Metaphors in Nanomedicine: the Case of Targeted Drug Delivery Bernadette Bensaude Vincent, Sacha Loeve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal of Controlled Release 161 (2012) 446–460
Journal of Controlled Release 161 (2012) 446–460 Contents lists available at SciVerse ScienceDirect Journal of Controlled Release journal homepage: www.elsevier.com/locate/jconrel Review Administration, distribution, metabolism and elimination of polymer therapeutics Ela Markovsky, Hemda Baabur-Cohen, Anat Eldar-Boock, Liora Omer, Galia Tiram, Shiran Ferber, Paula Ofek, Dina Polyak, Anna Scomparin, Ronit Satchi-Fainaro ⁎ Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel article info abstract Article history: Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by Received 6 September 2011 protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the Accepted 16 December 2011 drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the Available online 29 December 2011 journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each Keywords: stage of the process will be described, with examples illustrating the different solutions to the challenges Polymer therapeutics Angiogenesis of drug delivery systems in vivo. ADME © 2011 Elsevier B.V. All rights reserved. Biodistribution Angiogenesis-dependent diseases Cancer Contents 1. Introduction ............................................................. -
Recipesholdings, & User Guide
LLC 10-SECOND RECIPESHOLDINGS, & USER GUIDE CAPBRAN IMPORTANT SAFEGUARDS • AFTER BLENDING INGREDIENTS, REMOVE THE CROSS BLADE ASSEMBLY—ALLOW THE VESSEL WITH ITS CONTENTS TO SETTLE AND TO RELEASE ANY PRESSURE THAT MAY HAVE BUILT UP DURING THE EXTRACTION PROCESS. IF YOU WILL NOT CONSUME IT IMMEDIATELY, SAVE THESE INSTRUCTIONS USE THE STAY FRESH LID TO CLOSE THE CONTAINER. UNSCREW THE LID AND RELEASE HOUSEHOLD USE ONLY PRESSURE PERIODICALLY IF STORING LONGER THAN A FEW HOURS TO RELEASE ANY ADDED PRESSURE THAT MAY HAVE BUILT UP DUE TO FERMENTATION. Read all instructions before operating the Magic Bullet. When using electrical • NEVER PERMIT ANY BLENDED MIXTURE TO SIT INSIDE A CUP SEALED WITH A CROSS appliances, basic safety precautions should always be followed, including: BLADE BASE WITHOUT FIRST RELEASING THE PRESSURE. • DO NOT ALLOW BLENDED CONTENTS TO SIT FOR LONG PERIODS IN A SEALED GENERAL SAFETY CONTAINER. THE SUGARS IN FRUITS AND VEGETABLES CAN FERMENT, CAUSING PRESSURE TO BUILD UP AND EXPANDLLC IN THE VESSEL WHICH CAN CAUSE INGREDIENTS • Cross blades are sharp. Handle carefully. TO BURST AND SPRAY OUT WHEN MOVED OR OPENED. UNCSCREW THE LID AND OPEN • Always use your Magic Bullet on a clean, flat, hard, dry surface, never on cloth or paper THE CUP FOR A FEW MOMENTS TO RELEASE ANY PRESSURE THAT HAS BUILT UP. which may block the fan vents and cause overheating. • RELEASE PRESSURE BY CAREFULLY UNSCREWING THE LID AND OPENING THE CUP FOR • Do not immerse the cord, plug or base in water or other liquids. A FEW MOMENTS. • Close supervision is necessary when any appliances are used by or near children. -
Download Download
MM Matin et al. Medical Research Archives vol 8 issue 7. Medical Research Archives RESEARCH ARTICLE 2e`1 PASS Predication, Antiviral, in vitro Antimicrobial, and ADMET Studies of Rhamnopyranoside Esters Authors Mohammed M Matin1, Mohammad HO Roshid2, Sreebash C Bhattacharjee3 and Abul KMS Azad4 Affiliations 1 Bioorganic & Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram-4331, Bangladesh 2 Department of Anaesthesia and Intensive Care Medicine, Chattogram Medical College, Chattogram- 4203, Bangladesh 3 Chemical Research Division, Bangladesh Council of Scientific & Industrial Research (BCSIR) Laboratories, Chattogram-4220, Bangladesh 4 Department of Chemistry, Chattogram Govt. College, Chattogram-4203, Bangladesh Corresponding Author: MM Matin E-mail address: [email protected] Tel.: +88 01716 839689. Abstract Sugar derived esters (SEs) with potential antimicrobial activity were found to be a better choice to solve the multidrug resistant (MDR) pathogens due to improved antimicrobial efficacy, biodegradability, non-toxic, and non-allergic properties. In this context, a series of benzyl -L- rhamnopyranoside esters with different chain length (C2-C18) were employed for PASS predication, antiviral, and in vitro antimicrobial activity test. The in vitro antimicrobial tests against four bacterial, and four fungal pathogens along with PASS predication indicated that these sugar esters acted as better antifungals as compared to antibacterial functionality. The study revealed that the incorporation of octanoyl (C8) and lauroyl (C12) group(s) at C-3 position of rhamnopyranoside possessed promising antimicrobial, and anti-carcinogenic potentiality with good pharmacokinetic (pkCSM), and drug likeness properties. Also, attachment of multiple ester groups enhanced various drug likeness, and medicinal chemistry friendliness conditions. Overall, the present findings might be useful for the development of rhamnopyranoside based novel MDR antimicrobial drugs. -
B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4]. -
Brain-Targeted Drug Delivery by Manipulating Protein Corona Functions
ARTICLE https://doi.org/10.1038/s41467-019-11593-z OPEN Brain-targeted drug delivery by manipulating protein corona functions Zui Zhang1,2, Juan Guan1, Zhuxuan Jiang1, Yang Yang1, Jican Liu3, Wei Hua4, Ying Mao4, Cheng Li2, Weiyue Lu2, Jun Qian2 & Changyou Zhan 1,2 Protein corona presents a major obstacle to bench-to-bedside translation of targeted drug delivery systems, severely affecting targeting yields and directing unfavorable biodistribution. 1234567890():,; Corona-mediated targeting provides a new impetus for specific drug delivery by precisely manipulating interaction modes of functional plasma proteins on nano-surface. Here bio- inspired liposomes (SP-sLip) were developed by modifying liposomal surface with a short nontoxic peptide derived from Aβ1-42 that specifically interacts with the lipid-binding domain of exchangeable apolipoproteins. SP-sLip absorb plasma apolipoproteins A1, E and J, con- sequently exposing receptor-binding domain of apolipoproteins to achieve brain-targeted delivery. Doxorubicin loaded SP-sLip (SP-sLip/DOX) show significant enhancement of brain distribution and anti-brain cancer effect in comparison to doxorubicin loaded plain liposomes. SP-sLip preserve functions of the absorbed human plasma ApoE, and the corona-mediated targeting strategy works in SP modified PLGA nanoparticles. The present study may pave a new avenue to facilitate clinical translation of targeted drug delivery systems. 1 Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 200032 Shanghai, PR China. 2 School of Pharmacy & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, 201203 Shanghai, PR China. 3 Department of Pathology, Affiliated Zhongshan Hospital Qingpu Branch, Fudan University, 201700 Shanghai, PR China. -
Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis
REVIEW published: 03 July 2018 doi: 10.3389/fmicb.2018.01367 Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis Diana Machado 1, Miriam Girardini 2, Miguel Viveiros 1* and Marco Pieroni 2* 1 Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal, 2 P4T Group, Department of Food and Drug, University of Parma, Parma, Italy The emergence of multi- and extensively drug resistant tuberculosis worldwide poses a great threat to human health and highlight the need to discover and develop new, effective and inexpensive antituberculosis agents. High-throughput screening assays Edited by: against well-validated drug targets and structure based drug design have been employed Fernando Rogerio Pavan, to discover new lead compounds. However, the great majority fail to demonstrate any Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil antimycobacterial activity when tested against Mycobacterium tuberculosis in whole-cell Reviewed by: screening assays. This is mainly due to some of the intrinsic properties of the bacilli, Pedro Almeida Silva, such as the extremely low permeability of its cell wall, slow growth, drug resistance, Fundação Universidade Federal do drug tolerance, and persistence. In this sense, understanding the pathways involved Rio Grande, Brazil Luiz Augusto Basso, in M. tuberculosis drug tolerance, persistence, and pathogenesis, may reveal new Pontifícia Universidade Católica do Rio approaches for drug development. Moreover, the need for compounds presenting a Grande do Sul, Brazil novel mode of action is of utmost importance due to the emergence of resistance not *Correspondence: Miguel Viveiros only to the currently used antituberculosis agents, but also to those in the pipeline. -
Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery
International Journal of Molecular Sciences Review Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery Qingxin Li 1,* and CongBao Kang 2,* 1 Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou 510316, China 2 Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore * Correspondence: [email protected] (Q.L.); [email protected] (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.) Received: 12 June 2020; Accepted: 20 July 2020; Published: 24 July 2020 Abstract: Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. -
Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer
pharmaceutics Review Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer Sibusiso Alven, Xhamla Nqoro , Buhle Buyana and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Eastern Cape 5700, South Africa; [email protected] (S.A.); [email protected] (X.N.); [email protected] (B.B.) * Correspondence: [email protected] Received: 24 November 2019; Accepted: 30 December 2019; Published: 29 April 2020 Abstract: Cancer is a chronic disease that is responsible for the high death rate, globally. The administration of anticancer drugs is one crucial approach that is employed for the treatment of cancer, although its therapeutic status is not presently satisfactory. The anticancer drugs are limited pharmacologically, resulting from the serious side effects, which could be life-threatening. Polymer drug conjugates, nano-based drug delivery systems can be utilized to protect normal body tissues from the adverse side effects of anticancer drugs and also to overcome drug resistance. They transport therapeutic agents to the target cell/tissue. This review article is based on the therapeutic outcomes of polymer-drug conjugates against breast and lung cancer. Keywords: breast cancer; lung cancer; chemotherapy; polymer-based carriers; polymer-drug conjugates 1. Introduction Cancer is a chronic disease that leads to great mortality around the world and cancer cases are rising continuously [1]. It is the second cause of death worldwide, followed by cardiovascular diseases [2]. It is characterized by an abnormal uncontrolled proliferation of any type of cells in the human body [3]. It is caused by external factors, such as smoking, infectious organisms, pollution, and radiation; it is also caused by internal factors, such as immune conditions, hormones, and genetic mutation [3]. -
Pharmacokinetics and Pharmacodynamics Modeling and Simulation Systems to Support the Development and Regulation of Liposomal Drugs
pharmaceutics Review Pharmacokinetics and Pharmacodynamics Modeling and Simulation Systems to Support the Development and Regulation of Liposomal Drugs Hua He 1,2, Dongfen Yuan 2 , Yun Wu 3 and Yanguang Cao 2,4,* 1 Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; [email protected] 2 Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260, USA; [email protected] 4 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA * Correspondence: [email protected]; Tel.: +1-(919)-966-4040 Received: 30 January 2019; Accepted: 28 February 2019; Published: 7 March 2019 Abstract: Liposomal formulations have been developed to improve the therapeutic index of encapsulated drugs by altering the balance of on- and off-targeted distribution. The improved therapeutic efficacy of liposomal drugs is primarily attributed to enhanced distribution at the sites of action. The targeted distribution of liposomal drugs depends not only on the physicochemical properties of the liposomes, but also on multiple components of the biological system. Pharmacokinetic–pharmacodynamic (PK–PD) modeling has recently emerged as a useful tool with which to assess the impact of formulation- and system-specific factors on the targeted disposition and therapeutic efficacy of liposomal drugs. The use of PK–PD modeling to facilitate the development and regulatory reviews of generic versions of liposomal drugs recently drew the attention of the U.S. -
Buffy & Angel Watching Order
Start with: End with: BtVS 11 Welcome to the Hellmouth Angel 41 Deep Down BtVS 11 The Harvest Angel 41 Ground State BtVS 11 Witch Angel 41 The House Always Wins BtVS 11 Teacher's Pet Angel 41 Slouching Toward Bethlehem BtVS 12 Never Kill a Boy on the First Date Angel 42 Supersymmetry BtVS 12 The Pack Angel 42 Spin the Bottle BtVS 12 Angel Angel 42 Apocalypse, Nowish BtVS 12 I, Robot... You, Jane Angel 42 Habeas Corpses BtVS 13 The Puppet Show Angel 43 Long Day's Journey BtVS 13 Nightmares Angel 43 Awakening BtVS 13 Out of Mind, Out of Sight Angel 43 Soulless BtVS 13 Prophecy Girl Angel 44 Calvary Angel 44 Salvage BtVS 21 When She Was Bad Angel 44 Release BtVS 21 Some Assembly Required Angel 44 Orpheus BtVS 21 School Hard Angel 45 Players BtVS 21 Inca Mummy Girl Angel 45 Inside Out BtVS 22 Reptile Boy Angel 45 Shiny Happy People BtVS 22 Halloween Angel 45 The Magic Bullet BtVS 22 Lie to Me Angel 46 Sacrifice BtVS 22 The Dark Age Angel 46 Peace Out BtVS 23 What's My Line, Part One Angel 46 Home BtVS 23 What's My Line, Part Two BtVS 23 Ted BtVS 71 Lessons BtVS 23 Bad Eggs BtVS 71 Beneath You BtVS 24 Surprise BtVS 71 Same Time, Same Place BtVS 24 Innocence BtVS 71 Help BtVS 24 Phases BtVS 72 Selfless BtVS 24 Bewitched, Bothered and Bewildered BtVS 72 Him BtVS 25 Passion BtVS 72 Conversations with Dead People BtVS 25 Killed by Death BtVS 72 Sleeper BtVS 25 I Only Have Eyes for You BtVS 73 Never Leave Me BtVS 25 Go Fish BtVS 73 Bring on the Night BtVS 26 Becoming, Part One BtVS 73 Showtime BtVS 26 Becoming, Part Two BtVS 74 Potential BtVS 74 -
1097.Full.Pdf
1521-009X/47/10/1097–1099$35.00 https://doi.org/10.1124/dmd.119.088708 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 47:1097–1099, October 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Special Section on Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities—Commentary Pharmacokinetic and Drug Metabolism Properties of Novel Therapeutic Modalities Brooke M. Rock and Robert S. Foti Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (B.M.R.) and Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F.) Received July 10, 2019; accepted July 26, 2019 Downloaded from ABSTRACT The discovery and development of novel pharmaceutical therapies in experimental and analytical tools will become increasingly is rapidly transitioning from a small molecule–dominated focus to evident, both to increase the speed and efficiency of identifying safe a more balanced portfolio consisting of small molecules, mono- and efficacious molecules and simultaneously decreasing our de- clonal antibodies, engineered proteins (modified endogenous pro- pendence on in vivo studies in preclinical species. The research and dmd.aspetjournals.org teins, bispecific antibodies, and fusion proteins), oligonucleotides, commentary included in this special issue will provide researchers, and gene-based therapies. This commentary, and the special issue clinicians, and the patients we serve more options in the ongoing as a whole, aims to highlight -
What Is Medicinal Chemistry
Unit 1 Prepared By: Neetu Sabarwal Department of Pharmaceutical Chemistry SOS Pharmaceutical Sciences Jiwaji University. Gwalior Content INTRODUCTION TO MEDICINAL CHEMISTRY • History and development of medicinal chemistry Physicochemical properties in relation to biological action • Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, • Bioisosterism, Optical and Geometrical isomerism. Drug metabolism • Drug metabolism principles- Phase I and Phase II. • Factors affecting drug metabolism including stereo chemical aspects. CHEMISTRY What is Chemistry? • Chemistry is known as the central of science. • It is a branch of physical science that studies the composition, structure, properties and changes of matter. • MATTER = Solid / Liquid/ Gas. BRANCHES OF CHEMISTRY PHYSICAL CHEMISTRY • the branch of chemistry concerned with the application of the techniques and theories of physics to the study of chemical systems. • Branches : chemical Kinetics, Electrochemistry, spectroscopy, photochemistry. INORGANIC CHEMISTRY • deals with the synthesis and behaviour of inorganic and organometallic compounds • Branches :Bioinorganic, Cluster, Material & Nuclear Chemistry ORGANIC CHEMISTRY • study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. • Branches : Biochemistry, biophysical, Biorganic, P’ceutical, Medicinal WHAT IS MEDICINAL CHEMISTRY • It is a discipline or intersection of chemistry especially synthetic organic