Bone Strain Gradients and Optimization in Vertebrate Skulls

Total Page:16

File Type:pdf, Size:1020Kb

Bone Strain Gradients and Optimization in Vertebrate Skulls Ann Anat 186 (2004): 387–396 http://www.elsevier.de Bone strain gradients and optimization in vertebrate skulls Callum F. Ross1 and Keith A. Metzger2 1 Organismal Biology and Anatomy, University of Chicago, 1027East 57 St. Chicago IL 60637, USA 2 Anatomical Sciences, Stony Brook University, Academic Tower A, T-8, Stony Brook NY 11794-8081, USA Summary. It is often stated that the skull is optimally Introduction designed for resisting feeding forces, where optimality is defined as maximum strength with minimum material. Running counter to this hypothesis are bone strain gradi- In 1991, Hylander and colleagues reported that bone ents – variation in bone strain magnitudes across the skull strain magnitudes recorded from the supraorbital regions – which in the primate skull have been hypothesized to of macaques and baboons are much lower than those re- suggest that different parts of the skull are optimized for corded from the zygomatic arch, anterior root of the zy- different functions. In this paper strain gradients in the goma and mandibular corpus. They interpreted these data skulls of four genera of primates, Sus, and Alligator were to suggest that the supraorbital tori of macaques and ba- documented and compared. Strain gradients were perva- boons could be greatly reduced in size while still main- sive in all taxa sampled. Patterns of strain gradients taining an adequate safety factor to failure under routine showed inter-taxon differences, but strains in the mand- masticatory loads. They concluded (Hylander et al. 1991) ible and zygomatic arch were always higher than those in that their data provide “no good reason to believe that the circumorbital and neurocranial regions. Strain magni- enlarged browridges in living and/or fossil primates are tudes in Alligator were twice as high as those in mam- structural adaptations to counter powerful masticatory mals. Strain gradients were also positively allometric; i. e., forces”. Instead, they hypothesized that when the orbits larger primates show steeper gradients (larger differ- are positioned well rostral to the brain, they must be pro- ences) between the mandible and circumorbital region tected by sufficient bone to “prevent structural failure than smaller primates. Different strain magnitudes in dif- due to relatively infrequent non-masticatory external ferent areas of the same animal are hypothesized to re- forces associated with highly active primates (e. g., trau- flect optimization to different criteria. It is therefore matic accidental forces applied to the orbits and neuro- hardly surprising that the skull, in which numerous func- cranium)” (Hylander et al. 1991; see also Hylander and tional systems are found, exhibits very steep gradients. In- Ravosa 1992). ter-specific differences in strain magnitudes at similar In a later paper, Hylander and Johnson (1997) reported sites also suggest inter-specific differences in optimality that strain magnitudes also vary within the zygomatic criteria. The higher strain magnitudes in the Alligator arch, being higher anteriorly than posteriorly. They ar- skull suggest that the Alligator skull may be designed to gued that if optimality is defined as maximum strength experience extremely high strains less frequently whereas with minimum material, the extreme variability in bone the primate skull may be designed to resist lower strains strain magnitudes across the facial skeleton falsifies the more frequently. general assumption that the facial skeleton is optimized for resisting forces generated during routine mastication. Key words: Mastication – Feeding – Skull – Mandible – They reiterated the hypothesis that bone mass in excess Primates – Crocodilians – Mammals of that needed to optimize the facial skeleton to resist masticatory forces may make the facial bones “structu- Correspondence to: C. F. Ross rally adapted to counter infrequent nonmasticatory trau- E-mail: [email protected] matic loads” (Hylander and Johnson 1997). 0940-9602/04/186/05–06–387 $30.00/0 Subsequent work demonstrated that bone strain magni- variation in strain magnitudes – within the vertebrate tudes are also low in the supraorbital regions and inter- skull? Are strain gradients similar from one species to an- mediate in the lateral orbital walls of owl monkeys and other? What do strain gradients tell us about craniofacial galagos (Ross and Hylander 1996; Ravosa et al. 2000 a). Ravosa et al. (2000 a) reiterated the hypothesis that ex- cess bone mass in the facial skeleton (in this case, the lat- eral orbital wall) functioned “to ensure an adequate safety factor for accidental nonmasticatory forces”; they also suggested that there might be “positive allometry of the strain gradient” in the primate face, with larger ani- mals having lower strains in the supraorbital region be- cause of the positive allometry of circumorbital structures observed in morphometric analyses (Moss and Young 1960; Shea 1986; Ravosa 1988, 1991 a–c). Observations in owl monkeys, macaques and galagos of low strain magnitudes along the medial orbital walls, orbi- tal roofs and postorbital septa, thin plates of bone where traumatic blows were unlikely to fall, suggested to Ross (2001) that not all strain gradients reflect selection for in- creased resistance to traumatic blows to the head; he sug- gested a range of functions for thin plates of circumorbi- tal bone that experience very low strain magnitudes, including providing a rigid support for the brain and its meninges, deflecting chewing muscles around the orbital contents, and providing attachment for chewing muscles. Ross (2001) concluded that, “[a]ny role that these thin circumorbital bony plates perform in resisting feeding forces is coincidental and insignificant, and could be bet- ter performed by a more efficient distribution of bony tis- sue”. In sum, Hylander, Johnson, Ravosa and Ross have ar- gued that the primate facial skeleton is not optimally designed for resisting forces generated during feeding be- cause its various components perform a range of func- tions. Adaptations of the skeleton to these functions in- clude distributions of bone mass and bone shapes that are over-designed for resisting routine masticatory stresses: hence bone strain magnitudes recorded from these re- gions during routine mastication are low. These hypotheses regarding variations in strain magni- Fig. 1. Diagram of skull of Macaca illustrating gauge locations in tude (strain gradients) in primate skulls run counter to a primates and Sus. Abbreviations and region groups: Neurocra- long tradition in craniofacial biomechanics that the face is nium, pariet, parietal, Sus only; temp, adjacent to temporal line Macaca optimized for resisting masticatory loads (see references on frontal bone, only; Orbital region, dio, dorsal interor- bital; rio, rostral interorbital; dorb, dorsal orbital; roof, orbital in Hylander and Johnson 1997; Preuschoft et al. 1986 a,b). roof; bar, postorbital bar (anterior surface in Macaca, lateral sur- This tradition persists in recent presentations of finite-ele- face in Eulemur, Otolemur and Aotus); septum, postorbital sep- ment analyses of human skull morphology (Witzel and tum (intraorbital surface), morb, medial orbital wall; Zygomatic Preuschoft 1999, 2002); “Since we have found a far-reach- Arch, aarch, anterior 1/3 of zygomatic arch (Macaca only); ing correspondence between the spatial arrangement of march, middle 1/3 zygomatic arch, on zygomatic/jugal bone, im- stress-bearing regions and the bony structure of the skull, mediately anterior to zygomatico-temporal suture; parch, poster- the conclusion seems justified that the shape of the skull ior arch on zygomatic process of squamous part of temporal is essentially caused by biomechanic necessities. Charac- bone; zflg, zygomatic flange (Sus only); arz, anterior root of zy- teristic for all parts is a light-weight construction opti- goma, infraorbital of Hylander et al. 1991; Snout, max, maxilla; na, nasal (Sus only); pmax, premaxilla; Jaw Joint; qjug, quadrato- mised for minimal mass and maximal strength with the jugal; quad, quadrate; cond, surangular in Alligator, condylar best possible approach to minimal areas around given neck in Sus and Macaca; Mandible, symph, symphysis; avdent, volumes” (Witzel and Preuschoft 2002). anterior ventral dentary; pvdent, posterior ventral dentary; al- Published and new bone strain data relevant to these dent, anterior lateral dentary; pldent, posterior lateral dentary; hypotheses are presented here and the following ques- ang, angular; lingual, splenial in Alligator, lingual aspect of man- tions are addressed: How pervasive are strain gradients – dibular corpus in Macaca. 388 adaptation and evolution? To address these questions the Table 1. Mean and peak c-max data. available data on bone strain magnitudes in vertebrate Species Gauge location Mean Peak skulls are reviewed, characteristics of the strain gradients c-max (le) c-max (le) in different taxa are compared, and theoretical issues re- garding the meaning of these gradients are addressed. Eulemur dorsal interorbital 100 256 dorsal orbital 109 296 postorbital bar 284 676 zygomatic arch (middle) 530 1277 anterior root of zygoma 405 1420 Materials and methods mandibular corpus 599.5 Otolemur dorsal interorbital 334 1221 Sufficient data for an analysis of strain gradients are only avail- postorbital bar 398 1320 able for a limited number of species. The primate data are ana- medial orbital wall 346 609 lyzed at the generic level to increase the number of sites sampled mandibular
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Proceedings of the United States National Museum
    LIS T OF ILL US TRA TIONS. IX Pa«e. Apices of ovipositors : o, Polysphincta texaiui Cresson ; &, Eymenoepi- meois iciltii (Cresson); Mandible; c, H. tmltii (Cresson) 389 Apex of ovipositor of Theronia fulvesceiis Cresson 389 Apices of ovipositors: a, Itoplectis canqMisitor Say; b, Apechthis pictir cornis (Cresson) 389 Apex of abdomen of female of Coleocentrus occidentalis 390 Areolet of Lahena grallatoi- (Say) 390 Areolets: a, Tromatohia rufovariata (Cresson) ; b, Itoplectis conquisitor (Say) ; c, Epiurus alboricta (Cresson) 390 Sessile first tergite of Perithous pleuralis (Cresson) 390 Petioatel first tergite of Xorides yukonensis (Rohwer) 390 Mandible of Poemenva americana (Cresson) 391 Female of Labena confusa Rohwer 412 Female of Rhyssella nitida (Cresson) 424 Propodeum of Zonde* picea*u« (Rohwer) 434 Front view of head of Xoi'ides albopictus (Cresson) 437 Propodeum and basal abdominal segments of Xorides albopictus (Cresson) 437 Apical abdomen segments of Xorides albopictus (Cresson) 437 Female of Xorides rileyi (Ashmead) 440 Front view of head of Deuteroxorides caryae (Harrington) 446 Propodeum and basal abdominal segments of Deuteroxorides caryae (Harrington) 446 Apical abdominal segments of Z)c«feroa:ori<Ze« caryae (Harrington) 446 Female of Deuteroxorides caryae (Harrington) 447 Female of Odontomerus canadensis Provancher 459 Female of Phytodietus annulatus (Provancher) 467 Femaie of Phydotietus annulatus (Provancher) 467 Diagram showing relation of dike to vein, Hecla Mine. A, Dike; B, Crushed material with quartz and ore; C, Galena; D, Quartzite wall rock ; width of section 15 feet 481 Showing relation to dikes (A) to vein (B) on No. 1 level of Marsh Mine_ 484 Showing relation of dike (A) to vein (B) on 2,000-foot level of Standard- Mammoth Mine 492 Showing relation of dike (A) to vein (B) on 1,200-foot level of Standard- Mammoth Mine 492 Coleocentrus occidentalis.
    [Show full text]
  • D Inosaur Paleobiology
    Topics in Paleobiology The study of dinosaurs has been experiencing a remarkable renaissance over the past few decades. Scientifi c understanding of dinosaur anatomy, biology, and evolution has advanced to such a degree that paleontologists often know more about 100-million-year-old dinosaurs than many species of living organisms. This book provides a contemporary review of dinosaur science intended for students, researchers, and dinosaur enthusiasts. It reviews the latest knowledge on dinosaur anatomy and phylogeny, Brusatte how dinosaurs functioned as living animals, and the grand narrative of dinosaur evolution across the Mesozoic. A particular focus is on the fossil evidence and explicit methods that allow paleontologists to study dinosaurs in rigorous detail. Scientifi c knowledge of dinosaur biology and evolution is shifting fast, Dinosaur and this book aims to summarize current understanding of dinosaur science in a technical, but accessible, style, supplemented with vivid photographs and illustrations. Paleobiology Dinosaur The Topics in Paleobiology Series is published in collaboration with the Palaeontological Association, Paleobiology and is edited by Professor Mike Benton, University of Bristol. Stephen Brusatte is a vertebrate paleontologist and PhD student at Columbia University and the American Museum of Natural History. His research focuses on the anatomy, systematics, and evolution of fossil vertebrates, especially theropod dinosaurs. He is particularly interested in the origin of major groups such Stephen L. Brusatte as dinosaurs, birds, and mammals. Steve is the author of over 40 research papers and three books, and his work has been profi led in The New York Times, on BBC Television and NPR, and in many other press outlets.
    [Show full text]
  • Biology of the Rabbit
    Journal of the American Association for Laboratory Animal Science Vol 45, No 1 Copyright 2006 January 2006 by the American Association for Laboratory Animal Science Pages 8–24 Historical Special Topic Overview on Rabbit Comparative Biology Biology of the Rabbit Nathan R. Brewer Editor’s note: In recognition of Dr. Nathan Brewer’s many years of dedicated service to AALAS and the community of research animal care specialists, the premier issue of JAALAS includes the following compilation of Dr. Brewer’s essays on rabbit anatomy and physiology. These essays were originally published in the ASLAP newsletter (formerly called Synapse), and are reprinted here with the permission and endorsement of that organization. I would like to thank Nina Hahn, Jane Lacher, and Nancy Austin for assistance in compiling these essays. Publishing this information in JAALAS allows Dr. Brewer’s work to become part of the searchable literature for laboratory animal science and medicine and also assures that the literature references and information he compiled will not be lost to posterity. However, readers should note that this material has undergone only minor editing for style, has not been edited for content, and, most importantly, has not undergone peer review. With the agreement of the associate editors and the AALAS leadership, I elected to forego peer review of this work, in contradiction to standard JAALAS policy, based on the status of this material as pre-published information from an affiliate organization that holds the copyright and on the esteem in which we hold for Dr. Brewer as a founding father of our organization.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Characters of American Jurassic Dinosaurs. Part VIII. the Order Theropoda
    328 Scientific Intelligence. selves in the first spiral coil of 0. tenuissima are what constitute the essential difference between the spire of Cornuspira and that of Spirolocidina; marking an imperfect septal division of the spire into chambers, which cannot be conceived to affect in any way the physiological condition of. the contained animal, but which foreshadows the complete septal division that marks the assumption of the Peneropline stage. Again, the incipient widen- ing-out of the body, previously to the formation of the first complete septum, prepares the way for that great lateral exten­ sion which characterizes the next or Orbiculine stage ; this exten­ sion being obviously related, on the one hand, to the division of the chamber-segments of the body into chamberletted sub-seg­ ments, and, on the other, to the extension of the zonal chambers round the ' nucleus,' so as to complete them into aunuli, from APPENDIX. which all subsequent increase shall take place on the cyclical plan. "In 0. marginalia, the first spiral stage is abbreviated by the drawing-together (as it were) of the ' spiroloculine' coil into a single Milioline turn of greater thickness ; but the Orbiculine or second spiral stage is fully retained. In Q. duplex, the abbreviated. Milioline center is still retained, but the succeeding Orbiculine ART. X X X VI-I I. — Prmcvpal Characters of American spiral is almost entirely dropped out, quickly giving place to the Jurassic Dinosaurs ', by Professor 0. 0. MAESH. Part cyclical plan. And in the typical 0. complanctta the Milioline center is immediately surrounded by a complete annulus, so YIII.
    [Show full text]
  • MORPHOMETRIC STUDY of PTERION in DRY ADULT HUMAN SKULLS Pratima Kulkarni 1, Shivaji Sukre 2, Mrunal Muley *3
    International Journal of Anatomy and Research, Int J Anat Res 2017, Vol 5(3.3):4365-68. ISSN 2321-4287 Original Research Article DOI: https://dx.doi.org/10.16965/ijar.2017.337 MORPHOMETRIC STUDY OF PTERION IN DRY ADULT HUMAN SKULLS Pratima Kulkarni 1, Shivaji Sukre 2, Mrunal Muley *3. 1 Associate Professor, Department of Anatomy, G.M.C. Aurangabad, Maharashtra, India. 2 Professor and Head of department, Department of Anatomy, G.M.C. Aurangabad, Maharashtra, India. *3 Assistant Professor, Department of Anatomy, G.M.C. Aurangabad, Maharashtra, India. ABSTRACT Introduction: The pterion corresponds to the site of anterolateral fontanelle of the neonatal skull which closes at third month after birth. In the pterional fractures the anterior and middle meningeal arterial ramus ruptures commonly which results in extradural hemorrhage. Pterional approach is most suitable and minimally invasive approach in neurosurgery. Materials and Methods: The present study was carried out on the pterion of 36 dry adult skulls of known sex from department of anatomy GMC Aurangabad Maharashtra. Results: The mean and standard deviation of the distance between the centre of pterion to various anatomical landmarks. The distance between Pterion- frontozygomatic (P-FZ) suture 29.81±4.42mm on right side, 29.81±4.07mm on left side; Pterion-Zygomatic arch (P-Z) 37.16±3.77mm on right side, 37.56±3.71mm on left side, Pterion-asterion (P-A) 89.73±6.16mm on right side, 89.46±6.35mm on left side; Pterion-external acoustic meatus (P- EAM) 53.40±7.28mm on right side, 53.57±6.73mm on left side, Pterion- Mastoid process (P-M) 80.35±3.44mm on right side, 80.96±3.79mm on left side and Pterion- Pterion (P-P) 194.54±16.39mm were measured.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Redalyc.Ontogeny of the Cranial Bones of the Giant Amazon River
    Acta Scientiarum. Biological Sciences ISSN: 1679-9283 [email protected] Universidade Estadual de Maringá Brasil Gonçalves Vieira, Lucélia; Quagliatto Santos, André Luiz; Campos Lima, Fabiano Ontogeny of the cranial bones of the giant amazon river turtle Podocnemis expansa Schweigger, 1812 (Testudines, Podocnemididae) Acta Scientiarum. Biological Sciences, vol. 32, núm. 2, 2010, pp. 181-188 Universidade Estadual de Maringá .png, Brasil Available in: http://www.redalyc.org/articulo.oa?id=187114387012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DOI: 10.4025/actascibiolsci.v32i2.5777 Ontogeny of the cranial bones of the giant amazon river turtle Podocnemis expansa Schweigger, 1812 (Testudines, Podocnemididae) Lucélia Gonçalves Vieira*, André Luiz Quagliatto Santos and Fabiano Campos Lima Laboratório de Pesquisas em Animais Silvestres, Universidade Federal de Uberlândia, Av. João Naves De Avila, 2121, 38408-100, Uberlandia, Minas Gerais, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. In order to determine the normal stages of formation in the sequence of ossification of the cranium of Podocnemis expansa in its various stages of development, embryos were collected starting on the 18th day of natural incubation and were subjected to bone diaphanization and staining. In the neurocranium, the basisphenoid and basioccipital bones present ossification centers in stage 19, the supraoccipital and opisthotic in stage 20, the exoccipital in stage 21, and lastly the prooptic in stage 24. Dermatocranium: the squamosal, pterygoid and maxilla are the first elements to begin the ossification process, which occurs in stage 16.
    [Show full text]
  • Anthropometric Evaluation of Pterion in Dry Human Skulls Found in Southern India
    Jemds.com Original Research Article Anthropometric Evaluation of Pterion in Dry Human Skulls Found in Southern India Pretty Rathnakar1, Remya Vinod2, Swathi3, Anuja Sinha4 1Associate Professor, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. 2Lecturer, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. 3Associate Professor, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. 4Assistant Professor, Department of Anatomy, K. S. Hegde Medical Academy, Mangalore, Karnataka, India. ABSTRACT BACKGROUND Pterion is a H- shaped sutural convergence seen in the Norma Lateralis of skull. After Corresponding Author: 2-3 months of birth, the anterolateral fontanelle in the neonatal skulls close to form Remya Vinod, Department of Anatomy, the pterion. It is the meeting point of four bones sphenoid, parietal, temporal and K. S. Hegde Medical Academy, frontal. Four types have been noted- spheno-parietal, fronto-temporal, epipteric and Deralakatte, Mangalore-575018, stellate. Pterional approach is commonly undertaken in surgical management of Karnataka, India. tumours involving inferior aspects of frontal lobe, like olfactory meningiomas, orbital, E-mail: [email protected] retro-orbital, sellar, chiasmatic, subfrontal, prepontine areas, anterior circulation and basilar artery aneurysm. The knowledge regarding the various shapes and distances DOI: 10.14260/jemds/2019/541 from different points to pterion (distance of centre of pterion was calculated from mid-point of superior margin of zygomatic arch (PZA), Frontozygomatic suture (PFZ), Financial or Other Competing Interests: None. tip of the mastoid process (PMP), and anterosuperior margin of external acoustic meatus (PEAM)) is useful for treating number of pathologies in brain. So, this is also How to Cite This Article: useful for neurosurgeons, anatomists, anthropologists and forensic medicine Rathnakar P, Vinod R, Swathi, et al.
    [Show full text]
  • The Mechanical Function of the Postorbital Bar in Eulemur Fulvus Analyzed Using Finite Element Analysis
    University at Albany, State University of New York Scholars Archive Anthropology Honors College 4-2010 The Mechanical Function of the Postorbital Bar in Eulemur fulvus Analyzed Using Finite Element Analysis Danielle Parisi University at Albany, State University of New York Follow this and additional works at: https://scholarsarchive.library.albany.edu/honorscollege_anthro Part of the Anthropology Commons Recommended Citation Parisi, Danielle, "The Mechanical Function of the Postorbital Bar in Eulemur fulvus Analyzed Using Finite Element Analysis" (2010). Anthropology. 23. https://scholarsarchive.library.albany.edu/honorscollege_anthro/23 This Honors Thesis is brought to you for free and open access by the Honors College at Scholars Archive. It has been accepted for inclusion in Anthropology by an authorized administrator of Scholars Archive. For more information, please contact [email protected]. The Mechanical Function of the Postorbital Bar in Eulemur fulvus Analyzed Using Finite Element Analysis Danielle Parisi Senior Thesis Dr. David Strait April 27, 2010 1 INTRODUCTION This study examines the functional anatomy of the primate postorbital bar. Postorbital bars are “bony arches that encompass the lateral aspect of the eye and form part of a circular orbit,” (Heesy 2005). They are formed by the dorsal part of the frontal bone and the ventral part of the zygomatic. Postorbital bars are not unique to primates. In fact, historically, they have evolved many times in many different mammalian species. However, they are found in all primates and, thus, are considered a defining characteristic of the family. Nevertheless, while their importance is undeniable, their reason for evolving and their functional role is highly debated among scholars.
    [Show full text]
  • Paleontology Lab: Mammalian Diversity
    Paleontology Lab: Mammalian diversity Objectives: • Be able to recognize a mammal. • Be able to describe mammalian traits and evolutionary adaptations. • Be able to identify the major orders of mammals. • Be able to identify the characteristics of primates. Materials needed for this lab : Preserved specimens and skeletons of various mammals including primates Human brain and sheep brain for comparison Class Mammalia: Mammals are warm-blooded vertebrates with a fully divided (four-chambered) heart that nourish their young with milk. Most mammals are furry, but some marine mammals have a thick layer of subcutaneous fat instead. Living mammals can be divided into a few egg- laying species (the Monotremes, including the platypus and echidna), the pouched mammals (Marsupials, including opossums, kangaroos, koalas, and others), and the placental mammals ( Eutheria ). If we include fossil lineages, we might more appropriately divide mammals into Protheria and Theria. Subclass Prototheria: These are mammals whose molar teeth have cusps in antero-posterior rows and whose petrosal bone is exposed within the eye socket. Most of these mammals are extinct. Extinct prototherians include the Triconodonta, Docodonta, and Multituberculata. Order Monotremata: Egg-laying mammals, including only the platypus and the echidna ("spiny anteater"), both now confined to Australia and New Guinea. Examine any monotreme specimens that may be available. Subclass Theria: Therian mammals, with molar teeth whose molar cusps were originally arranged in opposing triangles with shear surfaces between them, the so-called tribosphenic tooth pattern. The petrosal bone is never exposed inside the eye socket (orbit). Therian mammals are divided into infraclasses Pantotheria, Metatheria, and Theria. Infraclass Pantotheria includes the extinct orders Symmetrodonta and Eupantotheria.
    [Show full text]