Membranes and Barriers: Targeted Drug Delivery,” and Details of Those Studies Can Be Found in This Monograph

Total Page:16

File Type:pdf, Size:1020Kb

Membranes and Barriers: Targeted Drug Delivery,” and Details of Those Studies Can Be Found in This Monograph National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Membranes and Barriers: Targeted Drug Delivery U.S. Department of Health and Human Services1 • Public5 Health Service4 • National Institutes of Health Membranes and Barriers: Targeted Drug Delivery Editor: Rao S. Rapaka, Ph.D. NIDA Research Monograph 154 1995 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse Division of Preclinical Research 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGMENT This monograph is based on the papers from a technical review on “Membranes and Barriers: Targeted Drug Delivery” held on September 28-29, 1993. The review meeting was sponsored by the National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company. Trade, proprietary, or company names appearing in this publication are used only because they are considered essential in the context of the studies reported herein. National Institute on Drug Abuse NIH Publication No. 95-3889 Printed 1995 NIDA Research Monographs are indexed in the Index Medicus. They are selectively included in the coverage of American Statistics Index, BioSciences Information Service, Chemical Abstracts, Current Contents, Psychological Abstracts, and Psychopharmacology Abstracts. ii Contents Retrometabolic Approaches to Drug Targeting . 1 Nicholas Bodor Vector-Mediated Delivery of Opioid Peptides to the Brain . 28 Ulrich Bickel and William M. Pardridge Conformationally Constrained Peptide Drugs Targeted at the Blood-Brain Barrier . 47 Thomas P. Davis, Thomas J. Abbruscato, Elizabeth Brownson, and Victor J. Hruby Passive and Facilitative Transport of Nucleobases, Nucleosides, and Oligonucleotides—Application to Antiviral and Other Therapies . 61 Marcus E. Brewster and Nicholas Bodor Oral Peptide Delivery: Improving the Systemic Availability of Small Peptides and Enkephalin Analogs . 86 Hye J. Lee and Gordon L. Amidon The Use of Polymers in the Construction of Controlled-Release Devices . 107 Jorge Heller Pharmacokinetics and Pharmacodynamics of Maternal-Fetal Transport of Drugs of Abuse: A Critical Review . 132 Srikumaran Melethil Placental Permeability for Drugs of Abuse and Their Metabolites . 152 George D. Olsen Pharmacodynamics in the Maternal-Fetal-Placental Unit . 163 Abraham M. Rudolph New Approaches for Drug and Kinetic Analysis in the Maternal-Fetal Unit . 175 George R. Tonn, Ahmad Doroudian, John G. Gordon, Dan W. Rurak, K. Wayne Riggs, Frank S. Abbott, and James E. Axelson iii Maternal-Fetal Pharmacokinetics: Summary and Future Directions . 203 Hazel H. Szeto Technical Issues Concerning Hair Analysis for Drugs of Abuse . 218 Martha R. Harkey Models for Studying the Cellular Processes and Barriers to the Incorporation of Drugs Into Hair . 235 Douglas E. Rollins, Diana G. Wilkins, and Gerald Krueger iv Retrometabolic Approaches to Drug Targeting Nicholas Bodor INTRODUCTION Targeted drug delivery is the most important goal of pharmaceutical research and development. In this context drug targeting is defined in the broadest sense, that is, to optimize a drug’s therapeutic index by strictly localizing its pharmacological activity to the site or organ of action. This is an important distinction from the basic targeting concept, where the specific drug receptor is the target and the objective is to improve fit, affinity, and binding to the specific receptor that ultimately will trigger the pharmacological activity. This distinction is made since the overall distribution of many drug receptors does not follow the various diseases. Actually, most of the time, drug toxicity is receptor related and receptor mediated; thus, improving intrinsic drug affinity and activity, as well as receptor binding, does not improve the therapeutic index. In principle, drug targeting can be achieved by physical, biological, or molecular systems that result in high concentrations of the pharmaco- logically active agent at the pathophysiologically relevant site. If successful, the result of the targeting would be a significant reduction in drug toxicity, reduction of the drug dose, and increased treatment efficacy. All in all, it is evident that with a biologically active agent of reasonable activity at hand, targeting to the site of action should be superior to molecular manipulations aimed at refining the receptor substrate interactions. Successful drug targeting, however, is a very complicated problem. It involves affecting the various distributional and rate processes, as well as sometimes the drug metabolism and disposition, as will be shown. There are a number of important parameters to be considered in designing drug targeting of any kind. These include the nature of biological and cellular membranes, distribution and presence of drug receptors, as well as the enzymes responsible for drug metabolism, time-plasma concentration profiles, and local blood flow. A tremendous amount of work has been concentrated worldwide in the past two decades on the research and development of drugs with improved site-specificity, that is, targeted drug delivery systems. Although the concept of a “magic bullet” has been around for almost 100 years, scientists involved in drug research and discovery simply did not have the basic means and concepts to achieve this elusive goal. The advancement of the drug receptor concept and then specific knowledge about the various receptors suggested that this is the direction that should be taken for drug targeting. However, as mentioned before, the receptors alone, due to their distributional properties, cannot be responsible for selectivity and drug targeting. There were a number of major steps in drug development that activated the field of drug targeting. These approaches can be classified in two major classes: physical-mechanical and biological. In the first class, the concept of controlled and sustained drug release, thus modification of drug concentration-distribution profile by various physical and/or mechanical delivery systems, provided the impetus to attempt drug targeting. The second, the biological type of drug targeting, started with the recognition and the possible use of monoclonal antibodies. Of course, in all these cases of attempted targeting, the active principles were some known drugs. The potential improvement in this direction, modifying drug delivery using the various physical and biological systems, is limited. The selection of the known, marketed drugs in most cases was made considering the best pharmacokinetic (PK)/dynamic profile. Generally, drug researchers selected drugs with an already relatively long duration of action. The improvement, due to controlling drug delivery, thus in general is limited to avoiding high peak concentrations. It should be stressed that research in drug targeting must divert from the classical approaches, that is, to improve some of the known drugs. The design process for drug targeting should be started at a very early stage of the discovery phase. The required properties of a drug that will successfully be involved in the drug targeting, should be different than those of the “classical” drugs. In the foreseeable future, many drugs will be designed with targeting in mind, and the actual new chemical entity will have site specificity and selectivity built into its molecular structure. The pharmaceutical literature of the past 10 to 15 years is very rich in publications on the topic of drug targeting. There are books and proceedings of scientific meetings discussing all the various aspects of this very general and important problem. For example, one review 2 (Tomlison 1987) presented a general approach considering, in a combined form, the disease state and the various delivery parameters including the site of interest, drug retention at the site, duration of the drug effect, the responsiveness of the target tissue, and disposition of the drug. This approach to the problem is very important because in many instances the pathogenesis of the disease was simply ignored in designing drug delivery systems. Developing novel delivery methods, without consideration of disease condition, can lead to meaningless results, and the delivery manipulations will not substantially affect the overall selectivity or efficacy of the drug. The most meaningful classification of drug targeting is mechanism based. Adding one very important class to the two previously mentioned, the three major categories, based on this scheme, can be defined as (1) physical, (2) biological, and (3) chemical (site-specific or targeting systems). The first, physical delivery systems, was reviewed thoroughly in the literature (Friend and
Recommended publications
  • Journal of Controlled Release 161 (2012) 446–460
    Journal of Controlled Release 161 (2012) 446–460 Contents lists available at SciVerse ScienceDirect Journal of Controlled Release journal homepage: www.elsevier.com/locate/jconrel Review Administration, distribution, metabolism and elimination of polymer therapeutics Ela Markovsky, Hemda Baabur-Cohen, Anat Eldar-Boock, Liora Omer, Galia Tiram, Shiran Ferber, Paula Ofek, Dina Polyak, Anna Scomparin, Ronit Satchi-Fainaro ⁎ Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel article info abstract Article history: Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by Received 6 September 2011 protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the Accepted 16 December 2011 drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the Available online 29 December 2011 journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each Keywords: stage of the process will be described, with examples illustrating the different solutions to the challenges Polymer therapeutics Angiogenesis of drug delivery systems in vivo. ADME © 2011 Elsevier B.V. All rights reserved. Biodistribution Angiogenesis-dependent diseases Cancer Contents 1. Introduction .............................................................
    [Show full text]
  • Brain-Targeted Drug Delivery by Manipulating Protein Corona Functions
    ARTICLE https://doi.org/10.1038/s41467-019-11593-z OPEN Brain-targeted drug delivery by manipulating protein corona functions Zui Zhang1,2, Juan Guan1, Zhuxuan Jiang1, Yang Yang1, Jican Liu3, Wei Hua4, Ying Mao4, Cheng Li2, Weiyue Lu2, Jun Qian2 & Changyou Zhan 1,2 Protein corona presents a major obstacle to bench-to-bedside translation of targeted drug delivery systems, severely affecting targeting yields and directing unfavorable biodistribution. 1234567890():,; Corona-mediated targeting provides a new impetus for specific drug delivery by precisely manipulating interaction modes of functional plasma proteins on nano-surface. Here bio- inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins. SP-sLip absorb plasma apolipoproteins A1, E and J, con- sequently exposing receptor-binding domain of apolipoproteins to achieve brain-targeted delivery. Doxorubicin loaded SP-sLip (SP-sLip/DOX) show significant enhancement of brain distribution and anti-brain cancer effect in comparison to doxorubicin loaded plain liposomes. SP-sLip preserve functions of the absorbed human plasma ApoE, and the corona-mediated targeting strategy works in SP modified PLGA nanoparticles. The present study may pave a new avenue to facilitate clinical translation of targeted drug delivery systems. 1 Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 200032 Shanghai, PR China. 2 School of Pharmacy & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 201203 Shanghai, PR China. 3 Department of Pathology, Affiliated Zhongshan Hospital Qingpu Branch, Fudan University, 201700 Shanghai, PR China.
    [Show full text]
  • Pharmacokinetics and Pharmacodynamics Modeling and Simulation Systems to Support the Development and Regulation of Liposomal Drugs
    pharmaceutics Review Pharmacokinetics and Pharmacodynamics Modeling and Simulation Systems to Support the Development and Regulation of Liposomal Drugs Hua He 1,2, Dongfen Yuan 2 , Yun Wu 3 and Yanguang Cao 2,4,* 1 Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; [email protected] 2 Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260, USA; [email protected] 4 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA * Correspondence: [email protected]; Tel.: +1-(919)-966-4040 Received: 30 January 2019; Accepted: 28 February 2019; Published: 7 March 2019 Abstract: Liposomal formulations have been developed to improve the therapeutic index of encapsulated drugs by altering the balance of on- and off-targeted distribution. The improved therapeutic efficacy of liposomal drugs is primarily attributed to enhanced distribution at the sites of action. The targeted distribution of liposomal drugs depends not only on the physicochemical properties of the liposomes, but also on multiple components of the biological system. Pharmacokinetic–pharmacodynamic (PK–PD) modeling has recently emerged as a useful tool with which to assess the impact of formulation- and system-specific factors on the targeted disposition and therapeutic efficacy of liposomal drugs. The use of PK–PD modeling to facilitate the development and regulatory reviews of generic versions of liposomal drugs recently drew the attention of the U.S.
    [Show full text]
  • 1097.Full.Pdf
    1521-009X/47/10/1097–1099$35.00 https://doi.org/10.1124/dmd.119.088708 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 47:1097–1099, October 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Special Section on Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities—Commentary Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities Brooke M. Rock and Robert S. Foti Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.) Received July 10, 2019; accepted July 26, 2019 Downloaded from ABSTRACT The discovery and development of novel pharmaceutical therapies in experimental and analytical tools will become increasingly is rapidly transitioning from a small molecule–dominated focus to evident, both to increase the speed and efficiency of identifying safe a more balanced portfolio consisting of small molecules, mono- and efficacious molecules and simultaneously decreasing our de- clonal antibodies, engineered proteins (modified endogenous pro- pendence on in vivo studies in preclinical species. The research and dmd.aspetjournals.org teins, bispecific antibodies, and fusion proteins), oligonucleotides, commentary included in this special issue will provide researchers, and gene-based therapies. This commentary, and the special issue clinicians, and the patients we serve more options in the ongoing as a whole, aims to highlight
    [Show full text]
  • Title Pharmacokinetic Considerations for Targeted Drug Delivery. Author(S)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Kyoto University Research Information Repository Title Pharmacokinetic considerations for targeted drug delivery. Author(s) Yamashita, Fumiyoshi; Hashida, Mitsuru Citation Advanced drug delivery reviews (2013), 65(1): 139-147 Issue Date 2013-01 URL http://hdl.handle.net/2433/170274 Right © 2013 Published by Elsevier B.V. Type Journal Article Textversion author Kyoto University Submission To: Advanced Drug Delivery Review, 25th Anniversary issue Pharmacokinetic Considerations for Targeted Drug Delivery Fumiyoshi Yamashita1 and Mitsuru Hashida1,2* 1Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan. 2Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan. *Correspondence author info: Phone: 81-75-753-4535 Fax: 81-75-753-4575 E-mail: [email protected] 1 Abstract Drug delivery systems involve technology designed to maximize therapeutic efficacy of drugs by controlling their biodistribution profile. In order to optimize a function of the delivery systems, their biodistribution characteristics should be systematically understood. Pharmacokinetic analysis based on the clearance concepts provides quantitative information of the biodistribution, which can be related to physicochemical properties of the delivery system. Various delivery systems including macromolecular drug conjugates, chemically or genetically modified proteins, and particulate drug carriers have been designed and developed so far. In this article, we review physiological and pharmacokinetic implications of the delivery systems. Keywords: drug delivery system, targeted drug delivery, pharmacokinetics, tissue uptake clearance, macromolecular prodrugs, chemical modified proteins, nanoparticles, liposomes 2 Contents 1.
    [Show full text]
  • Intestinal Targeting of Drugs: Rational Design Approaches and Challenges
    Send Orders of Reprints at [email protected] 776 Current Topics in Medicinal Chemistry, 2013, 13, 776-802 Intestinal Targeting of Drugs: Rational Design Approaches and Challenges Kevin J. Filipski1,*, Manthena V. Varma2, Ayman F. El-Kattan2, Catherine M. Ambler3, Roger B. Ruggeri1, Theunis C. Goosen2 and Kimberly O. Cameron1 1Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development, Cam- bridge, MA, USA; 2Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA; 3Pharmaceutical Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA Abstract: Targeting drugs to the gastrointestinal tract has been and continues to be an active area of research. Gut- targeting is an effective means of increasing the local concentration of active substance at the desired site of action while minimizing concentrations elsewhere in the body that could lead to unwanted side-effects. Several approaches to intestinal targeting exist. Physicochemical property manipulation can drive molecules to large, polar, low absorption space or alter- natively to lipophilic, high clearance space in order to minimize systemic exposure. Design of compounds that are sub- strates for transporters within the gastrointestinal tract, either uptake or efflux, or at the hepato-biliary interface, may help to increase intestinal concentration. Prodrug strategies have been shown to be effective particularly for colon targeting, and several different technology formulation approaches are currently being researched. This review provides examples of various approaches to intestinal targeting, and discusses challenges and areas in need of future scientific advances. Keywords: Drug, Gut, Intestine, Non-systemic, Prodrug, Soft drug, Targeting, Transporter. 1. INTRODUCTION significant distribution into the body.
    [Show full text]
  • Targeted Drug Delivery Systems and Biotechnology Products
    MPH202T Targeted Drug Delivery Systems and Biotechnology Products The recent advances in drug delivery systems basically focuses on smart drug delivery systems which concerns the administration of drug at the right time, right dose and targeted drug delivery with safety and efficacy. These new drug delivery systems led to better patient compliance, also adoption of better therapeutic regimen for patients. Introduction of proteins, peptides, DNA based therapeutics have resulted in advancements in drug delivery systems, thereby deviating from conventional and traditional means like injection and oral ingestion. Liposomes, lipoproteins, monoclonal antibodies, microspheres, microemulsions, etc, have been used as latest drug delivery systems, especially for nasal and pulmonary routes, whereby monoclonal antibodies and liposomes have diagnostic importance, used as biological reagents, used for immunopurification etc. Use of hydrogels, nanoparticles and microencapsulation techniques are a part of the smart drug delivery system. Nanoparticles can be placed in skin, brain or spinal cord and can deliver drugs that range from pain medication to chemotherapy. So, these recent advancements in the drug delivery system have proved to be health improvement techniques for the future because of their association with self-regulation, controlled time drug monitoring system. The ever-evolving genetic basis of disease will continue to provide novel opportunities for the development of new drugs to treat these disorders, particularly in the field of biotechnology. The discovery of recombinant DNA (rDNA) technology and its application to new drug development has revolutionized the biopharmaceutical industry. Previously, the pharmaceutical industry relied on the use of relatively simple small drug molecules to treat disease. Modern molecular techniques have changed the face of new drug development to include larger, more sophisticated and complex drug molecules.
    [Show full text]
  • Carrier Mediated Target Drug Delivery Systems
    International Journal of Pharmacy Teaching & Practices 2013, Vol.4, Issue 3, 701-709. Carrier Mediated Target Drug Delivery Systems: A Novel Approach - (An Overview) * 1 1 2 3 Shweta Pandey , Niraj , M.M. Gupta , Manish Jamini Department of Pharmaceutics, Jaipur College of Pharmacy, Jaipur, Rajasthan-302022, India INTRODUCTION Review Article 1 1 2 At present, no available drug delivery system behave Please cite this paper as: Shweta Pandey , Niraj , M.M. Gupta , ideally achieving all the lofty goals, but sincere Manish Jamini 3. Carrier Mediated Target Drug Delivery Systems: A attempts have been made to achieve them through Novel Approach -(An Overview). IJPTP, 2013, 4(3), 701-709. novel approaches in drug delivery. A number of Corresponding Author: novel drug delivery system has emerged encompassing various routes of administration, to SHWETA PANDEY achieve controlled and targeted drug delivery1. E -mail: [email protected] Targeted drug delivery is a method of delivering Mob no. - 8058750122 medication to a patient in a manner that increases Research scholar, M.Pharm Pharmaceutics, Jaipur college of pharmacy Jaipur (Raj.) – 302022, India the concentration of the medication in some parts of 2 the body relative to others . A number of drug delivery systems are currently under investigation to Abstract circumvent the limitation commonly found in conventional dosage forms and improve the Conventional dosage forms such as tablets, capsules, gels etc. potential of the respective drug. On the other hand, immediately provide drug delivery and it cause fluctuation of there has been a focus on the microenvironment of the cells and their interaction with these new drug level in blood.
    [Show full text]
  • How Computational Chemistry and Drug Delivery Techniques Can Support the Development of New Anticancer Drugs
    molecules Review How Computational Chemistry and Drug Delivery Techniques Can Support the Development of New Anticancer Drugs Mariangela Garofalo 1,* , Giovanni Grazioso 2 , Andrea Cavalli 3,4 and Jacopo Sgrignani 4,* 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy 2 Department of Pharmaceutical Sciences, University of Milano, 20133 Milan, Italy; [email protected] 3 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; [email protected] 4 Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland * Correspondence: [email protected] (M.G.); [email protected] (J.S.) Received: 13 March 2020; Accepted: 8 April 2020; Published: 10 April 2020 Abstract: The early and late development of new anticancer drugs, small molecules or peptides can be slowed down by some issues such as poor selectivity for the target or poor ADME properties. Computer-aided drug design (CADD) and target drug delivery (TDD) techniques, although apparently far from each other, are two research fields that can give a significant contribution to overcome these problems. Their combination may provide mechanistic understanding resulting in a synergy that makes possible the rational design of novel anticancer based therapies. Herein, we aim to discuss selected applications, some also from our research experience, in the fields of anticancer small organic drugs and peptides. Keywords: drug delivery; computational chemistry; anticancer drug design 1. Introduction Despite huge advances in the development of novel therapeutic approaches, cancer is one of the leading causes of death worldwide; every year millions of people are diagnosed with oncological pathologies [1] and more than half of them will die from it [2].
    [Show full text]
  • Retrometabolic Drug Design: Principles and Recent Developments*
    Pure Appl. Chem., Vol. 80, No. 8, pp. 1669–1682, 2008. doi:10.1351/pac200880081669 © 2008 IUPAC Retrometabolic drug design: Principles and recent developments* Nicholas Bodor1,‡ and Peter Buchwald2 1Center for Drug Discovery, University of Florida, Health Science Center, P.O. Box 100497, Gainesville, FL 32610, USA; 2Molecular and Cellular Pharmacology and Diabetes Research Institute, University of Miami, Miami, FL 33136, USA Abstract: Retrometabolic drug design incorporates two major systematic approaches: the de- sign of soft drugs (SDs) and of chemical delivery systems (CDSs). Both aim to design new, safe drugs with an improved therapeutic index by integrating structure–activity and –metab- olism relationships; however, they achieve it by different means: whereas SDs are new, ac- tive therapeutic agents that undergo predictable metabolism to inactive metabolites after ex- erting their desired therapeutic effect, CDSs are biologically inert molecules that provide enhanced and targeted delivery of an active drug to a particular organ or site through a de- signed sequential metabolism that involves several steps. General principles and recent de- velopments are briefly reviewed with various illustrative examples from different therapeu- tic areas with special focus on soft corticosteroids and on brain targeting. Keywords: drug design; metabolism; brain targeting; hydrolysis; oxime. INTRODUCTION Despite major advancement in the elucidation of the molecular/biochemical mechanisms of drug ac- tions and in our abilities to screen compounds and identify highly active hits, there was no correspon- ding increase in launched new chemical entities (NCEs) approved by regulatory agencies. This is most likely due to our limited understanding as to what makes ultimately a good drug as well as to increas- ing difficulties caused by the existing stringent regulations.
    [Show full text]
  • A Review on Targeted Drug Delivery
    Scholars Journal of Applied Medical Sciences (SJAMS) ISSN 2320-6691 (Online) Sch. J. App. Med. Sci., 2014; 2(1C):328-331 ISSN 2347-954X (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Review Article A Review on Targeted Drug Delivery: its Entire Focus on Advanced Therapeutics and Diagnostics Kirti Rani*, Saurabh Paliwal Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida (UP), India *Corresponding author Dr. Kirti Rani Email: Abstract: Targeted drug delivery is anadvanced method of delivering drugs to the patients in such a targeted sequences that increases the concentration of delivered drug to the targeted body part of interest only (organs/tissues/ cells) which in turn improves efficacy of treatment by reducing side effects of drug administration. Basically, targeted drug delivery is to assist the drug molecule to reach preferably to the desired site. The inherent advantage of this technique leads to administration of required drug with its reduced dose and reducedits side effect. This inherent advantage of targeted drug delivery system is under high consideration of research and development in clinical and pharmaceutical fields as backbone of therapeutics & diagnostics too. Various drug carrierwhich can be used in this advanced delivery system are soluble polymers, biodegradable microsphere polymers (synthetic and natural), neutrophils, fibroblasts, artificial cells, lipoproteins, liposomes, micelles and immune micelle. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue. Keywords: Drug delivery; drug carrier system; therapeutics; diagnostics; cancer INTRODUCTION inert (non-toxic), should be non-immunogenic, should Targeted drug delivery is a kind of smart drug be physically and chemically stable in vivo and in vitro delivery system which is miraculous in delivering the conditions, and should have restricted drug distribution drug to a patient.
    [Show full text]
  • Therapeutic Nanoparticles and Their Targeted Delivery Applications
    molecules Review Therapeutic Nanoparticles and Their Targeted Delivery Applications Abuzer Alp Yetisgin 1 , Sibel Cetinel 2 , Merve Zuvin 3, Ali Kosar 3,4 and Ozlem Kutlu 2,4,* 1 Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; [email protected] 2 Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; [email protected] 3 Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; [email protected] (M.Z.); [email protected] (A.K.) 4 Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey * Correspondence: [email protected]; Tel.: +90-2164839000-2413; Fax: +90-2164839885 Academic Editor: Zacharias Suntres Received: 25 March 2020; Accepted: 26 April 2020; Published: 8 May 2020 Abstract: Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies.
    [Show full text]