Oxidation of N-Butylcyclohexane in the Low Temperature Region
Total Page:16
File Type:pdf, Size:1020Kb
CORE Metadata, citation and similar papers at core.ac.uk Provided by Drexel Libraries E-Repository and Archives Oxidation of n-Butylcyclohexane in the Low Temperature Region A Thesis Submitted to the Faculty of Drexel University by Robert Harris Natelson in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2010 © Copyright 2010 Robert H. Natelson. All Rights Reserved. ii DEDICATIONS This work is dedicated to my mom and dad. iii ACKNOWLEDGMENTS I would first like to thank my advisors Dr. Nicholas P. Cernansky and Dr. David L. Miller for providing me the opportunity to conduct my graduate research studies under their guidance. Our lively discussions have been an important part of my learning process. I would also like to express my gratitude to my Ph.D. Defense committee, including Drs. Cernansky, Miller, Howard Pearlman, Ying Sun, and James Tangorra for their time, questions, and suggestions. I would also like to thank Dr. Vedha Nayagam at NASA Glenn Research Center for first introducing me to the research area of combustion. My colleague at Hess Lab, Matthew Kurman, has been an invaluable collaborator in my work, and I cannot imagine completing this study without his support in the laboratory. I would also like to acknowledge the thoughtful discussions I have had with my other Hess Lab friends, including Jamie Lane, Ashutosh Gupta, Rodney Johnson, David Lenhert, Xiaohui Gong, Jincai Zheng, Seuk Chun Choi, Yi Ma, Laton McGibbon, Kevin Wujcik, Brian Folkes, Haider Hasan, Farinaz Farid, and Julius Corrubia. The MEM department and Hess Lab staff, including Ms. Kathie Donahue, Mr. George Ciarrocchi, and Mr. Mark Shiber, have been helpful in supplying essentials including computer networking and laboratory maintenance. I would also like to thank my other friends including Akbar Fakhri, Jay Kothari, Mike Rosenberg, Dave Anderson, Mark Renfrew, Charles Budde, Joe Styron, Peter Yao, Chuck Lin, my girlfriend Hanita Lessen, and my parents and my sister Andrea for bearing with me while I worked on this study. iv Table of Contents LIST OF TABLES.......................................................................................................... vii LIST OF FIGURES....................................................................................................... viii CHAPTER 1. INTRODUCTION................................................................................... 1 1.1 Motivation................................................................................................................. 1 1.2 Objectives ................................................................................................................. 3 1.3 Approach................................................................................................................... 4 CHAPTER 2. BACKGROUND...................................................................................... 8 2.1 Hydrocarbon Oxidation Chemistry........................................................................... 8 2.2 Previous Cycloalkane Work ................................................................................... 12 CHAPTER 3. EXPERIMENTAL SETUP .................................................................. 21 3.1 Pressurized Flow Reactor Facility .......................................................................... 21 3.2 Single Cylinder Research Engine Facility.............................................................. 24 3.3 Analytical Chemistry Facility................................................................................. 32 3.4 Gases and Fuels ...................................................................................................... 35 CHAPTER 4. LOW TEMPERATURE OXIDATION OF SURROGATES ........... 36 4.1 Jet and Diesel Fuels ................................................................................................ 36 4.2 Jet Fuel Surrogate ................................................................................................... 39 4.3 Diesel Fuel Surrogate.............................................................................................. 41 4.4 Neat Fuels and Blends ............................................................................................ 42 4.5 Summary................................................................................................................. 45 CHAPTER 5. AUTOIGNITION OF SURROGATES............................................... 47 5.1 Introduction............................................................................................................. 47 v 5.2 Results..................................................................................................................... 49 5.3 Summary................................................................................................................. 58 CHAPTER 6. STABLE INTERMEDIATE SPECIES ANALYSIS ......................... 59 6.1 Stable Intermediate Species Identification and Quantification............................... 59 6.2 Summary................................................................................................................. 70 CHAPTER 7. SEMI-GLOBAL N-BUTYLCYCLOHEXANE MODEL.................. 73 7.1 Chemical Kinetics Solver Parameters..................................................................... 73 7.2 University of Southern California Model ............................................................... 73 7.3 Discussion............................................................................................................... 74 7.2 Thermochemistry.................................................................................................... 83 7.3 Results..................................................................................................................... 84 CHAPTER 8. SEMI-DETAILED N-BUTCYCLOHEXANE MECHANISM......... 96 8.1 Reaction Mechanism............................................................................................... 96 8.2 Thermochemistry.................................................................................................. 106 8.3 Results................................................................................................................... 106 8.4 Modified JetSurF v.1.1 Validation ....................................................................... 117 CHAPTER 9. CONCLUDING REMARKS.............................................................. 120 9.1 Summary............................................................................................................... 120 9.2 Future Work.......................................................................................................... 123 LIST OF REFERENCES............................................................................................. 126 Appendix A: n-Butylcyclohexane Semi-Global Kinetic File..................................... 138 Appendix B: n-Butylcyclohexane Semi-Global Thermochemistry File................... 142 Appendix C: n-Butylcyclohexane Semi-Detailed Kinetic File .................................. 147 vi Appendix D: n-Butylcyclohexane Semi-Detailed Thermochemistry File................ 153 vii LIST OF TABLES Table 1-1: JP-8 specifications defined by MIL-DTL-83133E............................................ 2 Table 3-1: Engine geometry and operating conditions..................................................... 26 Table 3-2: GC/MS operating parameters.......................................................................... 34 Table 3-3: List of experimental gases and fuels. .............................................................. 35 Table 4-1: Properties of the JP-8 fuel samples. ................................................................ 37 Table 4-2: Detailed composition of “average” jet fuel and a world average.................... 38 Table 6-1: Initial conditions of PFR experiments............................................................. 59 Table 7-1: Semi-global kinetic model for low temperature n-butylcyclohexane oxidation. ........................................................................................................................................... 74 Table 8-1: Semi-detailed kinetic mechanism for low temperature n-butylcyclohexane oxidation. ........................................................................................................................ 100 viii LIST OF FIGURES Figure 2-1: Schematic of oxidation of linear alkane hydrocarbons, C3+. ......................... 11 Figure 2-2: CO as an indicator of reactivity at low temperatures..................................... 12 Figure 3-1: Schematic of the PFR..................................................................................... 22 Figure 3-2: Schematic of the single cylinder research engine. ......................................... 26 Figure 3-3: Engine schematic at TDC. Not drawn to scale. ............................................ 27 Figure 3-4: Engine piston position at (a) IVO (10° bTDC), (b) IVC (34° aBDC), (c) EVO 40° bBDC), and (d) EVC (15° aTDC).............................................................................. 27 Figure 3-5: Temperature rise (calculated) due to isentropic compression of air at engine conditions, time = 0 ms at IVC and time = 30.2 ms at TDC, for: (···) 14:1; (- - -) 15:1; and (___) 16:1 compression ratios............................................................................................. 32 Figure 4-1: Reactivity