Barite Deposits of Kentucky Warren H

Total Page:16

File Type:pdf, Size:1020Kb

Barite Deposits of Kentucky Warren H University of Kentucky UKnowledge Kentucky Geological Survey Bulletin Kentucky Geological Survey 1982 Barite Deposits of Kentucky Warren H. Anderson University of Kentucky, [email protected] Robert D. Trace University of Kentucky Preston McGrain University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/kgs_b Part of the Geology Commons Repository Citation Anderson, Warren H.; Trace, Robert D.; and McGrain, Preston, "Barite Deposits of Kentucky" (1982). Kentucky Geological Survey Bulletin. 2. https://uknowledge.uky.edu/kgs_b/2 This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Bulletin by an authorized administrator of UKnowledge. For more information, please contact [email protected]. KENTUCKY GEOLOGICAL SURVEY UNIVERSITY OF KENTUCKY, LEXINGTON Donald C. Haney, Director and State Geologist BARITE DEPOSITS OF KENTUCKY Warren H. Anderson, Robert D. Trace, and Preston McGrain https://doi.org/10.13023/kgs.b01.11 https://doi.org/10.13023/kgs.b01.11 UNIVERSITY OF KENTUCKY Warren H Anderson, Geoloclisl II Otis A Slngletary, President Jack R Moody. Geologist II Art Gallaher, Jr.. Vice President for Academic Affairs Mary E Barron, Seri~iirLatior,ilory Assislaiil Wirnberly C. Roysler. Dean of Graduate Scliool and Coordinator of Oil and Gas Section: Research Louis R Po~nsello,Hr!ad Janies Y McDonald. Execulive Director, Univers~lyol Kenlucky Mart~nC Noytr, Geolugist IV Research Foundation Frank H Walker. Geillogist IV John G Beaid, Geolrrgisl IV. Henderson 0llii:e KENTUCKY GEOLOGICAL SURVEY Patrick J Gixitiing, Geologisr II ADVISORY BOARD Brandon C Nutrdll, Geologist I Dav~dA Legeer, Cha~rrrian.Lexington Julia M,irt~n, Litlrary Tt?chn~ci,i~iI Ph~lM Miles. Vicf Chairman, Lexinglori Richard W Tnulbee, Serliur i ,ibor;ll~iry Assislaril David E Bayer, Lexington Roberl R Darl~el,Lal~oratory Ass~sl;~irl John G Donan. Sr.. Mad~sonville Water Section: Wallace W Hagan, Lex~ngton John D Kieit:~,Head dnd Ass~slanlSlate Gr~cili~g~sl Nicholas C Kielfer. Jr . Louisville James S Dirigcr. Gci~logistIV Harold G Mays. Franklnrt Steven Cord~v~ola,Gf.ologisl Ill J Edward Parker. Lexington Fred Lawrence, Geologist Ill W J Reynolds. Alleri James K~pp.Gt:oIogisl II Herrry A Spalding. Hazard Margarel A Townserid, Geol[~(]islll Ralph N Thomas, Owensboro Robert C Holladay. Draftirig Teclliican George H Warren, Jr , Owensboro Edw~nA Morford, Core Dr~lleiIll KENTUCKY GEOLOGICAL SURVEY SPECIAL PROJECTS DIVISION Doriald C Haney. Dirc~loranti Stale Geologist Projects Preston McGra~ri.Ass~stant State Geologist, Water, Minerals. Kentucky Department for Natural Resources and and Maps Environmental Protection- Aquifer Characterization Jolin D K~efer.Assistanl Stale Geolog~sl,Energy Stevert Cordivi(~ld,Prl~lc~pal iiiveiliqcilor ADMINISTRATIVE DIVISION Margarr?! A Townsend, Geolog~slII Robert C Htrliirday. Dratt~iiqTeclin~crnil Personnel and Finance Section: Kentucky Institute for Mining and Minerals Research-Coal Jnrnes Harnillori. Adm~n~slraliveStaff Officer ll Reserves, Eastern Kentucky Margaret Fernaridez. Adm~nislraliveAccourils Clerk Lexington Office Clerical Section: Russell A Br.iiiI. Priricipal Irlvesllyator Brenda L. Hayden, Atlrninistrative Secretary Donald R Ctir~siiut,Jr Gec~l(~qislIll Anna L Hopk~ns,Admiriistralive Secrerarv . Bla~neL Fennoll. Jr , Geologisl I Sherry A. McKune. Adniinislrative Secretary Wayne T Frankie, Gtrolog~stl Norma J Reynolds. Adniinistralrve Secretary El~sabell~R Porl~g,Geologsl I Jean Kelly. Secielary Morehead Office Juanita G Sniilh. Secretary, Henderson Office Kennel11 L GIII, Geologrst 11 Publications Section: Josepll P Hanriltori, Gecilogiil I Donald W Hutiheson. Head Kentucky Institute for Mining and Minerals Margarel K Luther. Ass~slantEditor Research-Limestone Investigations Roger B Potts. Chief Cartographic Illustrator Garland R. Dever, JI Pririii~~alIrivr:sligalui Lyrin D Guindon, Principal Drafting Techn~c~an . Jack R Moody, Geologist II Freda M Harris, Draft~ngTectinician U.S. Geological Survey -Coal Hydrology, Eastern Kentucky W~lllamA Briscoe. Ill. Sales Supervisor Jarnes S D~tigc!r.Prificipal Irivesligator Leniuel W Wa~le.Stores Worker Fred Lawrericf:, Gecilc~g~stIll Palrick H McHaff~e.Geologisl/Geoyrapher II James Kipp. Geolo;l15l II GEOLOGICAL DIVISION Edwin A Morfcird, Core Drlll(!r Ill Coal Section: U. S. Geological Survey -Coal Sampling, Eastern Kentucky Lexington Office James C Currens, Prirlc~palIrlvestig,~lor Jarrles C Cobh, Head U. S. Nuclear Regulatory Commission-Geologic Russell A. Brant. Geologisl V Studies of Faults and Terraces Donald R Chesriut. Jr , Geologist Ill Richard E St!r!jeanl, Princo,~li7vesl1galor Jarrles C. Curreris, Geolog~stIll Roy Vari Arsdale, G~~i~l~igislIll Richard E Sergeant, Geologist Ill U. S. Geological Survey -Compilation of Coal Data Blairie L Fennell. Jr , Geolog~stI in the State of Kentucky Wayne 1 Frankie. Geologist l James C Cubl~.Pr~r~~ipdl Iiive4liqalor Elisabelli R Porllg. Geologist I Ernie R Slucher. Geologist I Ernie R Slucher, Geologist I U. S. Geological Survey -Kentucky Cartographic Henderson Office lnventory Allen D Wrll~arirs<)r?.Geologisl IV Patrick H. McHaff~e.Principal Inves1ig;itnr David A Will~ams.Geolog~st Ill Kentucky Department of Energy -Feasibility Assessment Roxanne B~ngenier.Geologisl I of Unconventional Gas in Kentucky Moreheed Office Louis R Porist.llo. Prii~cipalI~~veslg~~lor Kr:nrietlr L GIII, Geologist II U. S. Geological Survey -Mine Map Inventory of Joseph P Hamilton. Geolog~slI Western Kentucky Industrial and Metallic Minerals Section: Ricliard E Srrgeanl, Princ~pnllnvesligalor Preston McGrain, Head and Ass~slarilSlate Geolog~si John K H~ell.Geologtsl l Gariand R Dever. Jr.. Geologisl IV Bennie D Perry, Laboratory Technic~anA Robert D Trace. Geologisi Ill. Prlricelon Oflice CONTENTS Page Abstract ..................................................................... 1 Introduction .................................................................. 1 Central Kentucky Mineral District ................................................... 3 Geologicsetting .............................................................. 3 Barite mineralization ........................................................... 5 Description of occurrences of mineral deposits ........................................9 AndersonCounty ........................................................... 9 Bourboncounty ............................................................ 9 BoyleCounty ............................................................. 10 ClarkCounty ............................................................. 13 FayetteCounty ............................................................ 15 FranklinCounty ........................................................... 18 GarrardCounty ............................................................ 18 HarrisonCounty ........................................................... 19 Henrycounty ............................................................. 20 Jessaminecounty .......................................................... 21 LincolnCounty ............................................................22 Madisoncounty ........................................................... 23 Mercercounty ............................................................24 Owencounty ............................................................. 26 ScottCounty .............................................................. 26 Woodfordcounty .......................................................... 27 Miscellaneous occurrences in south-central Kentucky ...................................29 Otheroccurrences ............................................................. 31 Beddeddeposits ............................................................. 31 Geodes, nodules, and concretions................................................ 34 Western Kentucky Fluorspar District ................................................34 Geologicsetting ............................................................. 34 Baritedeposits ..............................................................36 Description of occurrences of mineral deposits .......................................38 CaldwellCounty ...........................................................39 CrittendenCounty .........................................................40 Livingstoncounty ..........................................................46 Other western Kentucky deposits ..................................................49 Unioncounty ...............................................................49 Summary .................................................................... 51 Selectedreferences............................................................. 51 ILLUSTRATIONS Plate Page 1. Location of barite veins in central Kentucky ..................................In pocket Figure 1. Map of Kentucky showing Central and Western Kentucky Mineral Districts and major structural features ......................................................2 2 . Lexington Fault System along U.S. Highway 68 Bypass, north of Paris. Bourbon County .....5 3 . Generalized stratigraphic column of exposed rocks in the Central Kentucky Mineral District ....6 4 . Barite and calcite veinlets, part of Paris and Marsh Veins north of Paris. Bourbon County .....................................................11
Recommended publications
  • Paralaurionite Pbcl(OH) C 2001-2005 Mineral Data Publishing, Version 1
    Paralaurionite PbCl(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals are thin to thick tabular k{100}, or elongated along [001], to 3 cm; {100} is usually dominant, but may show many other forms. Twinning: Almost all crystals are twinned by contact on {100}. Physical Properties: Cleavage: {001}, perfect. Tenacity: Flexible, due to twin gliding, but not elastic. Hardness = Soft. D(meas.) = 6.05–6.15 D(calc.) = 6.28 Optical Properties: Transparent to translucent. Color: Colorless, white, pale greenish, yellowish, yellow-orange, rarely violet; colorless in transmitted light. Luster: Subadamantine. Optical Class: Biaxial (–). Pleochroism: Noted in violet material. Orientation: Y = b; Z ∧ c =25◦. Dispersion: r< v,strong. Absorption: Y > X = Z. α = 2.05(1) β = 2.15(1) γ = 2.20(1) 2V(meas.) = Medium to large. Cell Data: Space Group: C2/m. a = 10.865(4) b = 4.006(2) c = 7.233(3) β = 117.24(4)◦ Z=4 X-ray Powder Pattern: Laurium, Greece. 5.14 (10), 3.21 (10), 2.51 (9), 2.98 (7), 3.49 (6), 2.44 (6), 2.01 (6) Chemistry: (1) (2) (3) Pb 78.1 77.75 79.80 O [3.6] 6.00 3.08 Cl 14.9 12.84 13.65 H2O 3.4 3.51 3.47 insol. 0.09 Total [100.0] 100.19 100.00 (1) Laurium, Greece. (2) Tiger, Arizona, USA. (3) PbCl(OH). Polymorphism & Series: Dimorphous with laurionite. Occurrence: A secondary mineral formed through alteration of lead-bearing slag by sea water or in hydrothermal polymetallic mineral deposits.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Minerals and Mineral Products in Our Bedroom Bed Hematite
    Minerals and Mineral Products in our Bedroom Make-Up Kit Muscovite Bed Talc Hematite: hinges, handles, Mica mattress springs Hematite: for color Chromite: chrome plating Bismuth Radio Barite Copper: wiring Plastic Pail Quartz: clock Mica Gold: connections Cassiterite: solder Toilet Bowl / Tub Closet Feldspar: porcelain Chromite: chrome plating Pyrolusite: coloring Hematite: hinges, handles (steel) Chromite: plumbing fixtures Quartz : mirror on door Copper: tubing Desk Toothpaste Hematite: hinges, handles (steel) Apatite: teeth Chromite: chrome plating Fluorite: toothpaste Mirror Rutile: to color false Hematite: handle, frame teeth yellow Chromite: plating Gold: fillings Gold: plating Cinnabar: fillings Quartz: mirror Towels Table Lamp Sphalerite: dyes Brass (an alloy of copper and Chromite: dyes zinc): base Quartz: bulb Water Pipe/Faucet/Shower bulb Wolframite: lamp filament Brass Copper: wiring Iron Nickel Minerals and Mineral Products in our Bedroom Chrome: stainless steel Bathroom Cleaner Department of Environment and Natural Resources Borax: abrasive, cleaner, and antiseptic MINES AND GEOSCIENCES BUREAU Deodorant Spray Can Cassiterite Chromite Copper Carpet Quartz Sphalerite: dyes Telephone Chromite: dyes Drinking Glasses Copper: wiring Sulfur: foam padding Quartz Chromite: plating Gold: red color Clock Silver: electronics Pentlandite: spring Graphite: batteries Refrigerator Quartz: glass, time keeper Hematite Television Chromite: stainless steel Chromite: plating Computer Galena Wolframite: monitor Wolframite: monitor Copper Copper:
    [Show full text]
  • Structure and Mineralization of Precambrian Rocks in the Galena-Roub Aix District, Black Hills, South Dakota
    Structure and Mineralization of Precambrian Rocks in the \ Galena-Roubaix District, Black Hills, South Dakota ( By R. W. BAYLEY » CONTRIBUTIONS TO ECONOMIC GEOLOGY V ' GEOLOGICAL SURVEY BULLETIN 1312-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 55 cents (paper cover) CONTENTS Page Abstract_ ____-_-_----_-----__--_-----_--_--.. El Introduction _________________________________ 1 Field methods_______-_____-_____-_____-__--_ 2 General geology.___-__--__-_--__-_--___._-_--_. 3 Stratigraphy. ___________________---__--__-__-.. 4 Metabasalt and chert.______-__-__-_____-_. 4 Graphitic schist and cherty ferruginous schist. 5 Metagraywacke, schist, and slate_ ___________ 6 Structure. ___________.-______-_-__-_-_-_-___-. 6 Distribution of gold. 7 Diamond drilling. __ 9 Magnetic survey. __ 10 Summary________ 14 References. -. ______ 15 ILLUSTEATIONS Page PLATE 1. Geologic map of the Galena-Roubaix district, Lawrence County, Black Hills, South Dakota.________________ In pocket FIGURE 1. Generalized geologic map of the northern Black Hills____-___ E2 2. Magnetic survey in the vicinity of U.S. Geological Survey diamond-drill hole 1__________________________________ 13 TABLE Page TABLIS 1. Results of core-sample analyses, U.S. Geological Survey diamond-drill hole 1, Galena-Roubaix district.____________ Ell ra CONTRIBUTIONS TO ECONOMIC GEOLOGY STRUCTURE AND MINERALIZATION OF PRECAMBRIAN ROCKS IN THE GALENA-ROUB AIX DISTRICT, BLACK HILLS, SOUTH DAKOTA ByK.W.BAYLEY ABSTRACT The Galena-Roubaix district is underlain chiefly by tightly folded and mod­ erately metamorphosed sedimentary and volcanic rocks of Precambrian age.
    [Show full text]
  • Oil Shale, Part II: Geology and Mineralogy of the Oil Shales of the Green River Formation, Colorado, Utah and Wyoming
    Article Oil shale, part II: geology and mineralogy of the oil shales of the Green River formation, Colorado, Utah and Wyoming JAFFE, Felice Reference JAFFE, Felice. Oil shale, part II: geology and mineralogy of the oil shales of the Green River formation, Colorado, Utah and Wyoming. Colorado School of Mines Mineral Industries Bulletin, 1962, vol. 5, no. 3, p. 1-16 Available at: http://archive-ouverte.unige.ch/unige:152772 Disclaimer: layout of this document may differ from the published version. 1 / 1 b ~L~ ~· () ~~ ,~Ov. (i) ~ COLORADO SCHOOL OF MIN~JT\-:-~----~1 Mi n e r a I/I nd u s t r, ie s B.u 11 e.t i n The Colorado School of Mines Mineral Industries Bulletin is published every other month by the Colorado School of Mines Research Foundation to inform those interested in the mineral industry regarding the elements of the geology and mineral resources, mining operations, metal markets, production statistics, economics, and other aspects of the mineral industry. This publication may be obtained for a yearly subscription charge af $1.00 for the six issues pub- lished from July through May of the following year. Past issues still in print may be had for 25c each. Address your order to the Department of Publica- tions, Colorado School af Mines, Golden, Colorado. Entered as second class matter at the Post Office at Golden, Colorado, under Act of Congress, July 16, 1894. Copyright 1962 by The Colorado School of Mines. All rights reserved. This publication or any part of it may not be reproduced in any form without written permission of the Colorado School af Mines.
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • Selective Separation of Chalcopyrite from Galena Using a Green Reagent Scheme
    minerals Article Selective Separation of Chalcopyrite from Galena Using a Green Reagent Scheme Kaile Zhao 1,2,3, Chao Ma 1,4, Guohua Gu 1,* and Zhiyong Gao 1,* 1 School of Minerals Processing and Bio-Engineering, Central South University, Changsha 410083, China; [email protected] (K.Z.); [email protected] (C.M.) 2 State Key Laboratory of Mineral Processing, Beijing 100162, China 3 Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China 4 Hunan Research Academy of Environmental Sciences, Changsha 410004, China * Correspondence: [email protected] (G.G.); [email protected] (Z.G.) Abstract: The study of the depression effect of non-toxic depressants on the flotation separation of chalcopyrite from galena is of great importance for both industrial applications and theoretical research. The mixed depressant (DFinal) of four common inhibitors—sodium carboxymethyl cellulose, sodium silicate, sodium sulfite, and zinc sulfate—exhibited high selectivity during the separation of chalcopyrite from galena. Flotation tests on an industrial copper–lead bulk concentrate showed that using this depressant mixture can achieve highly efficient separation of chalcopyrite from galena at the natural pH of the pulp. Copper and lead concentrates were produced at grades of 21.88% (Cu) and 75.53% (Pb), with recoveries of 89.07% (Cu) and 98.26% (Pb). This showed a similar performance of DFinal with dichromate, which is a depressant that is widely used in industry, but without the environmental risks or the need for pH control. Zeta potential and Fourier transform infrared (FT-IR) results showed that interaction between the surface of the chalcopyrite and the mixed depressant Citation: Zhao, K.; Ma, C.; Gu, G.; was prevented by pre-treatment with a composite thiophosphate collector (CSU11), while the mixed Gao, Z.
    [Show full text]
  • Selective Flotation of Witherite from Calcite Using Potassium Chromate As a Depressant
    Physicochem. Probl. Miner. Process., 55(2), 2019, 565-574 Physicochemical Problems of Mineral Processing ISSN 1643-1049 http://www.journalssystem.com/ppmp © Wroclaw University of Science and Technology Received May 31, 2018; reviewed; accepted September 2, 2018 Selective flotation of witherite from calcite using potassium chromate as a depressant Yangshuai Qiu 1, Lingyan Zhang 1,2, Xuan Jiao 1, Junfang Guan 1,2, Ye Li 1,2, Yupeng Qian 1,2 1 School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China 2 Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China Corresponding author: [email protected] (Lingyan Zhang) Abstract: Witherite has been widely used as an industrial and environmental source of barium, with calcite being the primary associated carbonate mineral. However, few studies have been conducted to effectively concentrate witherite from barium ores. In this work, with the treatment of potassium chromate (K2CrO4) and sodium oleate (NaOL), witherite was selectively separated from calcite through selective flotation at different pH conditions. In addition, contact angle, Zeta potential, adsorption and X-ray photoelectron spectroscopy measurements were performed to characterize the separation mechanisms. The results demonstrated that NaOL had a strong collecting ability for both witherite and calcite; nevertheless, witherite could be effectively selected from calcite with the highest recovery at pH 9 in the presence of K2CrO4. From the XPS measurements, NaOL and K2CrO4 were found to be primarily attached to the surfaces of witherite and calcite through chemisorption. The presence of K2CrO4 on the surface of calcite adversely influenced the NaOL adsorption, which could make the flotation separation efficient and successful.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Pb2+ Uptake by Magnesite: the Competition Between Thermodynamic Driving Force and Reaction Kinetics
    minerals Article Pb2+ Uptake by Magnesite: The Competition between Thermodynamic Driving Force and Reaction Kinetics Fulvio Di Lorenzo 1,* , Tobias Arnold 1 and Sergey V. Churakov 1,2 1 Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, CH-3012 Bern, Switzerland; [email protected] (T.A.); [email protected] (S.V.C.) 2 Laboratory for Waste Management, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232 Villigen, Switzerland * Correspondence: [email protected] Abstract: The thermodynamic properties of carbonate minerals suggest a possibility for the use of the abundant materials (e.g., magnesite) for removing harmful divalent heavy metals (e.g., Pb2+). Despite the favourable thermodynamic condition for such transformation, batch experiments performed in this work indicate that the kinetic of the magnesite dissolution at room temperature is very slow. II Another set of co-precipitation experiments from homogenous solution in the Mg-Pb -CO2-H2O system reveal that the solids formed can be grouped into two categories depending on the Pb/Mg ratio. The atomic ratio Pb/Mg is about 1 and 10 in the Mg-rich and Pb-rich phases, respectively. Both phases show a significant enrichment in Pb if compared with the initial stoichiometry of the aqueous solutions (Pb/Mg initial = 1 × 10−2 − 1 × 10−4). Finally, the growth of {10.4} magnesite surfaces in the absence and in the presence of Pb2+ was studied by in situ atomic force microscopy (AFM) measurements. In the presence of the foreign ion, a ten-fold increase in the spreading rate of the obtuse steps was observed.
    [Show full text]
  • GEOLOGIC SETTING and GENETIC INTERPRETATION of the BOQUIRA Pb-Zn DEPOSITS, BAHIA STATE, BRAZIL
    Revista Brasileira de Geociências 12(1-3):.414-425, Marv-get., 1982 - São Paulo GEOLOGIC SETTING AND GENETIC INTERPRETATION OF THE BOQUIRA Pb-Zn DEPOSITS, BAHIA STATE, BRAZIL ILSON O. CARVALHO·, HALF ZANTOp·· and JOAQUIM R.F. TORQUATO··· AB8TRACT The stratabound~straflform:Pb~Zn-AgMCd sulfide deposits of Boquira, located ln south-central Bahia State, occur in metamorphic rocks ofthe Archean Boquira Formation. This formation is composed ofaltered volcanic rocks, schists, quartzites, iron formation, and dolomitic marbles which are the metamorphiclequivalents of intermediate to acidic volcanic rocks, volcani­ clastic sediments, chert and iron-rlch chemical sediments. These rocks were intruded by granitic magmas in the late Proterozoic time. The massive to semimassive ore lenscs are conformably enclosed in the silicate facies of lhe Contendas-Boquira Member. The primary ore is composed of galena and sphalerite in a gangue of magnetite, maghemite, martite, and minor pyrite, pyrrhotite, chalcopyrite, quartz and amphi­ boles. Thelassociation of the iron formation with volcanic rocks suggests that it is of Algoman type, and the conformable relationships between the iron formation and thc sulfide lemes suggest that the 'sulfides are also volcanic exhalative. ln addition, isotcpic analyses of carbonate suggest a marine depositional environment ar the vicinities of subaqueous centers of discharge of hydro­ thermal brines. INTRODUCTION TheBoquiraPb-ZnDistrictissituated The contact between the B.F. and the basement is not sharp in lhe south-central area of Bahia State, about 450km west and it is inarked by transitional rock types, and diffused of the city of Salvador. Its area is about 170 km' localized metasomatic effects. The metasomatism appears caused between coordinates 12'OO'-13'15'S and 42'30'-43'W (Fig.
    [Show full text]