The Type 4 Subfamily of P-Type Atpases, Putative Aminophospholipid Translocases with a Role in Human Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Type 4 Subfamily of P-Type Atpases, Putative Aminophospholipid Translocases with a Role in Human Disease View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1741 (2005) 11 – 24 http://www.elsevier.com/locate/bba Review The type 4 subfamily of P-type ATPases, putative aminophospholipid translocases with a role in human disease C.C. Paulusma*, R.P.J. Oude Elferink Department of Experimental Hepatology, Academic Medical Center/AMC Liver Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands Received 30 March 2005; received in revised form 21 April 2005; accepted 25 April 2005 Available online 16 May 2005 Abstract The maintenance of phospholipid asymmetry in membrane bilayers is a paradigm in cell biology. However, the mechanisms and proteins involved in phospholipid translocation are still poorly understood. Members of the type 4 subfamily of P-type ATPases have been implicated in the translocation of phospholipids from the outer to the inner leaflet of membrane bilayers. In humans, several inherited disorders have been identified which are associated with loci harboring type 4 P-type ATPase genes. Up to now, one inherited disorder, Byler disease or progressive familial intrahepatic cholestasis type 1 (PFIC1), has been directly linked to mutations in a type 4 P-type ATPase gene. How the absence of an aminophospholipid translocase activity relates to this severe disease is, however, still unclear. Studies in the yeast Saccharomyces cerevisiae have recently identified important roles for type 4 P-type ATPases in intracellular membrane- and protein- trafficking events. These processes require an (amino)phospholipid translocase activity to initiate budding or fusion of membrane vesicles from or with other membranes. The studies in yeast have greatly contributed to our cell biological insight in membrane dynamics and intracellular-trafficking events; if this knowledge can be translated to mammalian cells and organs, it will help to elucidate the molecular mechanisms which underlie severe inherited human diseases such as Byler disease. D 2005 Elsevier B.V. All rights reserved. Keywords: Type 4 P-type ATPase; Aminophospholipid translocase; Phospholipid asymmetry; Byler disease; Membrane- and protein-trafficking; Yeast Saccharomyces cerevisiae 1. The P-type ATPase superfamily by Jens C. Skou who was awarded the Nobel Prize in Chemistry in 1997 for his work on the abundant Na+/K+- The P-type ATPase superfamily is an evolutionary ATPase [7,8]. Following this finding, a whole range of conserved, large family of proteins of which members are different P-type ATPases have been identified with varying widely expressed in both prokaryotes and eukaryotes, protein topologies and substrate specificities. In general, P- including bacteria, yeast, parasites, nematodes, insects, type ATPases are important in the generation of cation plants, and animals [1–5] (See also the on-line FP-type gradients which make these proteins indispensable in the ATPase database_ by Axelsen, K.B., http://www.patbase. regulation of cell volume, excitability of nerve cells, muscle kvl.dk). P-type ATPases are integral membrane proteins contraction, intracellular pH, acid secretion in the stomach, which, in most cases, mediate the ATP-dependent transport uptake of substrates, and signaling pathways. of small cations across biological membranes, including Based on phylogenetic analysis, this large family is those of intracellular organelles [5,6]. The first P-type divided into 5 major subfamilies, each unique in their class of ATPase activity (Na+/K+-ATPase) was discovered in 1957 substrates and in subfamily-specific sequence motifs [1–3]. In general, the type 1 ATPases transport heavy metals such as copper, cadmium, and zinc. The type 2 subfamily * Corresponding author. Tel.: +31 20 5668850; fax: +31 20 5669190. transports non-heavy metal cations and includes proteins + + + + 2+ E-mail address: [email protected] (C.C. Paulusma). like the Na /K -, H /K -, and Ca -ATPases. The type 3 0925-4439/$ - see front matter D 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.bbadis.2005.04.006 12 C.C. Paulusma, R.P.J. Oude Elferink / Biochimica et Biophysica Acta 1741 (2005) 11–24 family includes ATPases only expressed in plants and fungi [26–28]. Phospholipids tend to equilibrate between the which are involved in the transport of magnesium- and two leaflets of bilayers, albeit at a slow rate (the order of proton-ions. Type 4 subfamily members are exclusively magnitude of the movement across the bilayer tends to be expressed in eukaryotic cells and transport phospholipids hours in artificial membranes (reviewed in [29])). In (see below) [9–12]. Finally, of the recently identified type living cells, this process is accelerated by fusion and 5 subfamily (exclusively expressed in eukaryotic cells), pinching of vesicles to and from membranes. The only one member has been identified yet which is asymmetry therefore needs to be actively maintained. implicated in cellular calcium homeostasis and endoplas- Three classes of proteins are involved in regulating mic reticulum function in yeast [13–15]. All P-type phospholipid distribution in membrane bilayers, i.e., ATPases share a common topology; usually 10 trans- floppases, flippases, and scramblases [19,20,25,30–35]. membrane domains, NH2- and COOH-termini protruding Phospholipid asymmetry is maintained by floppases and into the cytoplasm, and a large intracellular loop harboring flippases, ATP-dependent proteins that translocate specific P-type ATPase-specific sequences and an ATP-binding site. phospholipid species from the inner to the outer leaflet of The core of all P-type ATPases contains a conserved stretch the bilayer and vice versa, respectively. Scramblases are of seven amino acids with the P-type signature sequence bidirectional activities with little specificity that, upon FDKTGT[L,I,V,M][T,I,S]_. This motif includes an aspartic activation, dissipate phospholipid asymmetry. Scramblase acid residue (FD_) which is essential in the reaction cycle of activities have been identified in plasma membranes and the protein. The mechanism via which substrates are in membranes of the endoplasmic reticulum and the pumped is based on the E1E2 model, in which ATP- Golgi apparatus [22,34,36–39]. In many cells, these mediated phosphorylation, substrate binding, and subse- activities are dependent on elevation of cytosolic calcium quent dephosphorylation of the invariant aspartic acid are concentrations, e.g., in cells involved in blood coagu- coupled to a conformational change of the transporter lation [34]. However, in apoptotic cells, it seems that [6,16]. The phosphotransfer reaction drives the transport another mechanism (rather than calcium) is involved in cycle of these proteins, hence the name P-type ATPase. activation of the scramblase [40]. Although phosphotransfer remains the driving force for In most eukaryotic cells, phosphatidylcholine (PC) and these transporters, the E1E2 model is outdated, and sphingolipids (i.e., glycolipids and sphingomyelin (SM)) recently, a revised model has been proposed [17,18]. are abundant in the outer leaflet of the plasma membrane Briefly, in the E1E2 model, only two conformational states and in the luminal leaflet of endo- and exocytic vesicles. of the protein are recognized; the revised model, however, Proteins of the ATP-binding cassette (ABC) transporter recognizes at least four conformational changes, all of superfamily have been implicated in the outward transport, which are supported by a large body of biochemical and i.e., Fflopping_ of choline-containing phospholipids [41]. structural data (reviewed in [17,18]). Mice in which the gene encoding the liver-specific Mdr2 Type 4 P-type ATPases are clearly deviant from the protein (Abcb4) has been knocked out do not secrete PC other subfamilies in that they are thought to translocate into the canalicular lumen [42]. The human ortholog, phospholipids (rather than cations) from the outer- and MDR3 (ABCB4) protein, likewise specifically translocates inner leaflet of membrane bilayers [9,11,19–23]. Studies PC (as well as its fluorescent analogs) from the inner to the in yeast have recently demonstrated an association outer leaflet of the bilayer when expressed in mouse between type 4 ATPase-mediated phospholipid translocase fibroblasts or pig epithelial (LLC-PK1) cells [42–44]. activity and vesicular (protein) trafficking [11,20,24,25]. MDR1 (ABCB1) protein, a broad-range xenobiotic trans- Furthermore, members of this subfamily have been porter, also translocates choline-containing lipids, including implicated in human disease. The molecular mechanisms short-chain analogs of PC, glucosylceramide, and platelet- underlying these disease phenotypes are, however, still activating factor [44,45]. In addition, MRP1 (ABCC1) unclear. The scope of this review is to highlight the role protein has been implicated in the outward transport of of type 4 P-type ATPases in human disease and to relate fluorescent analogs of phosphatidylserine (PS) and SM this to recent findings in yeast in which an important [46,47]. function for type 4 ATPases in intracellular trafficking has The aminophospholipids PS and phosphatidylethano- been demonstrated. lamine (PE) localize to the cytosolic leaflet of bilayers and their distribution is maintained by flippases or amino- phospholipid translocases (APLT) in a process termed 2. Aminophospholipid translocases and membrane Fflipping_. Obviously, maintenance of phospholipid asym- asymmetry metry must be a physiologically
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Plasma Membrane Ca2+–Atpase in Rat and Human Odontoblasts Mediates Dentin Mineralization
    biomolecules Article Plasma Membrane Ca2+–ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization Maki Kimura 1,†, Hiroyuki Mochizuki 1,†, Ryouichi Satou 2, Miyu Iwasaki 2, Eitoyo Kokubu 3, Kyosuke Kono 1, Sachie Nomura 1, Takeshi Sakurai 1, Hidetaka Kuroda 1,4,† and Yoshiyuki Shibukawa 1,*,† 1 Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; [email protected] (M.K.); [email protected] (H.M.); [email protected] (K.K.); [email protected] (S.N.); [email protected] (T.S.); [email protected] (H.K.) 2 Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] (R.S.); [email protected] (M.I.) 3 Department of Microbiology, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] 4 Department of Dental Anesthesiology, Kanagawa Dental University, 1-23, Ogawacho, Kanagawa, Yokosuka-shi 238-8570, Japan * Correspondence: [email protected] † These authors contributed equally to this study. Abstract: Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+–Ca2+ exchanger (NCX) and plasma membrane Ca2+–ATPase (PMCA) to Citation: Kimura, M.; Mochizuki, H.; maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ Satou, R.; Iwasaki, M.; Kokubu, E.; extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Kono, K.; Nomura, S.; Sakurai, T.; Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of Kuroda, H.; Shibukawa, Y.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Ubiquitylome Profiling of Parkin-Null Brain Reveals Dysregulation Of
    Neurobiology of Disease 127 (2019) 114–130 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium T homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons Key J.a,1, Mueller A.K.b,1, Gispert S.a, Matschke L.b, Wittig I.c, Corti O.d,e,f,g, Münch C.h, ⁎ ⁎ Decher N.b, , Auburger G.a, a Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany b Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany c Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany d Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France e Inserm, U1127, Paris, F-75013, France f CNRS, UMR 7225, Paris, F-75013, France g Sorbonne Universités, Paris, F-75013, France h Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany ARTICLE INFO ABSTRACT Keywords: Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among Parkinson's disease its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin Mitochondria triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear howse- Parkin lective neural circuits become vulnerable and finally undergo atrophy. Ubiquitin We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein Calcium targets of Parkin activity, an ubiquitin E3 ligase.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Macropinocytosis Requires Gal-3 in a Subset of Patient-Derived Glioblastoma Stem Cells
    ARTICLE https://doi.org/10.1038/s42003-021-02258-z OPEN Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells Laetitia Seguin1,8, Soline Odouard2,8, Francesca Corlazzoli 2,8, Sarah Al Haddad2, Laurine Moindrot2, Marta Calvo Tardón3, Mayra Yebra4, Alexey Koval5, Eliana Marinari2, Viviane Bes3, Alexandre Guérin 6, Mathilde Allard2, Sten Ilmjärv6, Vladimir L. Katanaev 5, Paul R. Walker3, Karl-Heinz Krause6, Valérie Dutoit2, ✉ Jann N. Sarkaria 7, Pierre-Yves Dietrich2 & Érika Cosset 2 Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glio- 1234567890():,; blastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3- mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macro- pinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of- principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients. 1 University Côte d’Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging (IRCAN), Nice, France. 2 Laboratory of Tumor Immunology, Department of Oncology, Center for Translational Research in Onco-Hematology, Swiss Cancer Center Léman (SCCL), Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
    [Show full text]
  • © Ferrata Storti Foundation
    Red Cell Biology & its Disorders ARTICLE ATP11C is a major flippase in human erythrocytes and its defect causes congenital Ferrata Storti EUROPEAN HEMATOLOGY Foundation hemolytic anemia ASSOCIATION Nobuto Arashiki,1 Yuichi Takakuwa,1 Narla Mohandas,2 John Hale,2 Kenichi Yoshida,3 Hiromi Ogura,4 Taiju Utsugisawa,4 Shouichi Ohga,5 Satoru Miyano,6 Seishi Ogawa,3 Seiji Kojima,7 and Hitoshi Kanno,4,8 1Department of Biochemistry, School of Medicine, Tokyo Women’s Medical University, Japan; 2Red Cell Physiology Laboratory, New York Blood Center, NY, USA; 3Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan; 4Department of Transfusion Medicine and Cell Processing, School of Medicine, Tokyo Women’s Medical University, Japan; 5Department of Pediatrics, Graduate School of Medicine, Yamaguchi University, Japan; 6Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan; 7Department of Pediatrics, Graduate School of Medicine, Nagoya University, Japan; and 8Division of Genomic Medicine, Department of Advanced Biomedical Engineering and Haematologica 2016 Science, Graduate School of Medicine, Tokyo Women's Medical University, Japan Volume 101(5):559-565 ABSTRACT hosphatidylserine is localized exclusively to the inner leaflet of the membrane lipid bilayer of most cells, including erythrocytes. This Pasymmetric distribution is critical for the survival of erythrocytes in circulation since externalized phosphatidylserine is a phagocytic signal for splenic macrophages. Flippases are P-IV ATPase family proteins that active- ly transport phosphatidylserine from the outer to inner leaflet. It has not yet been determined which of the 14 members of this family of proteins is the flippase in human erythrocytes.
    [Show full text]
  • Myopia in African Americans Is Significantly Linked to Chromosome 7P15.2-14.2
    Genetics Myopia in African Americans Is Significantly Linked to Chromosome 7p15.2-14.2 Claire L. Simpson,1,2,* Anthony M. Musolf,2,* Roberto Y. Cordero,1 Jennifer B. Cordero,1 Laura Portas,2 Federico Murgia,2 Deyana D. Lewis,2 Candace D. Middlebrooks,2 Elise B. Ciner,3 Joan E. Bailey-Wilson,1,† and Dwight Stambolian4,† 1Department of Genetics, Genomics and Informatics and Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 2Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States 3The Pennsylvania College of Optometry at Salus University, Elkins Park, Pennsylvania, United States 4Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States Correspondence: Joan E. PURPOSE. The purpose of this study was to perform genetic linkage analysis and associ- Bailey-Wilson, NIH/NHGRI, 333 ation analysis on exome genotyping from highly aggregated African American families Cassell Drive, Suite 1200, Baltimore, with nonpathogenic myopia. African Americans are a particularly understudied popula- MD 21131, USA; tion with respect to myopia. [email protected]. METHODS. One hundred six African American families from the Philadelphia area with a CLS and AMM contributed equally to family history of myopia were genotyped using an Illumina ExomePlus array and merged this work and should be considered co-first authors. with previous microsatellite data. Myopia was initially measured in mean spherical equiv- JEB-W and DS contributed equally alent (MSE) and converted to a binary phenotype where individuals were identified as to this work and should be affected, unaffected, or unknown.
    [Show full text]
  • The SERCA Residue Glu340 Mediates Interdomain Communication That Guides Ca2+ Transport
    The SERCA residue Glu340 mediates interdomain communication that guides Ca2+ transport Maxwell M. G. Geurtsa,1, Johannes D. Clausenb,c,1, Bertrand Arnoub,d,1, Cédric Montignyd, Guillaume Lenoird, Robin A. Coreya, Christine Jaxeld, Jesper V. Møllerb, Poul Nissenc,e, Jens Peter Andersenb, Marc le Maired, and Maike Bublitza,2 aDepartment of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom; bDepartment of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; cDepartment of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark; dInstitute for Integrative Biology of the Cell (I2BC), Commissariat à l’Energie Atomique et aux Energies Alternatives, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; and eDanish Research Institute of Translational Neuroscience-DANDRITE, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Denmark Edited by Ivet Bahar, University of Pittsburgh School of Medicine, Pittsburgh, PA, and approved October 21, 2020 (received for review July 15, 2020) The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a P-type A number of SERCA1a crystal structures have shed light on ATPase that transports Ca2+ from the cytosol into the sarco(endo) the nature of the conformational changes associated with Ca2+ plasmic reticulum (SR/ER) lumen, driven by ATP. This primary transport (reviewed in refs. 3–5). There are two Ca2+-binding transport activity depends on tight coupling between movements sites within the TM domain of SERCA, denoted sites I and II of the transmembrane helices forming the two Ca2+-binding sites based on a proven sequential order of Ca2+ binding (6). The and the cytosolic headpiece mediating ATP hydrolysis.
    [Show full text]
  • Research Article Identification of ATP8B1 As a Tumor Suppressor Gene for Colorectal Cancer and Its Involvement in Phospholipid Homeostasis
    Hindawi BioMed Research International Volume 2020, Article ID 2015648, 16 pages https://doi.org/10.1155/2020/2015648 Research Article Identification of ATP8B1 as a Tumor Suppressor Gene for Colorectal Cancer and Its Involvement in Phospholipid Homeostasis Li Deng,1,2 Geng-Ming Niu,1 Jun Ren,1 and Chong-Wei Ke 1 1Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China 2Department of General Surgery, The Shanghai Public Health Clinical Center, Fudan University, Shanghai, China Correspondence should be addressed to Chong-Wei Ke; [email protected] Received 5 May 2020; Revised 16 July 2020; Accepted 17 August 2020; Published 29 September 2020 Academic Editor: Luis Loura Copyright © 2020 Li Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Homeostasis of membrane phospholipids plays an important role in cell oncogenesis and cancer progression. The flippase ATPase class I type 8b member 1 (ATP8B1), one of the P4-ATPases, translocates specific phospholipids from the exoplasmic to the cytoplasmic leaflet of membranes. ATP8B1 is critical for maintaining the epithelium membrane stability and polarity. However, the prognostic values of ATP8B1 in colorectal cancer (CRC) patients remain unclear. We analyzed transcriptomics, genomics, and clinical data of CRC samples from The Cancer Genome Atlas (TCGA). ATP8B1 was the only potential biomarker of phospholipid transporters in CRC. Its prognostic value was also validated with the data from the Gene Expression Omnibus (GEO). Compared to the normal group, the expression of ATP8B1 was downregulated in the tumor group and the CRC cell lines, which declined with disease progression.
    [Show full text]
  • Dominance of SARS-Cov-2 D614G Variant Explained by the Requirement of COVID-19 for Calcium; Proximate Therapeutic Implication(S) for COVID-19
    Cashman DP, J Clin Immunol Immunother 2020, 6: 048 DOI: 10.24966/CIIT-8844/1000048 HSOA Journal of Clinical Immunology and Immunotherapy Research Article Decreased SPCA1 expression causes Hailey-Hailey disease, a rare Dominance of SARS-CoV-2 skin disorder that impairs a cells’ ability to transport Ca2+ (i.e., human ATP2C1 gene). Clinically, the hypocalcemia associated with hospi- D614G Variant Explained by talized COVID-19 patients can effectively impair Ca2+ transport in an analogous manner to the SPCA1 deficiency. Here, the D614G the Requirement of COVID-19 SAR-CoV-2 mutant strain can make use of clinical hypocalcemia like the D104G mutated hPIV-3 virus takes advantage of SPCA1 deficient cells to increase infectivity. These data demonstrate the for Calcium; Proximate critical importance of calcium for effective SARS-CoV-2/COVID-19 infection and how understanding this mechanism can be exploited Therapeutic Implication(s) for for therapeutic gain to stop, or otherwise attenuate virus infection at the earliest steps. Calcium chelation by pharmaceutical EDTA, has COVID-19 been, and can be safely delivered via nebulizer or oral ingestion. Daniel P Cashman M.D.* EDTA treatment is available in outpatient and inpatient settings and can be self-administered during “quarantine” periods. These proven PO Box 841, Los Altos, CA, United States and safe EDTA treatments should effectively disrupt SARS-CoV-2 spread at the earliest step in the virus lifecycle and warrant investi- Abstract gation and optimization to save lives post haste. The current dominance of D614G mutation in the SARS-CoV-2 Keywords: Calcium; Covid-19; Pandemic; SARS-CoV-2; D614G; pandemic implies increased infectivity of the virus S protein that Spike Protein Variant; EDTA; Nebulizer; Treatment; Zinc drives cellular entry which is triggered by binding to the angioten- sin converting enzyme-2 (ACE2) receptor and calcium-dependent Introduction protease-mediated activation.
    [Show full text]