And Beneficial Insects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2013 Newsletter
&(17(5)25%,2/2*,&$/&21752/1(:6/(77(5 &(17(5)25%,2/2*,&$/&21752/ )$08&$)6 1(:6/(77(5 )ORULGD$ 08QLYHUVLW\ &2//(*(2)$*5,&8/785($1')22'6&,(1&(6 7DOODKDVVHH)/ 9ROXPH /DG\ELUGBHHWOH3UHGDWRU&KLORFRUXVFDFWL 0D\&RQWURO1HZ,QYDVLYH3HVWRI)ORULGD ,16,'(7+,6,668( Lambert Kanga, Ph.D. &U\SWLFHU\DJHQLVWDH (Hemiptera: Margarodidae) also known as soybean scale is an invasive scale insect native to Brazil. The insect was originally described as (GLWRULDO ,FHU\DJHQLVWDH by Hempel (1912). It has been found in Florida, Barbados, Puerto Rico, Guadeloupe, Dominican Republic and Haiti (Fig. 1). There is a very little information available on this scale insect and its biology. The overall 5HVHDUFKDQG2XWUHDFK1HZV economic significance of this scale insect varied between the different countries infested by the scale. In Florida, &U\SWLF\HUD attacked more than 50 hosts in several plant families. The insect pest has been responsible for repeated crop 6WXGHQW1HZV losses in peanut in Barbados and readily attacks plants in the Leguminoseae family, including soybeans. &U\SWLFHU\D JHQLVWDH destroyed crops in the northeast 3XEOLFDWLRQV3UHVHQWDWLRQV Haiti affecting more than 10,000 ha. Two natural enemies, the ladybird beetle ($QRYLDFLUFXPFOXVD) and a Phorid fly (6\QHJHXUD FRFFLSKLOD Coquillett) have 6HPLQDUVDQG:RUNVKRSV been reported to provide successful control of & JHQLVWDH. Preliminary results in our cage studiessuggested the ladybeetle predator, &KLORFRUXVFDFWL (Lin naeus) (Coleoptera: Coccinellidae) (Fig. 2) could also be a promising biological control agent for &U\SWLFHU\DJHQLVWDH. 'U/DPEHUW.DQJD 'LUHFWRU3URIHVVRU)$08&%& 'UJesusa/HJDVSL &R'LUHFWRU86'$$56&0$9(&%& 'U5REHUW7D\ORU'HDQDQG'LUHFWRU &ROOHJHRI$JULFXOWXUHDQG)RRG6FLHQFHV This Newsletter is published by the &HQWHUIRU%LRORJLFDO &RQWURO. -
Crapemyrtle Bark Scale Acanthococcus (=Eriococcus) Lagerstroemiae
Crapemyrtle Bark Scale Acanthococcus (=Eriococcus) lagerstroemiae Jim Robbins, Univ. of Ark. CES, Bugwood.org, #5521505 The crapemyrtle bark scale (Acanthococcus (=Eriococcus) lagerstroemiae) is in the family Eriococcidae (or Acanthococcidae, as the taxonomy of this family is still being debated). This group is in the superfamily Coccoidea (scale insects) and the order Hemiptera (true bugs). The primary host in North America, crapemyrtle, Lagerstroemia spp., are deciduous flowering trees popular in ornamental landscapes. They are top-sellers in the nursery trade, with the annual wholesale value estimated to be $66 million in 2014. Based on urban tree inventories of several major cities in the southeastern U.S., crapemyrtle are among the most common landscape trees planted in this region. Resources - Cai, X., H. Dou, M. Gu, M. Merchant, and E. Vafaie. 2015. Update on crapymyrtle bark scale. Proceedings of the 2015 Annual Meeting of the International Plant Propagators’ Society. 1140: 415–418. - Wang, Z., Y. Chen, M. Gu, E. Vafaie, M. Merchant, and R. Diaz. 2016. Crapemyrtle bark scale: A new threat for crapemyrtles, a popular landscape plant in the U.S. Insects. 7: 33–34. 1 Crapemyrtle Bark Scale Close-up of a crapemyrtle bark scale • In the group of insects infestation, showing the fuzzy, felt-like known as felt scales covering of the adult female scales • Native to Asia • First report in the US – 2004 in Richardson, Texas (Dallas County) • Formerly known as Eriococcus lagerstroemiae Kuwana Gary Brooks, Bayer CropScience, Bugwood.org #5523058 The crapemyrtle bark scale (abbreviated as CMBS) belongs to a group of scale insects known as felt scales or bark scales. -
Host Suitability for Crapemyrtle Bark Scale (Acanthococcus Lagerstroemiae) Differed Significantly Among Crapemyrtle Species
insects Article Host Suitability for Crapemyrtle Bark Scale (Acanthococcus lagerstroemiae) Differed Significantly among Crapemyrtle Species Bin Wu 1, Runshi Xie 1, Gary W. Knox 2 , Hongmin Qin 3,* and Mengmeng Gu 4,* 1 Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; [email protected] (B.W.); [email protected] (R.X.) 2 Department of Environmental Horticulture, University of Florida/IFAS North Florida Research and Education Center, Quincy, FL 32351, USA; gwknox@ufl.edu 3 Department of Biology, Texas A&M University, College Station, TX 77843, USA 4 Department of Horticultural Sciences, Texas A&M AgriLife Extension Service, College Station, TX 77843, USA * Correspondence: [email protected] (H.Q.); [email protected] (M.G.); Tel.: +1-979-458-0512 (H.Q.); +1-979-845-8567 (M.G.) Simple Summary: An exotic insect, crapemyrtle bark scale (CMBS, Acanthococcus lagerstroemiae), has spread across 14 states of the U.S. The infestation of CMBS has negatively impacted the growth, flowering, and even fruiting of some Lythraceae plants to various extent, including cultivars of Lagerstroemia indica, L. fauriei, and Punica granatum. This raises concerns that CMBS would threaten other crapemyrtle species and native Lythraceae plants. Understanding the host range and the host suitability for CMBS would help evaluate the potential risks to landscapes and other ecosystems. Information on the host suitability provides beneficial information for breeding resistant cultivars. In this study, we conducted a host range test on six Lagerstroemia species (L. caudata, L. fauriei ‘Kiowa’, L. indica ‘Dynamite’, L. limii, L. speciosa, and L. subcostata) and a native Lythraceae plant in California (California loosestrife, Lythrum californicum) over 25 weeks. -
Coleoptera: Coccinellidae): Influence of Subelytral Ultrastructure
Experimental & Applied Acarology, 23 (1999) 97–118 Review Phoresy by Hemisarcoptes (Acari: Hemisarcoptidae) on Chilocorus (Coleoptera: Coccinellidae): influence of subelytral ultrastructure M.A. Houck* Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409–3131, USA (Received 9 January 1997; accepted 17 April 1998) ABSTRACT The non-phoretic stages of mites of the genus Hemisarcoptes are predators of the family Diaspididae. The heteromorphic deutonymph (hypopus) maintains a stenoxenic relationship with beetles of the genus Chilocorus. The mites attach to the subelytral surface of the beetle elytron during transport. There is variation in mite density among species of Chilocorus. Both Hemisarcoptes and Chilocorus have been applied to biological control programmes around the world. The objective of this study was to determine whether subelytral ultrastructure (spine density) plays a role in the evolution of symbiosis between the mite and the beetle. The subelytral surfaces of 19 species of Chilocorus and 16 species of Exochomus were examined. Spine density was determined for five subelytral zones: the anterior pronotal margin, medial central region, caudoventral tip, lateral distal margin and epipleural region. Spine density on the subelytral surface of Chilocorus and Exochomus was inversely correlated with the size of the elytron for all zones except the caudoventral tip. This suggests that an increase in body size resulted in a redistribution of spines and not an addition of spines. The pattern of spine density in Exochomus and Chilocorus follows a single size–density trajectory. The pattern of subelytral ultrastructure is not strictly consistent with either beetle phylogeny or beetle allometry. The absence of spines is not correlated with either beetle genus or size and species of either Chilocorus or Exochomus may be devoid of spines in any zone, irrespective of body size. -
Redalyc.CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE
Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México Machkour-M’rabet, S.; Ferral-Piña, J.; Henaut, Y. CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE), A POTENTIAL NATURAL ENEMY FOR THE RED PALM MITE IN MEXICO Acta Zoológica Mexicana (nueva serie), vol. 31, núm. 3, diciembre, 2015, pp. 512-517 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57542699025 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 512ISSN 0065-1737 Machkour-M’rabetActa Zoológica et al.: MexicanaChilocorus (n.s.), cacti 31(3):and the 512-517 red palm (2015) mite Nota Científica (Short Communication) CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE), A POTENTIAL NATURAL ENEMY FOR THE RED PALM MITE IN MEXICO Recibido: 12/05/2015; aceptado: 14/08/2015 Machkour-M’rabet, S., Ferral-Piña, J. y Henaut, Y. 2015. Chilo- potentially infest a wide diversity of plants, many of corus cacti (Coleoptera: Coccinellidae), enemigo natural potencial which are economically and ecologically important (Car- del ácaro rojo de las palmas en México. Acta Zoológica Mexicana rillo et al. 2012a). In Mexico, 16 species of commercially (n. s.), 31(3): 512-517. grown plants (some of which form entire genus) belong- RESUMEN. Raoiella indica Hirst (Acari: Tenuipalpidae), el ácaro ro- ing to four families (Arecaceae, Heliconiaceae, Musaceae jo de las palmas, es una plaga importante en el mundo, dañando plan- and Strelitziaceae) have been reported as hosts of the red tas comerciales y ornamentales. -
Status Report on Arthropod Predators of the Asian Citrus Psyllid in Mexico
Status report on arthropod predators of the Asian Citrus Psyllid in Mexico Esteban Rodríguez-Leyva Colegio de Postgraduados, Montecillo, Texcoco, MEXICO. Importance of Citrus in Mexico 525 000 ha 23 States Citrus production 6.7 million ton/year 68% Orange, 20% Mexican lime, 5% Persian lime 2.5% Grapefruit , 2.5% Tangerine The insect problem Diaphorina citri in Mexico (www.senasica.gob.mx) Searching for natural enemies of ACP on citrus trees and orange jessamine Coccinellidae Azya orbigera Brachiacantha decora Chilocorus cacti Cycloneda sanguinea Harmonia axyridis Hippodamia convergens Olla v-nigrum López- Arroyo et al. 2008 Marín 2009, personal com. Sánchez-González & Arredondo-Bernal 2009, personal com. Gaona-García et al. 2009 Chrysopidae Chrysoperla rufilabris C. comanche C. externa Ceraeochrysa sp. nr. cincta C. valida López- Arroyo et al. 2008 Cortez-Mondaca et al. 2008 Syrphidae Allographa obliqua Pseudodoros clavatus Toxomerus marginatus Toxomerus politus Miscelaneous predators of ACP Spiders, Wasps (Vespidae), Ants (Ponerinae) López- Arroyo et al. 2008 Sánchez-González & Arredondo-Bernal 2009, personal com. Abundance of ladybirds (Coccinellidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net, two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of lacewings (Chrysopidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of lacewings (Chrysopidae) predators on citrus trees, at Nuevo Leon (northeast), Mexico. (Insect net two sides of each mature tree, n=30). López-Arroyo, 2010, personal com. Abundance of predators (specially C. rufilabris) on Diaphorina citri on citrus trees at Nuevo Leon (northeast), Mexico. -
Coleoptera: Coccinellidae) As a Biocontrol Agent
CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009 4, No. 046 Review Factors affecting utility of Chilocorus nigritus (F.) (Coleoptera: Coccinellidae) as a biocontrol agent D.J. Ponsonby* Address: Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent. CT1 1QU, UK. *Correspondence: Email: [email protected] Received: 30 March 2009 Accepted: 25 June 2009 doi: 10.1079/PAVSNNR20094046 The electronic version of this article is the definitive one. It is located here: http://www.cababstractsplus.org/cabreviews g CAB International 2009 (Online ISSN 1749-8848) Abstract Chilocorus nigritus (F.) has been one of the most successful coccidophagous coccinellids in the history of classical biological control. It is an effective predator of many species of Diaspididae, some Coccidae and some Asterolecaniidae, with an ability to colonize a relatively wide range of tropical and sub-tropical environments. It appears to have few natural enemies, a rapid numerical response and an excellent capacity to coexist in stable relationships with parasitoids. A great deal of literature relating to its distribution, biology, ecology, mass rearing and prey preferences exists, but there is much ambiguity and the beetle sometimes inexplicably fails to establish, even when conditions are apparently favourable. This review brings together the key research relating to factors that affect its utility in biocontrol programmes, including its use in indoor landscapes and temperate glasshouses. Data are collated and interpreted and areas where knowledge is lacking are identified. Recommendations are made for prioritizing further research and improving its use in biocontrol programmes. -
Crapemyrtle Bark Scale
Crapemyrtle bark scale extensionentomology.tamu.edu/insects/crapemyrtle-bark-scale/ Crapemyrtle bark scale on a potted crapemyrtle at the Overton Texas A&M AgriLife Research and Extension Center. Photo by Erfan Vafaie Article author: Erfan Vafaie, Mike Merchant, Mengmeng Gu Most recently reviewed by: Janet Hurley (2018) Common Name(s): crapemyrtle bark scale Description The crapemyrtle bark scale, Acanthococcus (=Eriococcus) lagerstromiae (Kuwana), was first confirmed in the USA in 2004 in the landscape near Dallas (TX), although it was likely introduced earlier. The scale is a sucking insect that feeds on the phloem (sap) of plants. As it feeds, it excretes a sugary solution known as “honeydew” (similar to aphids, whiteflies, and other sucking insects). Heavy infestations of crapemyrtle bark scale produce sufficient honeydew to coat leaves, stems and bark of the tree. This honeydew, in turn, will eventually 1/10 turn black as it is colonized by a concoction of fungi, called sooty mold. Although crapemyrtles rarely die as a result of crapemyrtle bark scale infestation, the sticky leaves and black trunks greatly reduce the attractive appearance of the tree. Immature crapemyrtle bark scale are hard to see with the naked eye, but adult scale covers and egg sacs are frequently visible on the upper branches and trunk of the tree. These scales include larger, white, oval (female) and smaller, elongate (male) scales. Both male and female scales of the crapemyrtle bark scale are immobile, and will “bleed” pink blood when crushed. Heavy infestation of crapemyrtle bark scale with sooty mold. Presence of ladybeetle pupa indicates some predation. Photo by Erfan Vafaie. -
Chilocorus Cacti (Coleoptera: Coccinellidae), a Potential Natural Enemy for the Red Palm Mite in Mexico
512ISSN 0065-1737 Machkour-M’rabetActa Zoológica et al.: MexicanaChilocorus (n.s.), cacti 31(3):and the 512-517 red palm (2015) mite Nota Científica (Short Communication) CHILOCORUS CACTI (COLEOPTERA: COCCINELLIDAE), A POTENTIAL NATURAL ENEMY FOR THE RED PALM MITE IN MEXICO Recibido: 12/05/2015; aceptado: 14/08/2015 Machkour-M’rabet, S., Ferral-Piña, J. y Henaut, Y. 2015. Chilo- potentially infest a wide diversity of plants, many of corus cacti (Coleoptera: Coccinellidae), enemigo natural potencial which are economically and ecologically important (Car- del ácaro rojo de las palmas en México. Acta Zoológica Mexicana rillo et al. 2012a). In Mexico, 16 species of commercially (n. s.), 31(3): 512-517. grown plants (some of which form entire genus) belong- RESUMEN. Raoiella indica Hirst (Acari: Tenuipalpidae), el ácaro ro- ing to four families (Arecaceae, Heliconiaceae, Musaceae jo de las palmas, es una plaga importante en el mundo, dañando plan- and Strelitziaceae) have been reported as hosts of the red tas comerciales y ornamentales. En 2009 fue observada por primera palm mite (Senasica 2013). In particular, four economi- vez en México y se extendió rápidamente. Puede ocasionar daños im- cally important plants in Mexico could be affected most portantes a los cultivos y también ha infestado en reservas protegidas. Para limitar el uso de acaricidas, principalmente en áreas protegidas, se by the red palm mite: three palm species (the African oil han buscado depredadores naturales. Globalmente se han identificado palm, Elaeis guineensis Jacq., the coconut palm, Cocos 28 depredadores incluyendo otros ácaros, insectos y hongos. En este nucifera L., and the date palm, Phoenix dactylifera L.) estudio, presentamos una nueva especie nativa coccinélida, Chilocorus and several banana species, Musa spp. -
REPORT on APPLES – Fruit Pathway and Alert List
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ ..................................................................................................................................... -
Crapemyrtle Bark Scale Acanthococcus Lagerstroemiae Kuwana (Hemiptera: Eriococcidae): Analysis of Factors Influencing Infestation and Control
CRAPEMYRTLE BARK SCALE ACANTHOCOCCUS LAGERSTROEMIAE KUWANA (HEMIPTERA: ERIOCOCCIDAE): ANALYSIS OF FACTORS INFLUENCING INFESTATION AND CONTROL A Thesis by KYLE ANDREW GILDER Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Kevin M. Heinz Co-Chair of Committee, Mengmeng Gu Committee Members, Mike Merchant Head of Department, Phillip Kaufman December 2020 Major Subject: Entomology Copyright 2020 Kyle Andrew Gilder ABSTRACT Crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), a new non-native pest from Asia first discovered in the U.S. in 2004 has now been reported in 14 states. The scale jeopardizes the future of crapemyrtles use as a popular ornamental landscape tree in the U.S. Management of this pest will likely include biological strategies. Before such strategies can be implemented it is important to examine relative abundances and distributions of arthropod species associated with the scale in the geographic area targeted for biological control. In the first objective, surveys of crapemyrtle ecology from two varietal groups of crapemyrtle trees (Lagerstroemia spp.) were undertaken in Tarrant and Brazos counties across six consecutive seasons in 2018 – 2019. A rich arthropod community was discovered. The most common predators were spiders, coccinellids, and chrysopids. Insects in the families Eriococcidae, Aphididae, and Thripidae were common herbivores on Lagerstroemia spp. Numerous phytophagous and mycophagous mites were also collected. These herbivores constitute a reservoir of alternative prey for generalist predators that may also feed on A. lagerstroemiae. A food web was constructed to illustrate direct and indirect effects of the predator community on A. -
(Coleoptera; Coccinellidae), from a MITE, Hemisarcoptes Cooremani
THE UPTAKE OF TRITIATED WATER BY A BEETLE, Chilocorus cacti (Coleoptera; Coccinellidae), FROM A MITE, Hemisarcoptes cooremani (Acari: Acariformes) by AURAL! E. HOLTE, B.S. A THESIS IN BIOLOGY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved December, 1999 mr'-^'^-"""'^'" .——^—--— •« • "ji» • »j»«p»^"^i^»w /^n^^l C>^i^f ACKNOWLEDGMENTS I thank a number of people for their assistance and support in the completion of iS-f' 7^ this work. First, I would like to thank Dr. Marilyn Houck for her generous encouragement, understanding and guidance, without which I would not have been able to start or complete this project. I also thank the members of my committee. Dr. Nathan Collie and Dr. Richard Deslippe who provided valuable comments and information utilized for this research. Elizabeth Richards, Heather Roberts, and Qingtian Li were encouraging and helpful colleagues in all my endeavors as a graduate student. I also thank a number of people for personal support; foremost, Damon for without his devoted love, constant support and immutable encouragement, I would have not been able to accomplish this work. I v^sh to thank my family for all of the love and understanding they have given me, especially my mother who guided me with her example, demonstrating that I could do anything once I set my mind to it. I also would like to acknowledge all of the other friends and family members who have given me encouragement. Finally, financial support for this research was provided by the Texas Tech University Biology Department and the Bi-National Agricultural Research and Development grants (#IS-1397-87 and #US-2359-93C to M.