Evolution and Distribution of the Genus My A, and Tertiary Migrations of Mollusca

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Distribution of the Genus My A, and Tertiary Migrations of Mollusca Evolution and Distribution of the Genus My a, and Tertiary Migrations of Mollusca GEOLOGICAL SURVEY PROFESSIONAL PAPER 483-G Evolution and Distribution of the Genus My a, and Tertiary Migrations of Mollusca By F. STEARNS MACNEIL CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 483-G Known first in the early Tertiary of Japan, the genus Mya migrated to western North America, the Arctic Ocean, and to both the European and the American sides of the North Atlantic UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : MacNeil, Francis Stearns, 1909- Evolution and distribution of the genus Mya and Tertiary migrations of Mollusca. Washington, U.S. Govt. Print. Off., 1964. iv. 51 p. illus., map, diagrs. 30 cm. (U.S. Geological Survey. Professional Paper 483-G) Contributions to paleontology. Bibliography: p. 45-47. 1. Mollusks. 2. Paleontology Tertiary. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C , 20402 - Price 65 cents (paper cover) CONTENTS Page Page Abstract. __________________________________________ Gl Phylogeny and distribution of species Continued Introduction _______________________________________ 1 Morphologic characters Continued Migrations of Pacific and Atlantic Ocean mollusks______ 2 Ligament.________-___________---___---____ G21 Biological and temporal aspects of migration.______ 2 Spoon.________-____-_-___-_-_----_ ____ 21 Migration and dispersaL-____________________ 2 Ligamental callus___________________ ___- 22 Migration and ecology.._____________________ 2 Subumbonal solution._______________ ____ 24 Migration and specific variability.____________ 4 Systematic paleontology.__-________--_----__ ____ 25 Migration and evolution.____________________ 5 Genus Mya Linne", 1758________________ ____ 25 Migration and correlation.___________________ 5 Subgenus Arenomya Winckworth, 1930____ ____ 26 Tertiary paleogeography of the Arctic and the boreal Mya (?Arenomya) producta Conrad__ ____ 26 regions._____________________________________ 6 M. (1A.) ezoensis Nagao and Inoue..__ ____ 26 Arctic climate and its effect on organisms__________ 7 M. (?A) kusiroensis Nagao and Inoue. ____ 27 Periods and routes of migration __________________ 8 M. (1A.) grewingki Makiyama________ ____ 27 Phylogeny and distribution of species________________ 10 M. (?A) grewingki haboroensis Fujie__ ____ 28 Identity of Mya japonica Jay-.___________________ 10 M. (?A) dickersoni Clark___________- __._ 28 Mya crassa Grewingk, Mya elegans (Eichwald), and M. (?A) elegans (Eichwald)________ --__ 29 Mya intermedia Dall__________________________ 12 M. (Arenomya) fujiei MacNeil, n. sp__ __._ 30 Ancestry of Mya______________________________ 13 M. (A.) arrosis MacNeil, n. sp________ ____ 31 Indigenous Atlantic species Mya producta Conrad _ 13 M. (A.) japonica Jay________________ _.__ 31 Early Pacific species---__________________________ 13 M. (A.) arenaria Linne.____-----____ ___. 33 Mya arenaria group_____________________________ 14 Subgenus Mya Linne".-_________-----____ ____ 35 Mya elegans group______________________________ 17 Mya (Mya) salmonensis Clark._______ ____ 35 Mya truncata group_____________________________ 18 M. (M.) cuneiformis (Bohm)_________ ____ 35 Morphologic characters._________________________ 20 M. (M.) pseudoarenaria Schlesch_.____ .___ 37 Shell thickness.___________________________ 20 M. (M.) truncata Linne-------------- __._ 38 Shell shape_______________________________ 20 M. (M.) priapus Tilesius-__________ ____ 40 Variability of form._________________________ 20 M. (M.) pullus Sowerby_____________ ____ 42 Sculpture._________________________________ 20 Localities. _______________-__-_-_-_-------_- .___ 43 Pallial line and pallial sinus__________________ 21 Bibliography.______________________________ .___ 45 Muscle scars.______________________________ 21 Index.__________________________________ __._ 49 ILLUSTRATIONS [Plates follow Index] PLATES 1-11. Mya from the 1. Choptank Formation (Maryland), the Poul Creek Formation (Alaska), and the Acila shumardi zone, Popof Island (Alaska). 2. Briones and Neroly Formations (California), Pliocene beds, Chignik Bay (Alaska), Pleistocene beds, St. Paul Island (Alaska), Recent (Alaska). 3. Briones, Cierbo, and Neroly Formations (California), Pleistocene beds, Cape Kruzenstern (Alaska), and Recent (Alaska). 4. Pleistocene beds, Nome (Alaska), and Recent (Japan and Alaska). 5. Briones, Cierbo, Etchegoin, and San Joaquin Formations (California), and the Yorktown Formation (Virginia). 6. Red Crag and Icenian Crag (England), Pleistocene beds, Nome (Alaska), and Recent (Denmark and British Co­ lumbia. 7. Poul Creek and Yakataga Formations (Alaska), middle Miocene beds (Sakhalin and Kodiak Island), Pleistocene beds, Yenisey River (Russia), and Recent (Alaska). 8. Yakataga Formation (Alaska), the Icenian Crag (England), the Clyde Beds (Scotland), Pleistocene beds, Nome (Alaska), and Recent (Alaska). 9. Icenian Crag (England), Pliocene beds, Tugidak Island (Alaska), postglacial beds, Juneau (Alaska), and Recent (Greenland and Alaska). 10. Recent (Kamchatka and Alaska). 11. Red Crag (England), Pleistocene beds, Wingham Island (Alaska), postglacial beds, Kachemak Bay (Alaska), and Recent (Alaska). in IV CONTENTS Page FIGURE 1. Most probable late Tertiary and Quaternary migration routes between eastern Asia and western North America and between the North Pacific Ocean and the North Atlantic Ocean.___________________________________ Gil 2. Diagram showing terminology of parts of spoon. Upper, Mya (Arenomya); lower, Mya (Mya). From Fujie (1957)_.___._-__-_-_-_____________-._____. ___._____._____--.....__._--_--____-_---.----..-_--- 22 3. Phylogeny of myarian subgenera and species, showing distribution of the two types of ligamental callus.______ 23 CONTRIBUTIONS TO PALEONTOLOGY EVOLUTION AND DISTRIBUTION OF THE GENUS MYA, AND TERTIARY MIGRATIONS OF MOLLUSCA By F. STEARNS ABSTRACT Two new species are described: Mya fujiei MacNeil, based on M. japonica oonogai Fujie (1957, pi. 2. figs, la-b) from the Two genera, Mya, a pelecypod, and Neptunea, a gastropod, Takinoue Formation (early middle Miocene) of Hokkaido, were selected as vehicles for a study of late Tertiary to Recent and M. arrosis MacNeil, based on specimens in the collections faunal migrations from the Pacific to the Atlantic Ocean by way of the University of California from the Cierbo Sandstone of the Arctic Ocean because they are mollusks of large size, and (middle late Miocene) of the San Pablo Group, Contra Costa because they have unlike larval stages; Mya has small current- County, Calif. borne pelagic larvae, and Neptunea has large bottom-crawling INTRODUCTION benthonic larvae. This report considers chiefly the genus Mya but also includes a general discussion of Arctic faunal migrations The genus Mya,, by virtue of both its morphological and its bearing on Tertiary paleogeography of the Arctic. Avail­ peculiarities and its heavy commercial harvest, should able evidence suggests that during early Tertiary time the be one of the best understood mollusks. Instead, its Arctic regions either had greatly reduced marine embayments, or they were entirely land. The earliest known marine comparatively few species, comparatively simple evolu­ Tertiary deposits in the high Arctic, found in northern Alaska tion, and comparatively restricted geographical occur­ and Spitzbergen, are of middle or late Miocene age. The rence involve subtleties that evade and confuse pale­ first boreal species of Pacific origin to be found in Atlantic ontologists and malacologists alike. Besides, there are Ocean deposits is in the Yorktown Formation of Virginia. still sizable gaps in our knowledge of phylogenetic The Yorktown Formation is currently assigned to the Pontian (late Miocene) Stage. lines. All known species of the genus Mya are defined and delimited, Numerous attempts have been made to resolve the and an attempt is made to resolve the synonymy of Japanese systematics of Mya,. Until recently the most careful and American and Pacific and Atlantic species. American, studies were by European and American workers Arctic, and European species are illustrated; Japanese species whose main interest was in Atlantic and Arctic have been illustrated elsewhere. The geographical distribution of Mya is treated from an species, and who were dealing literally with the outer­ evolutionary and migrational standpoint. The genus is re­ most fringes of the problem. In the last three decades, stricted to the Northern Hemisphere. Its ancestry is unknown, however, several important studies have been made by but it may stem from temperate or subtropical early Eocene Japanese paleontologists. These studies show con­ forms currently assigned to the genus Sphenia. The earliest clusively that the greater part of the genus evolved in known species of Mya occurs in late Eocene or early Oligocene beds of Japan. One indigenous Atlantic species is known. The East Asia, although its place of origin remains un­ remaining 16 recognizable taxa are indigenous to the North known. It remained for knowledge of the Japanese Pacific. Three, and possibly four, of the Pacific species Tertiary species to be reasonably complete before any migrated subsequently by way of the Arctic Ocean to northern clear picture of the evolution of the genus
Recommended publications
  • Paleoenvironmental Interpretation of Late Glacial and Post
    PALEOENVIRONMENTAL INTERPRETATION OF LATE GLACIAL AND POST- GLACIAL FOSSIL MARINE MOLLUSCS, EUREKA SOUND, CANADIAN ARCTIC ARCHIPELAGO A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Geography University of Saskatchewan Saskatoon By Shanshan Cai © Copyright Shanshan Cai, April 2006. All rights reserved. i PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geography University of Saskatchewan Saskatoon, Saskatchewan S7N 5A5 i ABSTRACT A total of 5065 specimens (5018 valves of bivalve and 47 gastropod shells) have been identified and classified into 27 species from 55 samples collected from raised glaciomarine and estuarine sediments, and glacial tills.
    [Show full text]
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • When the Venerid Clam Tapes Decussatus Is Parasitized by the Protozoan Perkinsus Sp
    DISEASES OF AQUATIC ORGANISMS Published August 15 Dis Aquat Org When the venerid clam Tapes decussatus is parasitized by the protozoan Perkinsus sp. it synthesizes a defensive polypeptide that is closely related to p225 Juan F. Montes, Merce Durfort, Jose Garcia-Valero* Departament de Biologia Cel-lular Animal i Vegetal, Facultat de Biologia. Universitat de Barcelona, Avda. Diagonal, 647, E-08028 Barcelona. Spain ABSTRACT: Molluscs, like other invertebrates, have primitive defense systems. These are based on chemotaxis, recognition and facultative phagocytosis of foreign elements. Previously, we have described one of these systems: a cellular reaction involving infiltrated granulocytes against Perkinsus sp. parasitizing the Manila clam Tapes semidecussatus, in which the parasites are encapsulated by a defensive host product, the polypeptide p225. The aim of this study is to determine the similarities between the defense mechanisms of 2 venerid clams, T semidecussatus and T. decussatus, when they are infected by Perkinsus sp. The hemocytes of both species infiltrate the connective tissue, redifferen- tiate, and ultimately, express and secrete the polypeptide which constitutes the main product of the capsule that surrounds the parasites. The main secretion product of T. decussatus shows a high degree of homology to that of T semidecussatus, since it has a similar electrophoretic mobility and the polypeptide is recognized by the polyclonal serum against p225 from T. semidecussatus, as confirmed by Western blotting and immunocytochemistry. In conclusion, we demonstrate the existence of 2 polypeptides that are closely related at the molecular and functional level, and are specific in the defense of some molluscs against infection by these protozoan parasites.
    [Show full text]
  • Lifespan and Growth of Astarte Borealis (Bivalvia) from Kandalaksha Gulf, White Sea, Russia
    Lifespan and growth of Astarte borealis (Bivalvia) from Kandalaksha Gulf, White Sea, Russia David K. Moss, Donna Surge & Vadim Khaitov Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-018-2290-9 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biology https://doi.org/10.1007/s00300-018-2290-9 ORIGINAL PAPER Lifespan and growth of Astarte borealis (Bivalvia) from Kandalaksha Gulf, White Sea, Russia David K. Moss1 · Donna Surge1 · Vadim Khaitov2,3 Received: 2 October 2017 / Revised: 13 February 2018 / Accepted: 21 February 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Marine bivalves are well known for their impressive lifespans. Like trees, bivalves grow by accretion and record age and size throughout ontogeny in their shell. Bivalves, however, can form growth increments at several diferent periodicities depending on their local environment.
    [Show full text]
  • Performance of the New England Hydraulic Dredge for the Harvest Of'stimpson~Surf Clams
    PERFORMANCE OF THE NEW ENGLAND HYDRAULIC DREDGE FOR THE HARVEST OF'STIMPSON~SURF CLAMS Inv d Experimental Biology Division*. Deparhnent of Fisheries and Oceans Canada Maurice Lamontagne Instihite 850 route de la Mer f O00 Mont-Joli (~uébec) G5H 324 Canadian Industry Report of isheries and Aquatic Sciences 235 ? nadian Industry Report of Fisheries and Aquatic Sciences canaain the ~e?iaIts:Bf ramh and develotrment iradustq fof MkF irnmedia~elar Iutuw1appdkashn. They are da.r.ected pfimarbly tmard indiziduak .h $ha primary and secondary çccrors of the fishing and marine mduaries. ?i,o ratlrMhn k phced on sulbjmt mcta and the series reflects the broad inoemrs and p~2ek5&oh Department d Fisher& and Oceans. aamely. fishiesad aqwticsc+awe~,. .' 1t@u~rr5reprts m. be cimed & full pnsblicatbns. The cornkt citatian aowars . abri the abatracr of each report. Eacb rekl is a&rrxad in Awair %ie.nr& ifid . technical publicatio . Sumber;l-9li e lndustrial Devel- opsnent BranCh. Technical Reports of th. lndiausrrkf ikxelo~mentÉranch. a& - ,Tecknical Reports of the &-sk*an's Servk Branch. kumkrs 62- I tO Giztaisseed as . Dapan~enzof Fishsies and the Em-i~onment.Fisher& and Màrine Service fndustry Reports. The current ysies name kas chmgel ~ithreport number 111. lndwsrr! reports are produc& rqiortdk bur are numkred nationrtlty. Requests .for indi\ idual rqporfs w il1 be fifkd by the issuing~rqblishmentl~tcdon the front cûvw and title page. Out-of-stwk feports-will k svpplied for fw? b'J; commacia~agents. Les rapporis 4 1'indlasrrk am t knmf k résultats des acîivitis de mher&c et de diveloppern-enl qui peuvent &se utiles a I'industrie gour des applications immédiates ou fatures.
    [Show full text]
  • Circular 162. the Soft-Shell Clam
    HE OFT­ iHELL 'LAM UNITED STATES DEPARTMENT 8F THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 162 CONTENTS Page 1 Intr oduc tion. • • • . 2 Natural history • . ~ . 2 Distribution. 3 Taxonomy. · . Anatomy. • • • •• . · . 3 4 Life cycle. • • • • • . • •• Predators, diseases, and parasites . 7 Fishery - methods and management .•••.••• • 9 New England area. • • • • • . • • • • • . .. 9 Chesapeake area . ........... 1 1 Special problem s of paralytic shellfish poisoning and pollution . .............. 13 Summary . .... 14 Acknowledgment s •••• · . 14 Selected bibliography •••••• 15 ABSTRACT Describes the soft- shell cla.1n industry of the Atlantic coast; reviewing past and present economic importance, fishery methods, fishery management programs, and special problems associated with shellfish culture and marketing. Provides a summary of soft- shell clam natural history in- eluding distribution, taxonomy, anatomy, and life cycle. l THE SOFT -SHELL CLAM by Robert W. Hanks Bureau of Commercial Fisheries Biological Labor ator y U.S. Fish and Wildlife Serv i c e Boothbay Harbor, Maine INTRODUCTION for s a lted c l a m s used as bait by cod fishermen on t he G r and Bank. For the next The soft-shell clam, Myaarenaria L., has 2 5 years this was the most important outlet played an important role in the history and for cla ms a nd was a sour ce of wealth to economy of the eastern coast of our country . some coastal communities . Many of the Long before the first explorers reached digg ers e a rne d up t o $10 per day in this our shores, clams were important in the busin ess during October to March, when diet of some American Indian tribes.
    [Show full text]
  • The Impact of Hydraulic Blade Dredging on a Benthic Megafaunal Community in the Clyde Sea Area, Scotland
    Journal of Sea Research 50 (2003) 45–56 www.elsevier.com/locate/seares The impact of hydraulic blade dredging on a benthic megafaunal community in the Clyde Sea area, Scotland C. Hauton*, R.J.A. Atkinson, P.G. Moore University Marine Biological Station Millport (UMBSM), Isle of Cumbrae, Scotland, KA28 0EG, UK Received 4 December 2002; accepted 13 February 2003 Abstract A study was made of the impacts on a benthic megafaunal community of a hydraulic blade dredge fishing for razor clams Ensis spp. within the Clyde Sea area. Damage caused to the target species and the discard collected by the dredge as well as the fauna dislodged by the dredge but left exposed at the surface of the seabed was quantified. The dredge contents and the dislodged fauna were dominated by the burrowing heart urchin Echinocardium cordatum, approximately 60–70% of which survived the fishing process intact. The next most dominant species, the target razor clam species Ensis siliqua and E. arcuatus as well as the common otter shell Lutraria lutraria, did not survive the fishing process as well as E. cordatum, with between 20 and 100% of individuals suffering severe damage in any one dredge haul. Additional experiments were conducted to quantify the reburial capacity of dredged fauna that was returned to the seabed as discard. Approximately 85% of razor clams retained the ability to rapidly rebury into both undredged and dredged sand, as did the majority of those heart urchins Echinocardium cordatum which did not suffer aerial exposure. Individual E. cordatum which were brought to surface in the dredge collecting cage were unable to successfully rebury within three hours of being returned to the seabed.
    [Show full text]
  • Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
    Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Palaeoenvironmental Interpretation of Late Quaternary Marine Molluscan Assemblages, Canadian Arctic Archipelago
    Document generated on 09/25/2021 1:46 a.m. Géographie physique et Quaternaire Palaeoenvironmental Interpretation of Late Quaternary Marine Molluscan Assemblages, Canadian Arctic Archipelago Interprétation paléoenvironnementale des faunes de mollusques marins de l'Archipel arctique canadien, au Quaternaire supérieur. Interpretación paleoambiental de asociaciones marinas de muluscos del Cuaternario Tardío, Archipiélago Ártico Canadiense Sandra Gordillo and Alec E. Aitken Volume 54, Number 3, 2000 Article abstract This study examines neonto- logical and palaeontological data pertaining to URI: https://id.erudit.org/iderudit/005650ar arctic marine molluscs with the goal of reconstructing the palaeoecology of DOI: https://doi.org/10.7202/005650ar Late Quaternary ca. 12-1 ka BP glaciomarine environments in the Canadian Arctic Archipelago. A total of 26 taxa that represent 15 bivalves and 11 See table of contents gastropods were recorded in shell collections recovered from Prince of Wales, Somerset, Devon, Axel Heiberg and Ellesmere islands. In spite of taphonomic bias, the observed fossil faunas bear strong similarities to modern benthic Publisher(s) molluscan faunas inhabiting high latitude continental shelf environments, reflecting the high preservation potential of molluscan taxa in Quaternary Les Presses de l'Université de Montréal marine sediments. The dominance of an arctic-boreal fauna represented by Hiatella arctica, Mya truncata and Astarte borealis is the product of natural ISSN ecological conditions in high arctic glaciomarine environments. Environmental factors controlling the distribution and species composition of the Late 0705-7199 (print) Quaternary molluscan assemblages from this region are discussed. 1492-143X (digital) Explore this journal Cite this article Gordillo, S. & Aitken, A. E. (2000). Palaeoenvironmental Interpretation of Late Quaternary Marine Molluscan Assemblages, Canadian Arctic Archipelago.
    [Show full text]
  • Marine Ecology Progress Series 351:163
    Vol. 351: 163–175, 2007 MARINE ECOLOGY PROGRESS SERIES Published December 6 doi: 10.3354/meps07033 Mar Ecol Prog Ser Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning Pia Norling*, Nils Kautsky Department of Systems Ecology, Stockholm University, 106 91 Stockholm, Sweden ABSTRACT: Habitat-modifying species such as Mytilus edulis strongly impact both community struc- ture and ecosystem functioning through positive or negative interactions with other species and by changing physical and biological conditions. A study of natural patches of mussels showed that C and N content of sediment was higher in mussel patches compared to the surrounding sand community. Species richness and biomass of associated macrofauna and -flora was enhanced even by the pres- ence of single mussels and increased rapidly with patch size up to about 150 cm2, while no change in sediment meiofauna was found. In order to separate the effects of structure and function of M. edulis, a manipulative field experiment was performed with constructed patches of cleaned live mussels or intact empty shells. After 3 mo colonisation, the number of associated species in both treatments approached those in natural mussel patches, indicating that species richness was mainly due to phys- ical structure. Abundance and biomass of associated flora and fauna were higher if live mussels were present because mussel biodeposition and nutrient regeneration supplied limiting resources and increased carrying capacity. Species composition was also affected. Complexity and biodiversity increased with time, especially if Fucus vesiculosus plants established themselves. Measurements of community metabolism showed that the associated community found in mussel patches depends on mussel biodeposition for 24 to 31% of its energy demand.
    [Show full text]
  • Genus Mytilus (Moflusca: Bivalvia)
    Heredity74 (1995)369—375 Received26 May 1994 Chromosomal markers in three species of the genus Mytilus (Moflusca: Bivalvia) A. MARTINEZ-LAGE, A. GONZALEZ-TIZON & J. MENDEZ Departamento de Bio/ogia Ce/u/ar y Molecular, Areade Genética,Universidad de La Coruña, 15071 La Coruña, Spain Theanalysis of C-banding, NOR and fluorochrome staining was carried out in three species of European mussel, Mytilus edulis, M. galloprovincialis and M. trossulus. The results obtained allow us to detect changes in the constitutive heterochromatin within the genus Mytilus. The existence of chromosomal markers permit us to identify and distinguish, at the cytogenetical level, these three types of mussel. Keywords:C-bands,chromosome markers, CMA3 bands, heterochromatin, Mytilus, NORs. along various coastal regions of the British Isles. Subse- Introduction quently, in France, Britain and Ireland, M. galloprovin- Thegenus Mytilus is the subject of an important cialis has been found to be intermixed with M. edulis, controversy about the systematic status of the different producing hybrid forms (Skibinski & Beardmore, forms within it. In this genus, taxonomic studies were 1979). M. trossulus is distributed in the Baltic Sea. In initially developed in order to establish a systematic the Danish straits, M. trossulus is intermixed with M. relationship between M edulis and M. gaioprovincialis edulis (Váinölä & Hvilsom, 1991). and, later, among other forms of mussels. At first, the On the other hand, studies using Mytilus cyto- studies were focused on morphological criteria and genetics have shown that the diploid number is 28 morphometric parameters (internal and external shell chromosomes (Ahmed & Sparks, 1970; Ieyama & characteristics, the anterior adductor muscle features, Inaba, 1974; Thiriot-Quiévreux & Ayraud, 1982; etc.).
    [Show full text]