Median U–Turn Intersection Informational Guide

Total Page:16

File Type:pdf, Size:1020Kb

Median U–Turn Intersection Informational Guide MEDIAN U-TURN INTERSECTION Informational Guide August 2014 Median U-Turn Informational Guide FOREWORD The Federal Highway Administration (FHWA) Every Day Counts (EDC) initiative is designed to identify and deploy innovation aimed at reducing project delivery time, enhancing safety and protecting the environment. In 2012, FHWA chose Intersection & Interchange Geometrics (IIG) to feature as one of the innovative technologies in EDC-2. Specifically, IIG consists of a family of alternative intersection designs that improve intersection safety while also reducing delay, and at lower cost and with fewer impacts than comparable traditional solutions. As part of the effort to mainstream these intersections, FHWA has produced a series of guides to help transportation professionals routinely consider and implement these designs. Concurrent with this Median U-turn (MUT) Informational Guide, FHWA developed and published guides for three other designs: Restricted Crossing U-turn (RCUT), Displaced Left Turn (DLT), and Diverging Diamond Interchange (DDI). These guides represent summaries of the current state of knowledge and practice, and are intended to inform project planning, scoping, design and implementation decisions. An electronic version of this document is available on the Office of Safety website at http://safety.fhwa.dot.gov/. Additionally, limited quantities of hard copies are available from the Report Center; inquiries may be directed to [email protected] or 814-239-1160. Michael S. Griffith Director Office of Safety Technologies Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Median U-Turn Informational Guide Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-SA-14-069 4. Title and Subtitle 5. Report Date Median U-Turn Informational Guide August 2014 6. Performing Organization Code 7. Authors 8. Performing Organization Report No. Jonathan Reid, Larry Sutherland, Parsons-Brinckerhoff; Brian Ray, Andy Daleiden, Pete Jenior, Julia Knudsen, Kittelson & Associates, Inc. Project 13517 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Kittelson & Associates, Inc. 610 SW Alder Street, Suite 700 11. Contract or Grant No. Portland, OR 97205 TO DTFH61-00023-T-13002 12. Sponsoring Agency Name and Address 13. Type of Report and Period Technical Report U.S. Department of Transportation Informational Report Federal Highway Administration Office of Safety September 2013 to August 2014 1200 New Jersey Ave., SE Washington, DC 20590 14. Sponsoring Agency Code FHWA 15. Supplementary Notes Jeffrey Shaw ([email protected]), Office of Safety Technologies (http://safety.fhwa.dot.gov/), served as the Technical Manager for the Federal Highway Administration (FHWA). The following FHWA staff contributed as technical working group members, reviewers and/or provided input or feedback to the project at various stages: Joe Bared, Mark Doctor, Brian Fouch, Elizabeth Hilton, Jim McCarthy, George Merritt, Will Stein, Jim Sturrock and Wei Zhang. 16. Abstract This document provides information and guidance on Median U-Turn (MUT) intersections, resulting in designs suitable for a variety of typical conditions commonly found in the United States. To the extent possible, the guide provides information on the wide array of potential users as it relates to the intersection form. This guide provides general information, planning techniques, evaluation procedures for assessing safety and operational performance, design guidelines, and principles to be considered for selecting and designing MUT intersections. 17. Key Words 18. Distribution Statement MUT, Median U-Turn, Indirect Left, Michigan Left, Alternative intersections, No restrictions. Alternative interchanges, Innovative Intersections 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 148 Form DOT F 1700.7 (8-72) Reproduction of completed pages authorized i Median U-Turn Informational Guide Sl* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO Sl UNITS Symbol When You Know Multiply By To Find Symbol LENGTH in inches 25.4 millimeters mm ft feet 0.305 meters m yd yards 0.914 meters m mi miles 1.61 kilometers km AREA in2 square inches 645.2 square millimeters mm2 (!' square feet 0.093 square meters m2 yd2 square yard 0.836 square meters m2 ac acres 0.405 hectares ha mi2 square miles 2.59 square kilometers km2 VOLUME floz fluid ounces 29.57 milliliters ml gal gallons 3.785 liters L ft' cubic feet 0.028 cubic meters m' yd' cubic yards 0.765 cubic meters m' NOTE: volumes greater than 1000 L shall be shown in m' MASS oz ounces 28.35 grams g lb pounds 0.454 kilograms kg T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg(or"r') TEMPERATURE (exact degrees) OF Fahrenheit 5 (F-32)/9 Celsius oc or (F-32)/1.8 ILLUMINATION fc foot-candles 10.76 lux lx fl foot-Lamberts 3.426 candela/m2 cd/m2 FORCE and PRESSURE or STRESS lbf poundforce 4.45 newtons N lbf/in2 poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM Sl UNITS Symbol When You Know Multiply By To Find Symbol LENGTH mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.621 miles mi AREA mm2 square millimeters 0.0016 square inches in2 m2 square meters 10.764 square feet ft2 m2 square meters 1.195 square yards yd2 ha hectares 2.47 acres ac km2 square kilometers 0.386 square miles mi2 VOLUME ml millilrters 0.034 fluid ounces fl oz L lrters 0.264 gallons gal m' cubic meters 35.314 cubic feet ft' m' cubic meters 1.307 cubic yards yd' MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or''f') megagrams (or "metric ton") 1.103 shorttons(20001b) T TEMPERATURE (exact degrees) oc Celsius 1.8C+32 Fahrenheit OF ILLUMINATION lx lux 0.0929 foot-candles fc cd/m2 candela/m2 0.2919 foot-Lamberts fl FORCE and PRESSURE or STRESS N newtons 0.225 poundforce lbf kPa kilopascals 0.1 45 poundforce per square inch lbffln2 ·s 1is the symbol for the International System of U n~s. Appropriate rounding should be made to comply w~ Section 4 of ASTM E380. (Revised March 2003) ii Median U-Turn Informational Guide TABLE OF CONTENTS CHAPTER 1— INTRODUCTION ............................................................................................. 1 OVERVIEW OF ALTERNATIVE INTERSECTIONS AND INTERCHANGES ................... 1 INTERSECTION CONTROL EVALUATIONS AND CONSIDERATIONS ......................... 1 ORGANIZATION OF THE GUIDELINES .............................................................................. 2 SCOPE OF THE GUIDE ............................................................................................................ 3 MUT INTERSECTION OVERVIEW ........................................................................................ 3 APPLICATION .......................................................................................................................... 7 RESOURCE DOCUMENTS .................................................................................................... 13 CHAPTER 2— POLICY AND PLANNING ........................................................................... 15 PLANNING CONSIDERATIONS FOR ALTERNATIVE INTERSECTIONS AND INTERCHANGES .................................................................................................................... 15 STAKEHOLDER OUTREACH ............................................................................................... 18 POLICY CONSIDERATIONS ................................................................................................ 21 PLANNING CONSIDERATIONS .......................................................................................... 21 PLANNING CHALLENGES ................................................................................................... 22 PROJECT PERFORMANCE CONSIDERATIONS ............................................................... 23 PROJECT DEVELOPMENT PROCESS ................................................................................. 24 SUMMARY OF MUT ADVANTAGES AND DISADVANTAGES ..................................... 26 CHAPTER 3— MULTIMODAL CONSIDERATIONS ......................................................... 28 DESIGN PRINCIPLES AND APPROACH ............................................................................ 29 PEDESTRIANS ........................................................................................................................ 29 BICYCLISTS ............................................................................................................................ 34 TRANSIT
Recommended publications
  • Fen Causeway
    Fen Causeway An important vehicular route which crosses the attractive rural spaces of Coe Fen and Sheep’s Green with views back towards the city. Fen Causeway was built in as one of the main routes the 1920s to link Newnham around Cambridge, but the village with Trumpington negative effect of this traffic Road and to provide access is mitigated by the pastural to the south of the city. Its setting and the views of the construction was the subject River Cam with the historic of fierce local opposition city centre beyond. at the time. The road was built on the line of Coe Fen Lane, which joined the footpaths that crossed Coe Fen and Sheep’s Green. Today the road is very busy Fen Causeway SIGNIFICANCE - SIGNIFICANT General Overview At its eastern end Fen Causeway passes between the large properties of the Leys School to the south and the Royal Cambridge Hotel and University Department of Engineering to the north. Although the hotel is built up against the pavement, the car parks to the rear provide a large open space, whilst the school and engineering department stand back from the road behind high walls. The setback makes the street a light space, although the high buildings to either side channel views along the street in both directions. The grounds on either side provide greenery that softens the streetscene. The Royal Cambridge Hotel North House of the Leys School provides architectural interest as part of the late Victorian Methodist School complex, built in red brick with exuberant stone and brick detailing which provides a strong vertical emphasis.
    [Show full text]
  • Evaluation of Green Colored Bicycle Lanes in Florida
    Florida Department of Transportation Evaluation of Green Colored Bicycle Lanes in Florida FDOT Office State Materials Office Report Number FL/DOT/SMO 17-581 Authors Edward Offei Guangming Wang Charles Holzschuher Date of Publication April 2017 Table of Contents Table of Contents ............................................................................................................................. i List of Figures ................................................................................................................................. ii List of Tables .................................................................................................................................. ii EXECUTIVE SUMMARY ........................................................................................................... iii INTRODUCTION .......................................................................................................................... 1 Background ..................................................................................................................................... 1 OBJECTIVE ................................................................................................................................... 3 TEST EQUIPMENT ....................................................................................................................... 4 DYNAMIC FRICTION TESTER (DFT) ................................................................................... 4 CIRCULAR TRACK METER (CTM) ......................................................................................
    [Show full text]
  • SIMULATION of DIFFERENT INTERSECTION DESIGN for IMPROVING TRAFFIC FLOW with FACTORS CONSIDERING LOCATION, POPULATION and DRIVER EXPECTANCY Sourabh Kumar Singh Dr
    Science, Technology and Development ISSN : 0950-0707 SIMULATION OF DIFFERENT INTERSECTION DESIGN FOR IMPROVING TRAFFIC FLOW WITH FACTORS CONSIDERING LOCATION, POPULATION AND DRIVER EXPECTANCY Sourabh Kumar Singh Dr. Anil kunte Associate Professor, Research Scholar, Associate Professor, Department of Civil Department of Civil Department of Civil Engineering Engineering, Shri JJT Engineering, Shri JJT Noida International University University University Dr. Paritosh Srivastava Abstract: In today’s economic growth the vehicular traffic is increasing day by day, which leads to failure of intersections before their time period. To increase the efficiency of these failed intersections the engineers added lanes to the existing major and minor roads, but this method do not give results which it used to deliver in the past, hence other methods were adopted. So to increase the efficiency and fulfil the criteria for successful intersection ,to cape with it several intersection are designed which are unconventional in nature like jug handle, bow tie, continuous flow intersection and median u turn which are very effective in increasing green time on highway and minor roads. The software used in this study is Auto- cad for planning and drawing purpose which can be used in sim-traffic software which will be used for simulation purpose of the traffic flow on different designs of intersections. The factors which are considered in this study are -location of town centre, population of the zone and driver expectancy. The final conclusion of this study is that continuous flow intersection provides the best results when the traffic is increased. The construction cost is least in median u turn and giving maximum result than all other intersections.
    [Show full text]
  • City Maintained Street Inventory
    City Maintained Streets Inventory DATE APPROX. AVG. STREET NAME ACCEPTED BEGINNING AT ENDING AT LENGTH WIDTH ACADEMYText0: ST Text6: HENDERSONVLText8: RD BROOKSHIREText10: ST T0.13 Tex20 ACADEMYText0: ST EXT Text6: FERNText8: ST MARIETTAText10: ST T0.06 Tex17 ACTONText0: WOODS RD Text6:9/1/1994 ACTONText8: CIRCLE DEADText10: END T0.24 Tex19 ADAMSText0: HILL RD Text6: BINGHAMText8: RD LOUISANAText10: AVE T0.17 Tex18 ADAMSText0: ST Text6: BARTLETText8: ST CHOCTAWText10: ST T0.16 Tex27 ADAMSWOODText0: RD Text6: CARIBOUText8: RD ENDText10: OF PAVEMENT T0.16 Tex26 AIKENText0: ALLEY Text6: TACOMAText8: CIR WESTOVERText10: ALLEY T0.05 Tex12 ALABAMAText0: AVE Text6: HANOVERText8: ST SWANNANOAText10: AVE T0.33 Tex24 ALBEMARLEText0: PL Text6: BAIRDText8: ST ENDText10: MAINT T0.09 Tex18 ALBEMARLEText0: RD Text6: BAIRDText8: ST ORCHARDText10: RD T0.2 Tex20 ALCLAREText0: CT Text6: ENDText8: C&G ENDText10: PVMT T0.06 Tex22 ALCLAREText0: DR Text6: CHANGEText8: IN WIDTH ENDText10: C&G T0.17 Tex18 ALCLAREText0: DR Text6: SAREVAText8: AVE CHANGEText10: IN WIDTH T0.18 Tex26 ALEXANDERText0: DR Text6: ARDIMONText8: PK WINDSWEPTText10: DR T0.37 Tex24 ALEXANDERText0: DR Text6: MARTINText8: LUTHER KING WEAVERText10: ST T0.02 Tex33 ALEXANDERText0: DR Text6: CURVEText8: ST ARDMIONText10: PK T0.42 Tex24 ALLENText0: AVE 0Text6:/18/1988 U.S.Text8: 25 ENDText10: PAV'T T0.23 Tex19 ALLENText0: ST Text6: STATEText8: ST HAYWOODText10: RD T0.19 Tex23 ALLESARNText0: RD Text6: ELKWOODText8: AVE ENDText10: PVMT T0.11 Tex22 ALLIANCEText0: CT 4Text6:/14/2009 RIDGEFIELDText8:
    [Show full text]
  • High Occupancy Vehicle (HOV) Detection System Testing
    High Occupancy Vehicle (HOV) Detection System Testing Project #: RES2016-05 Final Report Submitted to Tennessee Department of Transportation Principal Investigator (PI) Deo Chimba, PhD., P.E., PTOE. Tennessee State University Phone: 615-963-5430 Email: [email protected] Co-Principal Investigator (Co-PI) Janey Camp, PhD., P.E., GISP, CFM Vanderbilt University Phone: 615-322-6013 Email: [email protected] July 10, 2018 DISCLAIMER This research was funded through the State Research and Planning (SPR) Program by the Tennessee Department of Transportation and the Federal Highway Administration under RES2016-05: High Occupancy Vehicle (HOV) Detection System Testing. This document is disseminated under the sponsorship of the Tennessee Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Tennessee and the United States Government assume no liability of its contents or use thereof. The contents of this report reflect the views of the author(s), who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Tennessee Department of Transportation or the United States Department of Transportation. ii Technical Report Documentation Page 1. Report No. RES2016-05 2. Government Accession No. 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date: March 2018 High Occupancy Vehicle (HOV) Detection System Testing 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Deo Chimba and Janey Camp TDOT PROJECT # RES2016-05 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Department of Civil and Architectural Engineering; Tennessee State University 11.
    [Show full text]
  • Technical Report Documentation Page Z2
    Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. MDOT Project Manager RC-1554 Jason Firman, P.E. 4. Title and Subtitle 5. Report Date Developing a Congestion Mitigation Toolbox September 30, 2011 6. Performing Organization Code Texas Transportation Institute 7. Author(s) 8. Performing Org. Report No. Jason A. Crawford, P.E.; Todd B. Carlson, AICP; William L. 1554 Eisele, Ph.D., P.E.; and Beverly T. Kuhn, Ph.D., P.E. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas Transportation Institute The Texas A&M University System 11. Contract No. TAMU 3135 2009-0661 College Station, TX 77843-3135 11(a). Authorization No. Z2 12. Sponsoring Agency Name and Address 13. Type of Report & Period Covered Michigan Department of Transportation Final Report 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract Increased traffic congestion is a result of many sources including increasing demand and lagging supply. Responding to increasing congestion, agencies from the federal government to local townships have turned to congestion management, or mitigation. Congestion mitigation is delivered through a variety of techniques. The Michigan Department of Transportation (MDOT) recognized a need to assist state and local agency partners to identify potential congestion mitigation strategies and improve collaboration. Texas Transportation Institute (TTI) researchers developed “A Michigan Toolbox for Mitigating Congestion.” The team conducted several tasks in development of the Toolbox. The TTI team reviewed and consulted previous congestion toolboxes for strategy identification, toolbox elements, and toolbox style. The research team implemented a survey of metropolitan planning organizations throughout the country to gather agency experiences with congestion mitigation strategies.
    [Show full text]
  • Chapter 11.02
    Chapter 11.02 DEFINITIONS1 Sections: 11.02.010 Interpretation. 11.02.015 AASHTO. 11.02.020 Acceptance. 11.02.030 All weather surface. 11.02.040 California Culvert Practice. 11.02.050 Consulting engineer. 11.02.060 Contractor. 11.02.070 County. 11.02.080 County engineer. 11.02.090 Department. 11.02.100 Director. 11.02.110 Driveway. 11.02.120 Driveway, common. 11.02.130 Final map. 11.02.140 May. 11.02.145 MUTCD. 11.02.150 Parcel map. 11.02.160 Road, Arterial. 11.02.170 Road, Collector. 11.02.180 Road, Cul-de-sac. 11.02.190 Road, Local. 11.02.200 Road, Through. 11.02.210 Road, Off-site. 11.02.220 Shall. 11.02.230 Special provisions. 11.02.240 Stabilometer “R” value. 11.02.250 State. 11.02.260 State specifications. 11.02.270 Traffic index. 11.02.280 Traveled way. 11.02.290 Turnaround bulb. 11.02.300 Turnaround, hammerhead. 11.02.310 Turnout. 11.02.320 Uniform surface. 11.02.330 Urban development. 11.02.340 Urban streets. 11.02.010 Interpretation. In this title or the state Highway Transportation Officials. (Ord. 3298 § 2, specifications, the intent and meaning of the terms 2016) that are used shall be as defined in Section I of the state specifications except as specifically noted, 11.02.020 Acceptance. “Acceptance” means the revised or added in this title. Except where formal written acceptance by the Director for work otherwise indicated, all specified or referenced which is completed on roads which are to be distances are measured along the ground.
    [Show full text]
  • American Title a Sociation ~ ~
    OFFICIAL PUBLICATION AMERICAN TITLE A SOCIATION ~ ~ VOUJME XXXVI JUNE, 1957 NUMBER 6 TITLE NEWS Official Publication of THE AMERICAN TITLE ASSOCIATION 3608 Guardian Building-Detroit 26, Michigan Volume XXXVI June, 1957 Number 6 Table of Contents Introduction-The Federal Highway Program ......... ... ................ .. .................... 2 J. E. Sheridan Highway Laws Relating to Controlled Access Roads ..... .. ....... ........... 6 Norman A. Erbe Title Companies and the Expanded Right of Way Problems ...... ............. .. 39 , Daniel W. Rosencrans Arthur A. Anderson Samuel J. Some William A . Thuma INTRODUCTION The Federal Highway Program J. E. SHERIDAN We are extremely grateful to Nor­ veloped its planning sufficiently to man A. Erbe, Attorney General of the show to the satisfaction of the dis­ State of Iowa, for permission to re­ trict engineer the effect of the pro­ print his splendid brief embracing posed construction upon adjace.nt the highway laws of various states property, the treatment of access con­ relating to the control in access roads. trol in the area of Federal acquisi­ Mr. Erbe originally presented this m tion, and that appropriate arrange­ narrative form before the convention ments have been made for mainte­ of the Iowa Title Association in May nance and supervision over the land of this year. As is readily ascertain­ to be acquired and held in the name able, this is the result of a compre­ of the United States pending transfer hensive study of various laws touch· of title and jurisdiction to the State ing on the incidents of highway regu­ or the proper subdivision thereof." lations. Additionally, we are privi­ It is suggested that our members leged to carry the panel discussion bring this quoted portion to the at­ of the American Right of Way Asso­ tention of officers of the Highway ciation Convention held in Chicago, Department and the office of its legal May 16 and 17, dealing with "Title division, plus the Office of the Attor­ Companies and the Expanded Right ney General within the members' ju­ of Way Problems".
    [Show full text]
  • 501 - Fire Apparatus Access Standard
    VENTURA COUNTY FIRE PROTECTION DISTRICT FIRE PREVENTION BUREAU 165 DURLEY AVENUE CAMARILLO, CA 83010 www.vcfd.org Office: 805-388-8738 Fax: 805-388-4356 501 - FIRE APPARATUS ACCESS STANDARD The information contained in this standard is provided solely for the convenience of the reader and was being enforced by the Ventura County Fire Protection District at the time of its publication. The District reserves the right to make changes and improvements to this standard as and when required by law, or otherwise, at any time. The District’s current standards will be posted and made available for downloading by the public at the following web site: www.vcfd.org Please note that the District assumes no liability for any damages incurred directly or indirectly as a result of any errors, omissions, or discrepancies between this standard and any applicable law. It is the sole responsibility of the person or persons conducting any work pursuant to this standard to ensure their work complies with any and all applicable codes, ordinances, and regulations. Supersedes: VCFPD Standards 14.6.4, 14.6.5, 14.6.6, 14.6.7, 14.6.8, 14.6.9 and 14.6.11 CHAPTER 1 – ADMINISTRATION 1.1 Purpose. The purpose of this standard shall be to provide clarification of requirements and establish and assign an acceptable level of quality and minimum level of mandatory controls to provide and maintain required fire department access to premises in compliance with the Ventura County Fire Code. The provisions of this standard are general in nature and are not intended to over- ride the specific requirements of the Ventura County Fire Apparatus Access Code.
    [Show full text]
  • East Midtown Waterfront Esplanade Community Working Group June 24, 2013
    East Midtown Waterfront Esplanade Community Working Group June 24, 2013 East Midtown Waterfront Esplanade Project : Community Working Group 06/24/13 1 Agenda I. Project Overview a) Project Goals b) Project Considerations c) Progress Update II. Pre-Concept Design a) Design Inspiration b) Community Working Group 1 Meeting Summary c) Responding to Community Aspirations III. Breakout Session IV. Reporting Back V. Project Timeline and Next Steps East Midtown Waterfront Esplanade Project : Community Working Group 06/24/13 2 I Project Overview Site Context East Midtown Waterfront Esplanade Project : Community Working Group 06/24/13 4 Project Overview Contemplated by State legislation in July 2011: . Sponsored by State Assemblymember Brian Kavanagh and State Senator Liz Krueger (locally by Councilmember Daniel Garodnick) Project purpose: . Construct a continuous greenway from East 38th – 60th Street along the East River to create a critical transportation connection and to provide new open space to alleviate chronic shortage in the immediate area East Midtown Waterfront Esplanade Project : Community Working Group 06/24/13 5 Project Goals Provide Critical Transportation Route Achieve major transportation need and policy goal by filling critical gap . East Side of Manhattan lacks dedicated greenway for non-motorized transportation; creating one is a major public policy goal . Improve transportation options for thousands of pedestrians, joggers, rollerbladers and cyclists . Support alternative forms of transportation for New Yorkers and improve air quality Bicyclist on 2nd Ave & 38th Street NYC Bike Map in 2016 East Midtown Waterfront Esplanade Project : Community Working Group 06/24/13 7 Provide Waterfront Access & Open Space Provide waterfront access and new open space for densely populated East Midtown communities .
    [Show full text]
  • Existing Mainline & Streetscape
    EXISTING MAINLINE & STREETSCAPE Features Village of Hillside Village of Westchester Village of Bellwood Village of Broadview Village of Maywood Village of Forest Park Village of Oak Park City of Chicago www.eisenhowerexpressway.com HILLSIDE I-290 MAINLINE I-290 Looking West North Wolf Road I-290 East of Mannheim Road - Retaining Walls Underpass at I-290 - Noise Wall I-290 I-290 Looking West IHB R.R, Crossing I-290 Westbound approaching I-88 Interchange EXISTING MAINLINE AND STREETSCAPE FEATURES EXISTING MAINLINE AND STREETSCAPE FEATURES I-290 Looking West I-290 East side of Mannheim Road Interchange 2 www.eisenhowerexpressway.com CROSS ROADS OTHER FEATURES HILLSIDE Mannheim Road Mannheim Road Bridge, sidewalk and fence over I-290 Hillside Welcome Signage Mannheim Road Mannheim Road Bridge, sidewalk and fence over I-290 Hillside Marker at I-290 Mannheim Road Northbound - Hillside Markers at I-290 EXISTING MAINLINE AND STREETSCAPE FEATURES EXISTING MAINLINE AND STREETSCAPE FEATURES 3 www.eisenhowerexpressway.com WESTCHESTER I-290 MAINLINE I-290 EB CD Road I-290 EB CD Road Entrance I-290 Looking East - Westchester Boulevard Overpass Noise walls along Wedgewood Drive EXISTING MAINLINE AND STREETSCAPE FEATURES EXISTING MAINLINE AND STREETSCAPE FEATURES 4 www.eisenhowerexpressway.com CROSSROADS/FRONTAGE ROADS WESTCHESTER Bellwood Avenue Westchester Boulevard Bridge, sidewalk, wall and fencing over I-290 Looking North towards I-290 overpass Westchester Boulevard Mannheim Road Looking South Looking Southeast EXISTING MAINLINE AND STREETSCAPE FEATURES
    [Show full text]
  • Community Meeting for Mary Avenue Grade Separation, Aug. 10, 2017
    Caltrain Grade Separation Feasibility Study Mary Avenue Railroad Crossing Community Meeting August 10, 2017 Agenda • Meeting format review • Goals and context • Mary Avenue options Feedback • Q and A • Next steps • Adjourn 2 Caltrain Grade Separations Project Goals Improve Safety (LUTE Policy 24, 36, 40, 41, 42, 46) Enhance Reduce Ped/Bike Traffic Delay Access (LUTE Policy 32, 42) (LUTE Policy 24, 33, 36, 41) 4 Project Context 60,000 50,000 40,000 30,000 Average Daily Ridership Daily Average 20,000 76 trains 92 trains 114 trains (2003) (2016) +80-106 HSR (2040) Caltrain Grade Separation – VTA Program Description Sunnyvale has 2 of the 8 at grade crossings VTA criteria include cost efficiency and Complete Streets 6 Screening Alternatives Screening • Establish rail and road criteria Alternatives • Identify existing conditions • Develop cursory design of alternatives • Identify impacts and constraints Impacts • Bring results to community Variants of • Identify feasible alternatives Screening • Develop variants to minimize impacts Alternatives • Engage community for input 7 Initial Screening Alternatives 8 At-grade Railroad Crossing Grade Separated Crossing - Overpass At-grade Railroad Crossing Grade Separated Crossing - Underpass Design Criteria Roadway Railroad Grades 4.75% 1.2% max Design speed 30 - 45 mph 79 mph for shoofly (temp rail) Based on posted speed 110 mph for final condition plus 5 mph Bridge depth 5’ 6.75’ Supporting roadway Supporting railroad Vertical clearance Underpass Overpass 15.5’ over roadway 27’ over railroad Roadway
    [Show full text]