pharmaceutics Review Pharmacokinetics and Pharmacodynamics Modeling and Simulation Systems to Support the Development and Regulation of Liposomal Drugs Hua He 1,2, Dongfen Yuan 2 , Yun Wu 3 and Yanguang Cao 2,4,* 1 Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China;
[email protected] 2 Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
[email protected] 3 Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260, USA;
[email protected] 4 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA * Correspondence:
[email protected]; Tel.: +1-(919)-966-4040 Received: 30 January 2019; Accepted: 28 February 2019; Published: 7 March 2019 Abstract: Liposomal formulations have been developed to improve the therapeutic index of encapsulated drugs by altering the balance of on- and off-targeted distribution. The improved therapeutic efficacy of liposomal drugs is primarily attributed to enhanced distribution at the sites of action. The targeted distribution of liposomal drugs depends not only on the physicochemical properties of the liposomes, but also on multiple components of the biological system. Pharmacokinetic–pharmacodynamic (PK–PD) modeling has recently emerged as a useful tool with which to assess the impact of formulation- and system-specific factors on the targeted disposition and therapeutic efficacy of liposomal drugs. The use of PK–PD modeling to facilitate the development and regulatory reviews of generic versions of liposomal drugs recently drew the attention of the U.S.