ultimately, rotation may be observed in each direction.
    [Show full text]
  • Evaluation and Treatment of Selected Sacral Somatic Dysfunctions
    Evaluation and Treatment of Selected Sacral Somatic Dysfunctions Using Direct and HVLA Techniques including Counterstrain and Muscle Energy AND Counterstrain Treatment of the Pelvis and Sacrum F. P. Wedel, D.O. Associate Adjunct Professor in Osteopathic Principles and Practice A.T. Still University School of Osteopathic Medicine in Arizona, and private practice in Family Medicine in Tucson, Arizona Learning Objectives HOURS 1 AND 2 Review the following diagnostic and treatment techniques related to sacral torsion Lumbosacral spring test Sacral palpation Seated flexion test HOURS 3 AND 4 Counterstrain treatments of various low back pathologies Sacral Techniques Covered : 1. Prone, direct, muscle energy, for sacral rotation on both same and opposite axes 2. HVLA treatment for sacral rotation on both same and opposite axes 3. Counterstain treatment of sacral tender points and of sacral torsion Counterstrain Multifidi and Rotatores : UP5L Gluteii – maximus: HFO-SI, HI, P 3L- P 4L ,medius, minimus Piriformis Background and Basis The 4 Osteopathic Tenets (Principles) 1. The body is a unit; the person is a unit of body, mind, and spirit. 2. Structure and function are reciprocally inter-related. 3. The body is capable of self- regulation, self-healing, and health maintenance. 4. Rational treatment is based upon an understanding of these basic principles. Somatic Dysfunction - Defined • “Impaired or altered function of related components of the somatic (body framework) system: • Skeletal, arthrodial, and myofascial structures, • And… • Related vascular, lymphatic, and neural elements” Treatment Options for Somatic Dysfunctions All somatic dysfunctions have a restrictive barrier which are considered “pathologic” This restriction inhibits movement in one direction which causes asymmetry within the joint: The goal of osteopathic treament is to eliminate the restrictive barrier thus restoring symmetry….
    [Show full text]
  • 3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations
    3 Approach-Related Complications Following Anterior Cervical Spine Surgery: Dysphagia, Dysphonia, and Esophageal Perforations Bharat R. Dave, D. Devanand, and Gautam Zaveri Introduction This chapter analyzes the problems of dysphagia, dysphonia, and esophageal tears during the Pathology involving the anterior subaxial anterior approach to the cervical spine and cervical spine is most commonly accessed suggests ways of prevention and management. through an anterior retropharyngeal approach (Fig. 3.1). While this approach uses tissue planes to access the anterior cervical spine, visceral Dysphagia structures such as the trachea and esophagus and nerves such as the recurrent laryngeal Dysphagia or difficulty in swallowing is a nerve (RLN), superior laryngeal nerve (SLN), and symptom indicative of impairment in the ability pharyngeal plexus are vulnerable to direct or to swallow because of neurologic or structural traction injury (Table 3.1). Complaints such as problems that alter the normal swallowing dysphagia and dysphonia are not rare following process. Postoperative dysphagia is labeled as anterior cervical spine surgery. The treating acute if the patient presents with difficulty in surgeon must be aware of these possible swallowing within 1 week following surgery, complications, must actively look for them in intermediate if the presentation is within 1 to the postoperative period, and deal with them 6 weeks, and chronic if the presentation is longer expeditiously to avoid secondary complications. than 6 weeks after surgery. Common carotid artery Platysma muscle Sternohyoid muscle Vagus nerve Recurrent laryngeal nerve Longus colli muscle Internal jugular artery Anterior scalene muscle Middle scalene muscle External jugular vein Posterior scalene muscle Fig. 3.1 Anterior retropharyngeal approach to the cervical spine.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Anatomy of the Spine
    12 Anatomy of the Spine Overview The spine is made of 33 individual bones stacked one on top of the other. Ligaments and muscles connect the bones together and keep them aligned. The spinal column provides the main support for your body, allowing you to stand upright, bend, and twist. Protected deep inside the bones, the spinal cord connects your body to the brain, allowing movement of your arms and legs. Strong muscles and bones, flexible tendons and ligaments, and sensitive nerves contribute to a healthy spine. Keeping your spine healthy is vital if you want to live an active life without back pain. Spinal curves When viewed from the side, an adult spine has a natural S-shaped curve. The neck (cervical) and low back (lumbar) regions have a slight concave curve, and the thoracic and sacral regions have a gentle convex curve (Fig. 1). The curves work like a coiled spring to absorb shock, maintain balance, and allow range of motion throughout the spinal column. The muscles and correct posture maintain the natural spinal curves. Good posture involves training your body to stand, walk, sit, and lie so that the least amount of strain is placed on the spine during movement or weight-bearing activities. Excess body weight, weak muscles, and other forces can pull at the spine’s alignment: • An abnormal curve of the lumbar spine is lordosis, also called sway back. • An abnormal curve of the thoracic spine is Figure 1. (left) The spine has three natural curves that form kyphosis, also called hunchback. an S-shape; strong muscles keep our spine in alignment.
    [Show full text]
  • The Neuroanatomy of Female Pelvic Pain
    Chapter 2 The Neuroanatomy of Female Pelvic Pain Frank H. Willard and Mark D. Schuenke Introduction The female pelvis is innervated through primary afferent fi bers that course in nerves related to both the somatic and autonomic nervous systems. The somatic pelvis includes the bony pelvis, its ligaments, and its surrounding skeletal muscle of the urogenital and anal triangles, whereas the visceral pelvis includes the endopelvic fascial lining of the levator ani and the organ systems that it surrounds such as the rectum, reproductive organs, and urinary bladder. Uncovering the origin of pelvic pain patterns created by the convergence of these two separate primary afferent fi ber systems – somatic and visceral – on common neuronal circuitry in the sacral and thoracolumbar spinal cord can be a very dif fi cult process. Diagnosing these blended somatovisceral pelvic pain patterns in the female is further complicated by the strong descending signals from the cerebrum and brainstem to the dorsal horn neurons that can signi fi cantly modulate the perception of pain. These descending systems are themselves signi fi cantly in fl uenced by both the physiological (such as hormonal) and psychological (such as emotional) states of the individual further distorting the intensity, quality, and localization of pain from the pelvis. The interpretation of pelvic pain patterns requires a sound knowledge of the innervation of somatic and visceral pelvic structures coupled with an understand- ing of the interactions occurring in the dorsal horn of the lower spinal cord as well as in the brainstem and forebrain. This review will examine the somatic and vis- ceral innervation of the major structures and organ systems in and around the female pelvis.
    [Show full text]
  • Congenital Bone Deformities and the Inbred Wolves (Canis Lupus) of Isle Royale
    ARTICLE IN PRESS Biological Conservation xxx (2009) xxx–xxx Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Congenital bone deformities and the inbred wolves (Canis lupus) of Isle Royale Jannikke Räikkönen a,*, John A. Vucetich b, Rolf O. Peterson b, Michael P. Nelson c a Swedish Museum of Natural History, Department of Contaminant Research, Frescativägen 44, P.O. Box 50007, S-104 05 Stockholm, Sweden b School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA c Lyman Briggs College, Department of Fisheries and Wildlife, and Department of Philosophy, Michigan State University, East Lansing, MI 48825, USA a r t i c l e i n f o a b s t r a c t Article history: The wolf (Canis lupus) population on Isle Royale, a remote island in Lake Superior, North America, is extre- Received 26 October 2008 mely inbred. Nevertheless, the consequences of genetic deterioration have not been detected for this Received in revised form 21 January 2009 intensively studied population, until now. We found that 58% (n = 36) of Isle Royale wolves exhibited Accepted 24 January 2009 some kind of congenital malformation in the lumbosacral region of the vertebral column and 33% exhib- Available online xxxx ited a specific malformity, lumbosacral transitional vertebrae. By contrast, only 1% (1 of 99) of wolves sampled from two outbred, wolf populations exhibited this malformity. Moreover, in domestic dogs Keywords: (Canis lupus familiaris) lumbosacral transitional vertebrae are associated with cauda equina syndrome, Canis lupus which can cause paresis, paralysis, locomotor difficulties in the rear legs and tail, and back pain.
    [Show full text]
  • Duplication of the Alar Ligaments: a Case Report
    Open Access Case Report DOI: 10.7759/cureus.2893 Duplication of the Alar Ligaments: A Case Report Asad Rizvi 1 , Joe Iwanaga 2 , Rod J. Oskouian 3 , Marios Loukas 4 , R. Shane Tubbs 5 1. St. Georges University School of Medicine, St. Georges, GRD 2. Seattle Science Foundation, Seattle, USA 3. Neurosurgery, Swedish Neuroscience Institute, Seattle, USA 4. Anatomical Sciences, St. George's University, St. George's, GRD 5. Neurosurgery, Seattle Science Foundation, Seattle, USA Corresponding author: Joe Iwanaga, [email protected] Abstract The alar ligament is one of the two strongest ligaments stabilizing the craniocervical junction. The literature describes many variations of the attachment, insertion, shape, and orientation of the alar ligament and an understanding of these variations is vital as they can lead to altered biomechanics or misinterpretation on imaging. Herein, we report, to our knowledge, the first case of duplication of the alar ligaments and discuss the anatomical variations present in the literature. Categories: Neurology, Pathology Keywords: alar ligament, duplication, craniocervical junction, variant, transverse occipital ligament, anatomy Introduction The craniocervical junction is composed of the atlantooccipital and the atlantoaxial joints. Several ligaments stabilize these joints, namely the transverse, alar, transverse occipital, accessory, lateral atlantooccipital, and apical ligaments [1]. The transverse and alar ligaments are the two strongest ligaments stabilizing the craniocervical junction with approximately 400 N and 200 N necessary until failure, respectively [1-2]. The alar ligaments are fibrous cords that attach to the dens bilaterally and insert on the base of the skull. They function to limit axial rotation and lateral bending on the contralateral side, and flexion secondarily [1- 2].
    [Show full text]