<<

University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2006

Genetic diversity of Gleditsia triacanthos, honey locust across its North American range.

Mirabela Hali University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Hali, Mirabela, " of Gleditsia triacanthos, honey locust across its North American range." (2006). Electronic Theses and Dissertations. 2211. https://scholar.uwindsor.ca/etd/2211

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. GENETIC DIVERSITY OF GLEDITSIA TRIACANTHOS, HONEY LOCUST ACROSS ITS NORTH AMERICAN RANGE

by

Mirabela Hali

A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Biological Sciences in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor

Windsor, Ontario, Canada 2006 ©2006 Mirabela Hali

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliotheque et Archives Canada Archives Canada

Published Heritage Direction du Branch Patrimoine de I'edition

395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada

Your file Votre reference ISBN: 978-0-494-17118-9 Our file Notre reference ISBN: 978-0-494-17118-9

NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats.

The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission.

In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these.

While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. i * i Canada Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT

My general objective was to assess the nature and extent of genetic diversity within and

among thirteen of the native North American dioecious tree, Gleditsia

triacanthos located in northern, southern, western and central portions of the

range of distribution using leaf tissue samples collected from all populations. I

investigated genetic diversity using Random Amplification of Polymorphic DNA. To

measure genetic differentiation I used several statistics, including Shannon’s index of

diversity, Wright’s fixation index, Nei’s genetic distance, and indirect . To

compare samples I used Analysis of Molecular Variance.

Results indicate a high percentage of polymorphic loci per . Relatively high

levels of variation are evident within populations, but low levels among populations.

Results of regional comparisons indicate higher levels of within regions

than among regions. In periphery, higher levels of gene flow and less genetic

differentiation are present compared with the center of the range. No specific bands are

found to distinguish categorically between female and male individuals. Results assessing

the patterns of genetic variation among thomed and thornless individuals show no

significant differences between groups.

in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DEDICATION

To my dad, Ismet (may he rest in peace), who did so much over the years for education.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS

I would like to thank and to express my deep gratitude to Drs. Lesley Lovett-Doust and

Jon Lovett-Doust for their guidance and patience in completing this thesis. I am in debt to

my colleague Jeremy VanderWal for his endless help in statistics. A special thank you is

also extended to Dr. Helen Murphy who helped me with sampling. I would like to thank

my Committee member Dr. Chris Lakhan (Department of Geography) for his comments

and suggestions. I am also grateful to Nancy Barkley, and my lab mates Mona Moen, Joe

Thomas, Lisa Tulen and Kelly Thicket.

I would also like to thank my family here, my in-laws Manushaqe and Myhedin, for their

great help and patience with the house work and the baby; my family back home, my

mum Lejla, my brothers Mirsad and Edrit for their moral and spiritual support.

I especially wish to thank Astrit and Amadis for being such a wonderful husband and son,

respectively.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS

ABSTRACT ...... iii DEDICATION...... iv ACKNOWLEDGEMENTS...... v LIST OF TABLES...... viii LIST OF FIGURES...... x

INTRODUCTION...... 1 1.1 - Population genetic diversity and the factors which influence it ...... 1 1.2 - Dispersal and gene flow ...... 4 1.3 - Pollen - mediated gene flow ...... 8 1.4 - Ecological factors influencing gene flow ...... 12 1.5 - Long-distance dispersal ...... 14 1.6 - Plant gene flow in comparison to gene flow ...... 20 1.7 - Mode of reproduction ...... 21 1.8 - Timing and phenology...... 22 1.9 - Species diversity and genetic diversity ...... 23 1.10 - and ...... 24 1.11 - Local ...... 25 1.12 - Landscape-level effects ...... 26 1.13 - Effects of position in the geographic range on genetic variability: the Central-Peripheral Model ...... 30 1.14 - The study organism Gleditsia triacanthos, Honey Locust ...... 41

MATERIALS AND METHODS...... 50 2.1 - Study site locations ...... 50 2.2 - Use of Random Amplified Polymorphic DNA (RAPD) ...... 50 2.3 - Sample Collection and DNA Extraction ...... 54 2.4 - RAPD Analysis ...... 56 2.5 - DNA amplification ...... 58 2.6 - Electrophoresis ...... 59 2.7 - Staining and documentation ...... 60 2.8 - Statistics used to measure genetic differentiation within and among populations ...... 62

RESULTS...... 73 3.1 - Fingerprinting of Honey Locust individuals: general patterns ...... 73 3.2 - Patterns of genetic diversity within and among populations of Honey Locust ...... 74 3.3 - Genetic diversity within and among the four regions of Honey Locust geographic range ...... 75 3.4 - Genetic diversity within and between male, female and vegetative individuals...... 77

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.5 - Genetic diversity within and between the thorniness degree in Honey Locust ...... 77 3.6 - Correlations between geographical distances, genetic distances and patterns of gene flow ...... 78 3.7 - Genetic variation and population size ...... 79 3.8 - AMOVA results ...... 80 3.9 - Phylip dendrogram ...... 80

DISCUSSION...... 108 4.1 - The use of markers ...... 108 4.2 - Choice of primers ...... 109 4.3 - Genetic diversity within and between populations ...... 109 4.4 - Peripheral populations in comparison to central populations ...... 117 4.5 - Female/Male differentiation ...... 124 4.6 - Thom presence/absence differentiation ...... 125 4.7 - Are my hypotheses supported or rejected? ...... 125

CONCLUSIONS...... 128

REFERENCES...... 129

Appendix 1 ...... 155 Appendix 2 ...... 156 Appendix 3 ...... 157 Appendix 4 ...... 158 Appendix 5 ...... 160 Appendix 6 ...... 163 Appendix 7 ...... 185 Appendix 8 ...... 186 Appendix 9 ...... 198 Appendix 10 ...... 206 Appendix 11 ...... 242 Appendix 12 ...... 254 Appendix 13 ...... 266

VITA AUCTORIS...... 274

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES

TABLE 1.1: Mean levels of allozyme genetic diversity within populations of plant species representing different life forms ...... 45 TABLE 1.2: Distribution of allozyme variation among populations of plant species ...... 46 TABLE 1.3: Direct estimates of pollen-mediated gene immigration into isolated tree populations, based on multi-locus paternity analyses ...... 47 TABLE 2.1: Population locations, arranged from most northerly to most southerly latitudes, total population size, approximate distance from centre of geographic range and the land cover type in which the sampled trees occur at the site ...... 67 TABLE 2.2: Primers used generating RAPDs ...... 68 TABLE 3.1: Sites according to regions, number of individuals in each site, the mean frequencies for presence (p) and absence (q) of bands ± standard error in the thirteen populations of Honey Locust, number of monomorphically absent bands, and percentage of polymorphic bands present at each site ...... 82 TABLE 3.2: Regions of the geographic range, number of individuals in each region, the mean allele frequencies for presence (p) and absence (q) of bands ± standard error in each of the four regions of Honey Locust distribution; number of monomorphically absent bands, and percentage of polymorphic bands present in each region ...... 83 TABLE 3.3: Number of female, male and vegetative individuals, the mean allele frequencies for presence (p) and absence (q) of bands ± standard error, number of monomorphically absent bands, and percentage of polymorphic bands in these individuals ...... 84 TABLE 3.4: The number of thomed and thornless individuals, the mean allele frequencies for presence (p) and absence (q) of band ± standard error, number of monomorphically absent bands, and percentage of polymorphic bands in these individuals ...... 85 TABLE 3.5: Proportion of diversity in Honey Locust according to Shannon’s index of diversity - Ho, and according to Wright’s fixation index - Fst; Ht- heterozygosity in total, Hs - the average heterozygosity in populations, regions, sex classes, and the patterns of thorn production ...... 86 TABLE 3.6: Mean values of Shannon’s index of genetic diversity between individuals within a population (Ho) and of Nei’s mean genetic distances between individuals within a population (G st)...... 87 TABLE 3.7: Matrix of average genetic distance (Nei’s genetic distance) among 13 populations of Gleditsia triacanthos...... 88 TABLE 3.8: Matrix of average gene flow (Nm) among the 13 populations of Gleditsia triacanthos...... 89 TABLE 3.9: Mean values of Shannon’s index of genetic diversity between individuals within a region (Ho) and of Nei’s mean genetic distances between individuals within a region (G st)...... 90

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE 3.10: a) Matrix of average genetic distance (Nei’s genetic distance) among four regions; b) Matrix of average genetic distance (Nei’s genetic distance) among sex classes; c) Matrix of average genetic distance (Nei’s genetic distance) among thomed - no thorns categories ...... 91 TABLE 3.11: Matrix of average genetic distance (Nei’s genetic distance) between populations within a region, mean values and their respective standard errors in each region ...... 92 TABLE 3.12: Matrix of average gene flow among populations within a region, the mean values and the respective standard errors in each region ...... 93 TABLE 3.13: Mean values of Shannon’s index of diversity between female, male and vegetative (non-flowering) individuals (Ho) and of Nei’s mean genetic distances between female, male and vegetative (non-flowering) individuals (G st) ...... 94 TABLE 3.14: Mean values of Shannon’s index of diversity between thomed and thornless individuals (Ho) and of Nei’s mean genetic distances between thomed and thornless individuals (G st) • • ...... 95 TABLE 3.15: Matrix of average geographic distance among 13 populations of Gleditsia triacanthos (in km) ...... 96 TABLE 3.16: Geographic regions of Honey Locust range, their average population size - Ps, average geographic distance between populations in a region (in km) - Go, values of Shannon’s index of diversity in regions and their standard error - Ho ± SE, mean values of gene flow in regions and their standard error - Nm ± SE, and mean values of genetic distances in regions and their standard error - G st ± SE...... 97 TABLE 3.17: AMOVA design and results ...... 98

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF FIGURES

FIGURE 1.1: Honey Locust native range ...... 48 FIGURE 1.2: Honey Locust leaves, branches, thorns, fruits, and seeds ...... 49 FIGURE 2.1: Thirteen locations of Gleditsia triacanthos selected fo r this study distributed in four regions of the native range ...... 69 FIGURE 2.2: Agarose gel with presence of DNA from extracted samples ...... 70 FIGURE 2.3: RAPD technique; monomorphic and polymorphic bands ...... 71 FIGURE 2.4: Gel electrophoresis generating RAPDs ...... 72 FIGURE 3.1: Mean values of gene flow ± standard error and genetic distance ± standard error at each region ...... 99 FIGURE 3.2: The relationship between pair-wise geographic distances (Table 3.15) and pair-wise genetic distances (G st) among 13 populations of Gleditsia triacanthos...... 100 FIGURE 3.3: Correlation between geographic distances from the center of the range (taken from Table 2.1) in km and mean values of Shannon’s index of genetic diversity between individuals within a population ...... 101 FIGURE 3.4: The relationship between pair-wise geographic distances and pair-wise gene flow values among 13 populations of Gleditsia triacanthos 102 FIGURE 3.5: Relationship between population size and mean values of Shannon’s index of genetic diversity between individuals within a population of Gleditsia triacanthos...... 103 FIGURE 3.6: The relationship between population size and Nei’s mean genetic distances between individuals within a population of Gleditsia triacanthos...... 104 FIGURE 3.7: Relationship between population size and mean values of Shannon’s index of genetic diversity ± standard error in the four geographical regions of Gleditsia triacanthos range ...... 105 FIGURE 3.8: The relationship of mean values of population size and mean values of gene flow ± standard error in the four regions of Gleditsia triacanthos range ...... 106 FIGURE 3.9 : The relationship between mean values of population size and mean values of Nei’s genetic distance ± standard error in the four regions of Gleditsia triacanthos range ...... 107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 1 Introduction

1.1 - Population genetic diversity and the factors which influence it

All organisms carry a genetic blueprint regardless of whether they are plants, , or

fungi, whether they are short- or long-lived, and whether they reproduce sexually or

clonally (Falk et al. 1996). Examples that illustrate how genetic composition affects

biological form and function abound in the scientific literature (e.g., Hamrick et al. 1979).

In fact, recognition of genetic variation among individuals was a primary insight that led

to the formulation of evolutionary theory as we know it today (Freeman & Herron 1998).

Genes regulate body development, size, shape, physiological processes, behavioral traits,

reproductive characteristics, tolerance of environmental extremes, dispersal and

colonizing ability, the timing of seasonal and annual cycles (phenology), disease

resistance, and many other traits (Raven et al. 1986). Thus to ignore genetic variation in

would be to ignore one of the fundamental forces that shape the biology of living

organisms.

Genetic diversity in natural populations is a major concern of evolutionary biologists

because the amount and distribution of genetic diversity are likely to affect the

evolutionary potential of species and/or populations (Maki 2001). In the last three

decades, a vast amount of data on genetic diversity in natural plant populations has

accumulated, and correlations between genetic diversity and various species attributes

have been examined (e.g., Hamrick & Godt 1989).

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The genetic profile of populations typically varies from place to place across a species’

geographic range (Meffe & Carrol 1994). Species possess patterns of genetic diversity

that reflect both the biology and history of species (Wright 1965; Nei 1975). For example,

according to Slatkin (1985), nearby populations of plants that are pollinated by bees may

share many because genes can flow easily among sites. Such species may have

fewer unique alleles per population, and different populations tend to be genetically

similar. By contrast, there may be less gene flow among populations of species that are

pollinated by ground-dwelling flightless beetles, or whose heavy fruits fall to the ground

in the vicinity of the parent tree (Slatkin 1985).

Gene flow can also be obstructed by physical barriers (e.g., topography, or that a

pollinator, disperser, or migrating individual cannot cross), as well as by

(Levin 1981; Slatkin 1987). Even if genetic variation within a population is low, there

may be considerable variability among populations (Aguirre-Planter et al. 2000). To

understand this better, we can imagine a plant that lives in high mountaintop alpine areas,

in which every individual on a given mountain is nearly identical genetically to others

(Falk et al. 2001). In one population, individuals will all be nearly identical to each other;

individuals in another population will also be nearly identical to each other, but because

different populations are very isolated from one another, the individuals in the second

population may all be very different from individuals in the first population. Under such

circumstances, most of the variation here is among populations; within-population

variation is low or nonexistent. Falk et al. (2001) give a counter example in which a

species lives in tallgrass prairie, where suitable are relatively close to one another

(or even continuous), and dispersal among populations is common. Among these sites,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. gene flow is high, so most populations are similar (that is, most polymorphic alleles are

widely distributed). This illustrates a species with a high proportion of variation

distributed within populations, while among-population variation is relatively small.

Because genetic differentiation has been shown to occur on geographic as well as micro­

geographic levels (e.g., Schmitt & Seitz 2002), the study of population genetic structure

in plants is necessarily hierarchical. Any such study must first estimate individual levels

of genetic variation and then the degree to which it is partitioned between and among

populations (Schnabel & Hamrick 1990). The magnitude of genetic differentiation among

populations is almost solely determined by the ability of a species to disperse its genes

(Loveless & Hamrick 1984; Hamrick & Godt 1989), and this gene flow occurs separately

via both maternal and paternal pathways (Ellstrand 1992a), that is, via seed and pollen

dispersal.

Information on the distribution of genetic variation across the range of a species is

fundamental to our understanding of ecological and evolutionary processes. Partitioning

genetic variation into geographical components (e.g., among regions, among and within

populations, between individuals) and examining genetic patterns at a range of spatial

scales (Suyama et al. 2000; Nassar et al. 2001) can provide information on founder events

and bottlenecks, on patterns of gene flow, and on fme-scale processes such as clonal

growth. Genetic structuring among populations may result from limitations to gene flow,

genetic drift, spatial variability in selection, or a combination of these factors. Genetic

structuring among geographic regions may result from major barriers to gene flow, in

populations with discontinuous distributions, or in populations with continuous

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. distributions, due to processes such as glaciations which have played a role in

colonization processes (Avise 2000).

1.2 - Dispersal and gene flow

Species are composed of genetically divergent units usually interconnected by some level

of gene flow (Soule 1987b). Because of this restriction in gene flow, can

genetically tailor populations to their environments through the process of local

adaptation (Wright 1931). Levels of gene flow among populations of many plant species

are low (Levin & Kerster 1974; Levin 1984; Slatkin 1985a; Ellstrand 1992 a, b). The low

value in most plants allows differentiation among populations which may be directly

related to geographic distance among populations (Fischer et al. 2000).

Gene flow in plants - the immigration of genes, gametes, or individuals into resident

populations - is determined partly by breeding, pollination, and dispersal systems (Levin

& Kerster 1974). Higher levels of gene flow occur in -pollinated, wind-pollinated,

and obligate outcrossing species (Ellstrand & Hoffman 1990).

The spatial distribution of genetic variation within plant populations has been widely

studied using spatial autocorrelation techniques (Chung et al. 2002). This has allowed

classification of population genetic processes and demonstrated evolutionary forces

including limited seed and pollen dispersal, adult density, colonization history, and,

potentially, micro-environmental selection (Epperson 1993; Smouse & Peakall 1999;

Kalisz et al. 2001).

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. With respect to forest tree species, many studies have revealed significant fine-scale

genetic structuring within populations (Schnabel & Hamrick 1990a; Perry &

Knowles 1991; Schnabel et al. 1991; Knowles et al. 1992; Hamrick et al. 1993; Sork et al.

1993; Montalvo et al. 1997; Ueno et al. 2000). This variation may be due to the different

ecological and genetic factors operating in natural populations, as well as the different

sampling protocols and spatial scales, and finally may also be due to different statistical

procedures (Streiff et al. 1988; Smouse & Peakall 1999; Gram & Sork 2001).

For example, although single populations or study sites have been analyzed for most

studies of spatial-genetic structure in tree species, the classified populations of animal-

dispersed tree species may have very different spatial structures (Schnabel & Hamrick

1990a; Aldrich et al. 1998; Schnabel et al. 1998). Furthermore, the scale and magnitude

of genetic structure can differ significantly between life stages of trees, with juveniles

often exhibiting greater within-population structuring than adults (Hamrick & Nason

1996; Kaliszetal. 2001).

As a result of this variability, genetic structure and its causal ecological and evolutionary

processes may not be evident from the analysis of a single life stage (Tonsor et al. 1993;

Epperson & Alvarez-Buylla 1997; Aldrich et al. 1998; Schnabel et al. 1998; Kalisz et al.

2001). Moreover, failure to detect significant genetic structure may occur at spatial scales

either smaller or larger than those investigated. Basic knowledge of the dispersal biology

of a species is thus an important prerequisite in designing studies in which appropriate

spatial scales can be examined.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. According to Gaggiotti & Marciano (1996), the amount of genetic variability in a

population is determined by its effective population size (Ne), the average number of

individuals in a population contributing genes to the next generation. Ne depends on many

factors, including fluctuations in the overall population size (Silvertown & Lovett-Doust,

1993). The overall population sizes, in turn, may fluctuate tremendously because of

environmental changes, for example affecting recruitment - the influx of new individuals

into a population via reproduction. These variations in natural recruitment can influence

genetic variability of the population over time.

With regard to , ecological life history traits may affect the distribution of genetic

diversity, both within and among plant populations (Loveless & Hamrick 1984; Hamrick

& Godt 1990). Thus, Hamrick & Godt (1990) used seven two-trait combinations (e.g.,

breeding system and seed dispersal mechanism) for five life history characteristics to

analyze inter-specific variation in the level and distribution of allozyme genetic diversity

in seed plants. Highly significant differences were seen among categories for all seven

comparisons. Life form and breeding system had highly significant influences on genetic

diversity and its distribution (Hamrick & Godt 1990). Hamrick and Godt (1990) stated

that regardless of other traits, outcrossing species tended to be more genetically diverse

and had less genetic differentiation among their populations; woody plants have less

among population differentiation and somewhat more genetic diversity than non-woody

species with similar life history traits. In an analysis of twelve plant families, Hamrick

and Godt (1990) indicated that species in families having predominately outcrossing and

woody species had more genetic diversity and less inter-population differentiation than

species within families having predominately herbaceous species.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Genetic variability is also known to increase in populations of many plant species

(Hamrick et al. 1979; Barrett & Kohn 1991). As described by Wright (1946), population

genetic theory predicts the loss of genetic diversity in populations which remain small for

several generations, due to genetic drift; and in populations initiated from a small number

of colonists, due to founder effect; and in populations which suffer rapid declines in size

due to population bottlenecks, particularly if recovery is slow or if size fluctuations are

frequent (see Barrett & Kohn 1991). Divergent results have been reported for the

relationships between plant population genetic variability and population size (van

Treuren et al. 1993; Widen 1993; Dolan 1994; Oostermeijer et al. 1994; Raijmann et al.

1994; Weidema et al. 1996; Montgomery et al. 2000). For example, Lammi et al. (1999)

studied the genetics and ecology of a rare perennial plant, Lychnis viscaria, and

determined there was a positive association between genetic diversity and population size,

as expected. The smaller populations had less genetic variation, presumably because of

genetic drift, founder effects, and bottlenecks. Furthermore, population size was not

associated with germination rates, seedling mass, or seed yield (Lammi et al. 1999).

Genetic variability in a species occurs both among individuals within populations as well

as among populations (Wright 1978). Variation within populations is lost through genetic

drift (Allendorf et al. 1987), a process that increases when population size becomes small.

Variation among populations is lost when previously restricted gene flow between

populations is increased for some reason (e.g., supplemental stocking of wildlife, removal

of natural barriers such as waterfalls); differentiation between populations is lost as a

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. result of the homogenization of two previously distinct entities (Altukhov & Salmenkova

1987; Campton 1987).

1.3 - Pollen - mediated gene flow

Gene flow within and among populations is considered major component of plant

reproductive ecology, affecting both the genetic structure and adaptation in populations

(Rieseberg & Burke 2001; Lenormand 2002). Flowering plants exchange genes among

populations by the movement of pollen, and dispersal of seed which subsequently

develop into new plants within and among populations (Cain et al. 2000). Plants,

especially forest trees, can disperse their genes over large distances via pollen (Hjelmroos

1991; Lindgren et al. 1995; Di-Giovanni et al. 1996; Nason et al. 1998; Rogers & Levetin

1998). For example, Ellstrand (1988) concluded that from engineered crops to their wild

relatives pollen transport can occur over distances of 1000 m or more, in some systems,

and studies of pollen-mediated gene flow have received much recent attention (Ellstrand

1992a,b; Sork et al. 1999; Hamrick & Nason 2000; Smouse & Sork 2004).

Pollen dispersal is a major component of gene flow in plant populations (Robledo-

Amuncio & Gil 2005). Although it lacks the colonization function of seeds, the potential

for long-distance transport in male gametes greatly influences genetic processes that have

central evolutionary implications, such as ‘isolation by distance’ within otherwise

continuous populations, and gene exchange among spatially isolated populations (Wright

1946; Crawford 1984; Ennos 1994).

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. In plant species, gene migration occurs first through pollen, then through seeds. These

components of migration often differ in scale, and consequently, differ in their impact on

genetic population structure and variation. The distribution of such genetic variation

within and among populations is of importance to the adaptation and adaptability of a

species (Slatkin 1985a; Slatkin 1987; Levin 1988) and for gene conservation efforts (El-

Kassaby & Ritland 1996 a, 1996 b). Knowledge of dispersal is of practical importance in

forest management, because pollen migration can reduce the genetic gain in seed orchards

and breeding programs. It may also alter the genetic composition of open-pollinated

families used in progeny tests (Adams 1992; Ellstrand 1992 b).

Two major limitations are inherent in studies of pollen flow based on paternity analysis.

First, despite increasingly high-resolution genetic markers, total exclusion of all but one

male when assigning paternity to offspring from maternal trees remains beyond most

practical situations (Chakraborty et al. 1988). Fractional paternity analysis and likelihood-

based procedures have been developed to tackle this problem, providing unbiased

estimates of male reproductive success (Meagher & Thompson, 1986; Devlin et al. 1992;

Smouse & Meagher 1994). Second, the exhaustive sampling of males required for

paternity assignment often limits the spatial extent of analysis, for practical reasons, to the

point that a very substantial number of offspring are found to have been sired by

unknown males from outside the study area (Chakraborty et al. 1988).

Small, isolated populations provide useful opportunities for mating and pollen dispersal

studies. A reduced number of individuals potentially allow total discrimination of pollen

contributions, enabling categorical and more definitive paternity analysis. In addition, it

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. will be possible to collect seeds from virtually all trees, extending the experimental scale

to the whole population and achieving ample individual replication. Additionally, if

spatial isolation results in the absence of substantial pollen immigration, most of the

observations can be converted into mating distances, and little information will be lost for

the estimation of the effective pollen dispersal distribution or other within-population

reproductive parameters. Besides such analytical advantages, small population genetic

processes are significant in themselves, from an evolutionary and conservation point of

view (Ellstrand & Elam 1993).

An important question arises when inferring the effective pollen dispersal distribution in

small populations, namely the extent to which the results obtained can be compared

among different spatial and/or demographic situations. Under the theoretical framework

of ‘competing pollen sources’ (Levin & Kerster 1974; Adams 1992), the mating success

of a given individual is proportional to its relative contribution to the pollen cloud around

different female trees. Different effective pollen dispersal distributions can thus be

expected when population size ranges from a few tens of scattered individuals to several

hundreds or thousands of trees, growing in dense woodlands and adding their long­

distance pollen contributions. One way to generalize measurements of gene flow is to

estimate the mean dispersal probability density function for individual plants [i.e., the

dispersal “kernel” (Baguette 2003)]; this has been used to model gene escape from

plantations of transgenic crops, colonizing processes of plants, or to draw inferences

about factors affecting male reproductive success (Kot et al. 1996; Lavigne et al. 1996;

Clark 1998). The dispersal kernel describes the probability of a pollen grain traveling a

given distance source. It is by definition independent of the experimental design,

10

permission of the copyright owner. Further reproduction prohibited without permission. providing a test of how effective pollen dispersal is affected by differences in number,

density, or spatial distribution of conspecific reproductive individuals (Lavigne et al.

1996).

From investigations of Pinus sylvestris, Robledo-Amuncio & Gil (2005), showed that the

number and distribution of potential pollen donors in small populations may strongly

influence the patterns of effective pollen dispersal. At high plant density, pollinators may

become limiting, reducing pollen deposition and subsequent reproductive success (Waser

1978a, 1983; Rathcke 1983). Interspecific pollen transfer is a more common mechanism

(Waser 1983). of the overall floral display may therefore depend on the relative

strength of inter- and intraspecific competition. Caruso (1999) used Ipomopsis aggregate

(Polemoniaceae) and Castilleja linariaefolia (Scrophulariaceae) as a model system to

assess the relative importance of intra- and inter-specific competition for pollination.

Results suggested that for the first species, inter-specific competition for pollination was

stronger than intra-specific competition. When C. linariaefolia was present, the

conspecific pollen deposition onto I. aggregate was reduced by 25%. The pollination of I.

aggregat, in this study is clearly influenced by the presence of competitors for pollinator

service. The presence of C. linariaefolia may also influence components of male fitness,

such as the amount of I. aggregate and the amount of pollen exported (Caruso 1999).

t The relative importance of pollinator visitation and inter-specific pollen transfer as

mechanisms of competition may also influence the genetic structure of plant populations

(Campbell 1985a) and plant species’ spatial patterns (Pleasants 1980). Pollination will be

low at low plant density because there are too few plants to attract pollinators (Caruso

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1999). As the density of plants increases, they should be more attractive to pollinators and

pollination should increase until there are too many plants for pollinators to adequately

service, at which point pollination should again decrease (Rathcke 1983).

1.4 - Ecological factors influencing gene flow

Gene flow is a major evolutionary force, homogenizing genetic variation across

populations by moving alleles form one population to another (Wright 1951; Slatkin

1987). Natural populations are characterized by a number of ecological features

influencing the intra-specific and inter-specific interactions of their members and thus the

dynamics of the population itself (Bosch & Waser 1999). Important factors include the

I population size and age structure, the sex ratio, number of individuals in the population,

isolation of the population from others of the same species, and . All

these attributes can vary dramatically from population to population, due both to natural

causes and, increasingly, to anthropogenic influences. Pollination by animals is expected

to vary with the population context of particular plants and flowers. This is because

animals visit flowers while foraging for resources, and tend to forage in ways that are

economically efficient, and because efficiency will be influenced by attributes of the plant

population (Pyke 1984; Ingvarsson & Lundberg 1995; Waser et al. 1996; Waser & Price

1998). Thus for example Bosch and Waser (1999) explored effects of plant density on

pollination and seed set in the larkspur Delphinium nuttalliarum and in monkshood

Aconitum columbianum. Bosch and Waser determined that pollination service to both

species was, at best, only weakly related to plant density. In contrast, seed set declined by

approximately one-third in sparse populations, relative to nearby dense populations.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Diminished seed set may stem from the receipt of low-quality pollen (e.g., inbred pollen).

Alternatively, seed and fruit sparsity may indicate poor environmental conditions that

lower seed set for reasons unrelated to pollination itself. Thus, for example, considering

the relationship between pollen load and seed set Bosch and Waser (1999) indicated that

plants produce more seeds in dense than in sparse plots, for the same amount of pollen,

over most of the natural range in pollen loads. Bosch and Waser detected variation in

residuals among focal plants of both species, because individual plants are likely to vary

in nutrient status, among other factors that influence their translation of pollen received

into seed set.

Trillium grandiflorum has been used as a model system in several population genetic

studies (Kalisz et al. 1999, 2001, Irwin 2001), and in this species seed dispersal by deer

provides a mechanistic basis for interpreting large-scale patterns of genetic structure. At

the same time, dispersal in tree species has important implications for genetic

structure of T. grandiflorum at small spatial scale ( ~ 0.02 ha, Kalisz et al. 1999, 2001).

Ants do not move seeds much more than 10 m from parent plants (Kalisz et al. 1999), and

this cannot explain apparently high gene flow rates among more distant populations (> 1

km apart, Irwin 2001). Deer are clearly implicated in gene flow over large distances in T.

grandiflorum, and perhaps in other ant-dispersed forest herbs as well.

Vellend et al. (2003), further investigated how viable seeds of Trillium grandiflorum are

dispersed via ingestion and defecation by white-tailed deer. They showed that most seeds

dispersed by deer should travel at least several hundred meters from parent plants, and

occasionally > 3 km. The ability of plant species to track rapid and to

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. persist in highly fragmented landscapes depends critically on dispersal of seeds into

suitable habitats.

The consequences of long-distance dispersal have been the subject of numerous recent

theoretical studies (e.g., Clark 1998; Clark et al. 2001), and are of intense interest given

the implications for invasion dynamics, population genetic structure, and vegetation

response to future climate change (Pitelka et al. 1997; Cain et al. 2000). In conclusion,

seed dispersal via ingestion and defecation by deer provides a mechanism of long­

distance dispersal that has likely contributed to rates of postglacial migration (Cain et al.

1998; Pakeman 2001) and post-agricultural forest colonization by forest herbs (Matlack

1994).

1.5 - Long-distance dispersal

Vellend and Waterway (1999) compared the genetic diversity of a northern wetland

sedge, Carex rariflora, both within and between populations, in different habitat types,

and across geographic regions with different glacial histories using allozyme variation.

Carex rariflora is circumboreal wetland sedge, with both long-spreading and short-

clumping rhizomes. They sampled twelve populations: five from each of two regions in

northern Quebec, and two from northern Yukon. Results of allele frequencies revealed a

low degree of within-population genetic diversity and a high degree of genetic

differentiation among populations. Higher genetic variability found in the Yukon than in

Quebec could be explained by the presence of a glacial refugium in much of Alaska and

the Yukon, throughout the Pleistocene.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The low genetic diversity observed by Vellend and Waterway (1999) in Quebec suggests

the occurrence of genetic bottlenecks, resulting from founder effects during postglacial

colonization. There was a strong positive correlation between geographic distance and

genetic distance among populations, and the three geographic regions were genetically

distinct from one another. Vellend and Waterway (1999) concluded that geographic

separation is more important than habitat differences in determining the pattern of genetic

diversity in C. rariflora and historical factors can have overriding effects on levels of

genetic diversity. According to these authors, low genetic diversity and high genetic

differentiation among populations can be explained by small population sizes, limited

recruitment by seed, and founder effects in Quebec during postglacial colonization from

the south or east.

Cain et al. (2000) reviewed long-distance seed dispersal in plant populations. They

consider a seed dispersal event to be of “long distance” if it is over 100m. According to

Cain et al. (2000), long-distance seed dispersal influences the spread of ,

metapopulation dynamics, and diversity and dynamics in plant communities. Cain et al.

structured their work around two kinds of argument. First, that long-distance seed

dispersal is of particular importance in situations where seeds that travel long distances

have a critical impact (e.g., island colonization, Holocene migrations, responses to global

change, metapopulation dynamics). Second, they argue that genetic methods provide a

broadly applicable way to monitor long-distance seed dispersal. Several promising

genetic approaches to estimating long-distance seed dispersal are under active

development, including assignment methods, likelihood methods, genealogical methods,

and genealogical/demographic methods (Cain et al. 2000).

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The populations of many plant species are spatially isolated from each other, often by

hundreds of meters or more. For such species, seed dispersal represents the only way that

populations can exchange individuals or colonize empty, but suitable habitat.

Long-distance seed dispersal is inherently difficult to measure directly. Cain et al.

suggested that genetic methods can effectively document the extent to which plant

populations are linked by long-distance seed dispersal. Genetic estimates of dispersal

usually are based on tissue of seedlings or later stages of development (Cain et al. 2000).

When samples are taken in this manner, genetic estimates of dispersal reflect both the

movement and establishment of seeds. As such, genetic estimates of seed dispersal curves

usually provide a measure of “effective seed dispersal”, that is, dispersal plus

establishment, not actual seed dispersal (Cain et al. 2000).

Many studies of plant species have focused on contemporary pollen movement because

pollen dispersal is often considered to have greater spatial scale than seed dispersal

(Ennos 1994). Some studies have shown that pollen-mediated gene flow increases across

fragmented landscapes, as for tropical Ficus species with specialized pollinator systems

(Nason & Hamrick 1997) and for Brazilian Dinizia excelsa, where fragmentation has led

to a shift in pollinators from specialist native forest bees, flying relatively short distances,

to nonnative generalist Africanized honey bees, which fly great distances (Dick et al.

2003). Other studies have observed that fragmentation can lead to an increase in

inbreeding and a reduction in gene flow for the relict individuals in forest fragments, as

for the tropical dry forest dominant, Enterolobium cyclocarpum (Rocha & Aguilar 2001).

In all these cases, anthropogenic disturbance has caused changes in the patterns of

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. contemporary gene flow that will influence the future genetic structure of these

populations.

Gene flow between populations is most often viewed as a homogenizing force in

evolution (Coltman 2005). Whether or not two separate populations of a species become

genetically different seems to depend largely on gene flow. Classical

theory predicts that populations that frequently exchange individuals through dispersal

will remain genetically similar (Slatkin 1987). According to Coltman (2005),

disconnected populations, by contrast, have a greater capacity to become distinct through

forces such as genetic drift and adaptation to local conditions. In population genetics,

dispersal is often viewed as a diffusion-like, random process, arid selection and genetic

variation are assumed to be locally homogenous. Populations of organisms having high

rates of dispersal - such as birds - are therefore expected to be genetically similar at small

spatial scales (Coltman 2005). In contrast, less mobile organisms, such as plants, should

be more dissimilar among populations.

Maki (2001) examined genetic diversity at 17 putative allozyme loci in 18 populations of

the insular endemic Aster miyagii. This species is geographically restricted to only three

islands of the Ryukyu Islands located in the south of the Japanese Archipelago and is on

the federal list of threatened plants of Japan. Genetic differentiation within islands was

small, suggesting that gene flow among populations on the same island is sufficiently

large to prevent divergence. By contrast, genetic differentiation among islands was large,

suggesting that any gene flow between the islands is highly restricted. In the

southernmost island, genetic diversity was least. The genetic paucity of that island is

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. probably a result of a population bottleneck at colonization, or the small effective

population size on this island (Maki 2001).

Mateu-Andres & Segarra-Moragues (2003) studied allozyme diversity within and among

populations of five related taxa of Antirrhinum L. All were perennial herbs endemic to the

Iberian Peninsula that form isolated populations. The level and distribution of allozyme

diversity differed widely between taxa. Total variation was partitioned into within- and

among-population variation. The proportion of variation within populations varied from

about 67% up to 84.3% and 89.5% in two . Both these subspecies also showed

little population divergence and had high levels of estimated gene flow. This result

suggests that divergence among populations is due to random genetic drift.

On average, trees maintain the highest levels of allozyme variation of any group of plants

(Hamrick et al. 1992). For example, trees maintain significantly more variation within

their populations (Table 1.1). Available data indicate that trees also maintain high genetic

diversity within their populations for quantitative traits, many of which may be adaptive

(Hamrick et al. 1992). According to Hamrick et al. (1992), as important as the level of

variation is, the distribution of genetic diversity among tree populations is probably more

important in the context of global climate change. The plant allozyme literature indicates

that trees generally have little genetic diversity among their populations. Results from

Hamrick et al. (1992) stated that woody perennials, compared to annuals and herbaceous

perennials, have significantly less genetic diversity at polymorphic loci (Ht), significantly

higher within-population genetic diversity (Hs), and genetic diversity among populations

(Gst) that is approximately 25% of that of annual plants (Table 1.2). They noted that

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. woody species have lower overall levels of genetic diversity (H t ) at their polymorphic

loci. This appears to be due to woody plants having more polymorphic loci with highly

skewed allele frequencies than other types of plants. The low G s t values of most woody

plants are consistent with trees having greater potential for moderate and long-distance

gene movement (Hamrick et al. 1992). Hamrick et al. (1992) applied paternity analysis

procedures to several isolated tree populations to obtain direct estimates of pollen flow.

They showed that for populations of wind-pollinated species isolated by a few to several

hundred meters, estimates of pollen flow rates vary between 25 and 70% (Table 1.3). For

populations of insect-pollinated tree species, estimated rates of pollen flow varied from 3

to 90% (Table 1.3, by Nason and Hamrick 1997).

Understanding patterns of genetic variability and its distribution between populations is

important for understanding the evolutionary history, breeding system and population

structure of species ( e.g., Huang et al. 2001). Genetic diversity within populations is

critical for coping with environmental changes and for long-term survival of a species

(Vida 1994). Generally, most species with wide distributions have high genetic diversity

both between and within populations (Hamrick & Godt 1990). In contrast, a rare species

may become genetically depauperate because of its (e.g. Saxifraga

cernua, Bauert et al. 1998; Ludwigia x taiwanensis, Peng et al. 1999). Both genetic drift

and inbreeding tend to reduce the genetic variation within populations and enhance

genetic differentiation between populations (Hartl & Clark 1997).

Matolweni et al. (2000) studied genetic diversity and gene flow in the rare endemic plants

Begonia dregei and B. homonyma. These two closely related species have high levels of

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. phenotypic variation among populations in the shape of the leaves. Matolweni et al.

(2000) investigated the distribution of genetic variation and relatedness in twelve

populations of B. dregei and seven of B. homonyma, using polyacrylamide gel

electrophoresis. Genetic diversity measures indicated that the among-population gene

differentiation represent >90% of the total genetic component in both species, considered

individually or combined. This is an indication of restricted gene flow, consistent with the

limited dispersal abilities of Begonia generally, and suggesting ancient separation of

isolated forest patches.

1.6 - Plant gene flow in comparison to animal gene flow

The traditional view is that species evolve as cohesive units, held together by gene flow,

acting to prevent populations from differentiating through local adaptation or genetic drift

(e.g., Futuyama 1987). Population genetic theory provides a rough estimate of the amount

of gene flow required to hold species together (Morjan & Rieseberg 2004). Indirect

estimates of gene flow from molecular marker surveys indicate that historical levels of

gene flow are probably somewhat higher than those estimated from direct observation

today but confirm that for many taxa levels of gene flow are too low to overcome genetic

drift and local selection within populations (Slatkin 1985a; Ellstrand & Elam 1993; Levin

2000).

These results have led some researchers to conclude that plant populations (rather than

species) are the functional units of evolution (Ehrlich & Raven 1969), and that species are

arbitrary assemblages of these independently evolving units, and no different from higher

levels of taxonomic organization (Mishler & Donoghue 1982; Mishler 1999). It is unclear

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. whether a similar case can be made for animals; some authors argue that animal traits are

more likely than plant traits to be influenced by numerous genes, because of the more

integrative nature of animal development (Gottlieb 1984). Also, while gene flow is

considered to be too low to explain the cohesiveness of plant species (Levin 1979), it is

not thought typically to be limiting in animal species, except possibly for amphibian and

freshwater fish species (Ward et al. 1992).

Recent analyses of among-population patterns of genetic variation have emphasized the

correlates of among-population genetic variance including breeding system, especially

outcrossing rates (Hamrick & Godt 1997), and pollination-mediated gene-flow (Sork et

al. 1998). However, seed dispersal patterns can also have a dramatic influence in the

partitioning of genetic variation within and among populations, as demonstrated by

extensive allozyme studies (Hamrick et al. 1993; Hamrick & Godt 1997). Typically,

animal-dispersed species show a moderate to large within-population component of

genetic variation, associated with extensive gene flow via seed dispersal in addition to

outbreeding via pollen flow (Hamrick et al. 1993).

1.7 - Mode of reproduction

The mode of reproduction (sexual vs. asexual) is likely to have important effects on

genetic variation and its spatial distribution within plant populations (Harada & Iwasa

1996; Winkler & Stocklin 2002), since sexual reproduction is accompanied by genetic

recombination and asexual reproduction is not. leads to the

continuous emergence of new genotypes and thus can buffer the loss of genotypic

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. diversity (Torimaru & Tomaru 2004). Species reproducing only sexually show more

differentiation than species that reproduce both sexually and asexually (Hamrick & Godt

1990).

For dioecious species, the sex ratio constitutes a fundamental structural parameter of a

population and is related to reproductive strategies, growth patterns and survival rates

(Freeman et al. 1976; Banuelos & Obeso 2004). In many dioecious species, males and

females are known to respond differently to different types of stress (Lovett-Doust et al.

1987; Bertiller et al. 2002). Females are expected to be more sensitive to environmental

stress than males because female reproductive effort requires the largest input of

resources (Freeman et al. 1976).

1.8 - Timing and phenology

In seasonal environments, the proper timing of reproduction is critical for maximizing

fitness (Reekie & Bazzaz 1987; Kozlowski 1992), and is therefore likely to be influenced

by natural selection. By influencing the abiotic and biotic environment in which

reproduction takes place, flowering phenology can strongly influence seed number

(Alatalo & Totland 1997; Totland 1999), pollination success (Waser 1978; Gross &

Wemer 1983; Totland 1997; Gugerli 1998), and the likelihood of seed predation (Gross

& Wemer 1983; Brody 1997). Rapid or slow flowering also determines the allocation of

resources to growth vs. reproductive output (Reekie & Bazzaz 1987; Kozlowski 1992;

Molan 1993). Rapidly changing precipitation, temperature, and other climatic factors over

the next century (Houghton et al. 1996) are likely to destabilize seasonal and genetic cues

for developmental shifts between growth and reproduction each year (Inouye et al.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2002). Altered maturation rates may in turn affect reproductive output, interactions

among species, and the overall functioning of (Stinson 2004).

Organisms exist in environments that vary in time and over space (Falk et al. 2001). Such

variation is often described in terms of the natural or historic range of variability in

environmental conditions such as weather, disturbance events, resource availability,

population sizes of competitors, etc. (White & Walker 1997). Since differences among

individuals are determined at least partly by genotype, population genetic theory predicts

that in variable environments a broader range of genetic variation (higher heterozygosity)

will persist (Tilman 1999).

Knapp et al. (2001) documented flowering periods in a population of blue oak trees. They

determined that trees initiated flowering over a period of one month in the spring. Such

variability could potentially be adaptive, since it is more likely that at least some trees in

the population will flower during warm sunny periods when pollination is most

successful.

1.9 - Species diversity and genetic diversity

Vellend (2005) recently analyzed connections between species diversity and genetic

diversity. It has long been recognized that species diversity and genetic diversity are

influenced by a common set of processes. and are the only ultimate

sources of diversity. Selection, drift, and migration all influence the relative frequency of

“variants” in populations and communities, whether these variants are species or alleles.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Attributes of habitat patches such as area, isolation, and environment heterogeneity are

thus expected to influence diversity in similar ways at the two levels (Vellend 2005).

Data on islands and fragmented habitat patches indicate that indeed there is a general

positive correlation between the two levels of (Vellend 2003, 2004;

Vellend & Geber 2005). Species diversity and genetic diversity may also be casually

related (Vellend & Geber 2005). Species diversity in a community may act as a source of

balancing or diversifying selection on particular populations, and genetic diversity within

populations may influence their interspecific interactions and probability of persistence.

1.10 - Genetic drift and inbreeding

Two genetic consequences of small population size are increased genetic drift and

inbreeding (Ellstrand & Elam 1993). Genetic drift refers to changes in allele frequency

from generation to generation caused by sampling error (Lesica & Allendorf 1999). In

large populations, chance changes in allele frequency due to drift are generally small. In

contrast, in small populations (< 100 individuals), allele frequencies may undergo large

and unpredictable fluctuations due to drift (Barrett & Kohn 1991). The smaller a

population, the greater will be the genetic drift. Genetic drift causes a loss in genetic

variation (heterozygosity and allelic diversity) within populations (Nunney & Ellam

1994). The founding of a new population by a small number of individuals will cause

abrupt changes in allele frequency and loss of genetic variation (Barrett & Kohn 1991;

Ellstrand & Elam 1993). Such severe population size “bottlenecks” associated with the

establishment of a new population are a special case of genetic drift (Lesica & Allendorf

1999).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Genetic drift changes the distribution of genetic variation in two ways: the decrease of

variation within populations (loss of heterozygosity and eventual fixation of alleles), and

the increase of differentiation among populations (Ellstrand & Elam 1993). Every finite

population experiences genetic drift, but the effects become more pronounced as

population size decreases (Falconer 1989; Futuyama 1987).

Inbreeding is the mating of related individuals (Falconer 1989). In plants, inbreeding

occurs typically in two ways: through selfing, and through bi-parental inbreeding. Selfing

may be prevented in plants by self-incompatibility or by dioecy (Barrett & Kohn 1991).

Biparental inbreeding will most likely occur when populations are small or when they

exhibit spatial genetic structure. Structure will often develop when gene dispersal via

pollen and seed are spatially restricted (e.g., Turner et al. 1982). Inbreeding increases

homozygosity within populations (Ellstrand & Elam 1993). Smaller populations generally

should lose heterozygosity faster than larger populations. In populations having

continuous inbreeding, the frequency of heterozygotes should approach zero (Futuyama

1987).

1.11 - Local adaptation

Numerous studies have demonstrated that plants evolve local ecotypes closely adapted to

their immediate environment (Rapson & Wilson 1988). For example, Penstemon eatonii

seed shows apparently adaptive ecotypic differentiation for germination requirements.

Seed from high-elevation populations required long chilling periods, while those from

low elevations needed only short chill times for germination (Meyer et al. 1995). While

many widespread species demonstrate adaptive genetic variation over their range, others

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. maintain wide ecological amplitude, apparently by means of one or a few highly

adaptable, phenotypically plastic genotypes (Bradshaw 1965). The Eurasian grasses

Bromus tectorum and B. rubens, for example, occur in many different environments in

western North America, but there is a little evidence for genetic differentiation among

populations from most of these habitats (Rice & Mack 1991). The African grass

Pennisetum setaceum has adapted to widely different habitats on the islands of Hawaii

without detectable genetic differentiation (Williams et al. 1995).

1.12 - Landscape-level effects

The metapopulation concept has emerged as a dominant paradigm for the description of

natural populations (Hanski & Gilpin 1997). Cain et al. (2000) defined metapopulation

broadly as a set of spatially disjunct populations linked by dispersal. Spatially disjunct

populations of plants are often separated from each other by many hundreds of metres,

while most plant seeds disperse far less than 100m (Cain et al. 2000). Thus, the extent to

which plant populations in a metapopulation are linked by dispersal will depend entirely

on the extent to which long-distance seed dispersal occurs. Long-distance dispersal is

likely to be important in plant metapopulation dynamics. However in their review of the

literature, Murphy and Lovett-Doust (2004) concluded that most plant species for which

evidence exists, appear not to be arranged regionally as metapopulations.

The overall pattern of genetic variation within and between subpopulations also suggests

a ‘classical’ metapopulation structure of the species, supported by ecological surveys.

Many populations exist as metapopulations, that is, as populations structured into

interconnected demes with local “turnover” dynamics of and recolonization

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (Andrewartha & Birchl954; Hanski 1999). Evolutionary processes in metapopulations

differ in many aspects from those in large, uniform populations. These include the fact

that gene flow among demes may be restricted, local demes may be small, and turnover

dynamics can lead to genetic bottlenecks during recolonization (Andrewartha & Birch

1954; Hanski & Gilpin 1997; Hanski 1999). Moreover, metapopulation structure may be

important for evolutionary processes, even in populations that do not exist as ecological

metapopulations (i.e., with turnover dynamics too weak to influence demography). This is

because many migrants are needed to homogenize the genetic structure of subdivided

populations, whereas only a few individuals may be needed to recolonize an empty patch

(Ives & Whitlock 2002).

Murphy and Lovett-Doust (2004) reviewed the important effects of the matrix - via

composition and configuration of habitat patches, extent of edges, patterns of land use,

etc., upon plant populations. They described evidence supporting a general integration of

metapopulation and landscape ecological approaches for understanding regional

dynamics in plants, emphasizing notions of connectivity. Murphy and Lovett-Doust

concluded that many plants exist in situations where individuals are not clustered in their

distribution, and where definition of distinct populations becomes problematic, and where

suitable habitat patches are not easily delineated. According to Murphy and Lovett-Doust,

the description of the landscape in terms of suitable patches and a homogenous matrix

greatly oversimplifies reality, and an interactive, landscape-based approach is likely to be

more valuable in understanding regional scale dynamics.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Theory predicts that turnover dynamics mostly (but not invariably) lead to increased

genetic differentiation and decreased local genetic diversity as compared to similiarly

structured populations without extinction and recolonization dynamics (Slatkin 1977;

Wade & McCauley 1988; Whitlock & McCauley 1990; Austerlitz et al. 1997,2000; Le

Corre & Kremer 1998; Panned & Charlesworth 1999).

The reason why turnover dynamics mostly increase genetic differentiation and decrease

local genetic diversity is that recolonization events usually involve a smaller number of

individuals than the demes can eventually support, and extinction limits the life time of

demes, during which subsequent gene flow can ameliorate the effect of these founder

events. Yet in metapopulations with strong founder effects not only neutral but also

selective processes may influence genetic differences between young and old populations.

Haag et al. (2005) stated that if colonization of empty patches causes genetic bottlenecks,

freshly founded, young populations should be genetically less diverse than older ones that

may have experienced successive rounds of immigration. This can be studied in

metapopulations with subpopulations of known age. Haag et al. (2005) studied allozyme

variation in metapopulations of two species of water flea {Daphnia spp.), in the

archipelago of southern Finland. They determined that local genetic diversity increased

with population age, whereas the extent of pair-wise differentiation among pools

decreased with population age. These patterns indicated that extinction and recolonization

dynamics decrease local genetic diversity and increase genetic differentiation in these

metapopulations by causing genetic bottlenecks during colonization. Haag et al. (2005)

suggest that the effect of bottlenecks may be twofold, namely decreasing genetic diversity

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. by random sampling and leading to population-wide inbreeding. Subsequent immigration

then may not only introduce new genetic material, but also lead to the production of non­

inbred hybrids, selection for which may cause immigrant alleles to increase in frequency,

thus leading to increased genetic diversity in older populations.

In 1992, Manicacci et al. looked through the distribution of genetic diversity in a

landscape, and stated that this depends on both within- and among-population processes.

Selective pressures within populations have traditionally been studied in terms of

population genetics, which usually assumes that populations are at equilibrium. However,

when selection pressures within and among populations differ, landscape processes are

required to define an equilibrium (landscape being defined as the habitat of a set of

populations, called a metapopulation, and with populations differing depending on their

situation in the landscape, e.g., their age and the nature of neighboring populations).

One of the goals of population genetics is to explain how polymorphisms are maintained

in natural populations. To achieve this goal, both the distribution of diversity and the

outcomes of selection are usually studied at the population level (Tracey & Ayala 1973).

However, processes occurring within populations do not appear to explain the

maintenance of some traits. Diversity is also known to be present among populations, and

studies at larger scales, including a set of populations, need to be developed. Distribution

of genetic variability at such a larger scale has been less studied, in part because it

involves larger temporal and spatial dimensions. Its study should be considered as a part

of landscape ecology, since the distribution of diversity depends on the spatial and

temporal dynamics of populations within the landscape ecology (Manicacci et al. 1992).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Indeed, distribution of genetic diversity depends on parameters such as frequency and

intensity of perturbations, migration rate between populations and the reproductive

system of the species. Any change in landscape processes, due to natural disturbances or

landscape management, can involve modifications of selection pressures (which can act

among species, leading to or invasions of species, as well as within species,

by the evolution of the species which persist). This could then have predictable influences

on the evolution of biological diversity.

Landscape fragmentation, which influences genetic variability within populations through

the size of breeding units in a landscape, will impact reproductive systems. However

founder effects do not last for ever, and although they may explain patterns of

differentiation in young populations, it is likely that other processes will be involved in

older populations (Gouyon et al. 1991).

1.13 - Effects of position in the geographic range on genetic variability: the Central-

Peripheral Model

Many factors are known to affect genetic diversity and the population genetic structure of

a plant species (Loveless & Hamrick 1984). One of these factors is the geographic range

of a species. Widespread species tend to have more genetic variability than close relatives

with a narrow distribution (Karron 1987; Hamrick & Godt 1990), although geographic

range appears to have little influence on the inter-population differentiation of these

species (Hamrick & Godt 1990).

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Understanding the ecological and evolutionary dynamics of species’ borders may prove

to be the key that unlocks new understanding across a wide range of biological

phenomena. After all, geographic range limits are a point of entry into understanding the

ecological niche and threshold responses to environmental change. Elucidating patterns of

gene flow to, and returning from, peripheral populations can provide important insights

into the nature of adaptation, speciation and (Holt & Keitt, 2005).

All species are distributed in space - but within limits (Lawton et al. 1994; Brown &

Lomolino 1998).

According to Holt & Keitt (2005), some species borders are highly unstable, others seem

quite stable; some are geometrically simple, others have a fractal-like complexity. Holt &

Keitt (2005) stated that the range of a species is clearly influenced in a major way by its

ecological niche, defined as that set of environment conditions, resources, and so on,

which permit populations to persist without immigration. According to them, sometimes a

species’ range as a whole can change, for instance because evolved plastic responses

spread across a broad geographic range, or because local populations develop

to spatially localized selection regimes, or because dispersal syndromes evolve.

Once species are pushed into marginal habitat at the limitations of their physiological

tolerance, they may enter an “”, a downward cycle of small populations,

reduced genetic variability, reduced ability to adapt to novel conditions, leading to further

reductions in population size, and so on (Gilpin & Soule 1986). For example, the Florida

Yew (Torreya taxifolid) is currently one of the rarest conifer species in North America.

But in the early Holocene, when conditions in southeastern North America were cooler

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and wetter than today, the species was probably widespread. For reasons that are not

completely understood, T. taxifolia failed to migrate northward as climate changed during

the Holocene. Today it is restricted to a few locations in the Apalachicola River Basin in

southern Georgia and the Florida panhandle.

Moreover, species’ distributions cannot ultimately be understood in isolation; because of

interactions such as competition and predation, species influence each others’ ranges,

both positively and negatively, over both ecological and evolutionary time-scales.

Interaction among species can either confine ranges (e.g., competitive through exclusion)

or permit range expansion (e.g., via facilitation).

It is widely assumed that habitat suitability declines from the center of a species range

towards the edge (Hengeveld & Haeck 1982; Brown 1984; Lawton 1993; Guo et al

2005). Populations situated near the core of a species’ geographic distribution exhibit

greater abundance than populations near the periphery. This pattern is predicted by bio­

geographic models (e.g., Lande 1991; Gyllenberg & Hanski 1992; Lawton 1993;

Lawton et al. 1994) and supported by empirical studies (e.g., Hengeveld & Haeck 1982;

Brown 1984; Taylor 1986; Hengeveld 1990; Maurer & Villard 1994; Lomolino &

Channell 1995; Cumutt et al. 1996). Similarly, according to conventional wisdom,

populations situated near the core of the range tend to exhibit less temporal variability in

abundance (hereafter, variability) than peripheral populations (Caughley et al. 1988;

Scudder 1989; Lesica & Allendorf 1995; Lawton 1995; Channell & Lomolino 2000).

This has been supported by biogeographic models (Kendall 1992) and empirical

observations (Lomolino & Channell 1995; Cumutt et al. 1996).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. These patterns of abundance and variability are generally thought to be driven by special

patterns in habitat quality (Scudder 1989; Lawton 1995; Cumutt et al. 1996). More

specifically, the patterns may arise because core populations, inhabiting productive

habitats, are sources, and peripheral populations inhabiting lower quality habitat, are sinks

(Pulliam 1988). However, not all populations are expected to exhibit these patterns (e.g.,

Brown 1984). For example, habitat quality across some geographic ranges (e.g., coastal

species) may decline with distance from one edge of the geographic distribution.

Nevertheless, all currently available evidence suggests that peripheral populations

commonly exist at lower densities and exhibit higher variability.

Peripheral populations have been portrayed as being of low conservation priority because

they should be more vulnerable to extinction (e.g., Griffith et al. 1989; Pearl 1992;

Stevens 1992; Wolf et al. 1996). Relying on the same geographic patterns of demography,

others have argued that peripheral populations are of greater conservation priority

because of their potentially unique genetic characteristics (e.g., Scudder 1989;

Lesica & Allendorf 1995).

Vucetich & Waite (2003) stated that edge populations, compared with populations near

the core of a species’ range, tend to be characterized by low density and high temporal

variation. For example, the rate of genetic drift may be 2 to 30 times greater near the edge

of the range. Despite these strong spatial patterns in Ne, empirical findings indicate that

peripheral populations sometimes have less, but also sometimes have more, genetic

diversity than core populations. They concluded that populations situated near the edge of

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a species’ range may be commonly characterized by lower abundance and higher

temporal variability in abundance. Based on these biogeographic patterns, basic

population genetics theory predicts that effective population size will tend to be smaller

for edge populations than core populations. Their calculations suggest that the rate of

genetic drift may be 2 to 30 times higher near the edge of a species’ range. Their analysis

suggests that while some edge populations will warrant special attention because they are

highly vulnerable to loss of genetic diversity (unless the migration rate is high) (Cumutt

et al. 1996; Lomolino & Channel 1995), other edge populations will warrant such

attention because they contain high genetic diversity.

Large-scale population structuring my also occur if genetic patterns differ between the

center of a species’ range and the margins of its distribution. There is currently some

debate as to whether populations near the center should display more or less genetic

variability than those at the edge of the range. The classical view, often cast as the

‘Central-Marginal Model’, is that central populations are more genetically variable than

marginal populations because of fewer ecological niches at the margins (da Cunha &

Dobzhansky 1954) or a greater importance of heterosis in central populations (Wallace

1984). In contrast, Brassard (1984) proposed that selection at environmentally variable

margins may actually promote genetic diversity. In reviewing the literature for Drosophila

species, Brassard (1984) found declines in inversion polymorphisms, which are

presumably under selection, from the center to the margins of the species’ ranges, but no

change in supposedly neutral allozyme variation. Patterns of genetic variation between

central and marginal populations may thus depend on the degree to which the markers are

34

permission of the copyright owner. Further reproduction prohibited without permission. under selection, rates of gene flow into marginal populations, and the amount of habitat

variability and rates of population growth in central and marginal areas.

According to Safriel et al. (1994), environmental conditions outside the periphery of a

species’ distribution prevent population persistence, hence peripheral populations live

under less favourable conditions, relative to core areas. Peripheral areas are characterized

by variable and unstable conditions, relative to core areas. Peripheral populations are

expected to be genetically more variable, since the variable conditions induce fluctuating

selections, which maintains high genetic diversity. Alternatively, due to marginal

ecological conditions at the periphery, populations there are small and isolated; the

within-population diversity is low, but the between-population genetic diversity is high

due to genetic drift. It is also likely that peripheral populations evolve resistance to

extreme conditions. Thus, peripheral populations may be resistant to environmental

extremes and changes compared to core ones. Preliminary research done by Safriel et al.

(1994) on wild barley and chukar partridge revealed high phenotypic variability and high

genetic diversity in peripheral populations relative to core populations.

There have been reports of differences in population growth rates and population density

rates between central and peripheral populations of species. Stokes et al. (2004)

concluded that population growth rates were greater in Ulex gallii and U. minor

populations at the periphery of the species’ range, and population density of U. minor was

also greater at the range edges. Peripheral populations of a widespread plant species are

small and isolated, and this results in restricted cross-fertilisation and gene flow (Jones &

Gliddon, 1999).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Because of the small size and isolation, it is expected that peripheral populations will

contain less genetic variation than central ones due to genetic drift, founder effects,

bottlenecks and inbreeding and diminished sexuality (Levin 1970; Lawton 1993; Lesica

& Allendorf 1995). Empirical studies have shown that edge populations of Betula spp.,

Gleditsia triacanthos and Lychnis viscaria all have less genetic diversity than otherwise

comparable central populations (Coyle et al. 1982; Schnabel & Hamrick 1990a; Lammi et

al. 1999). Similarly, Boles (1996) found diminished sexuality in northern populations of

the endangered Arisaema dracortium. In contrast, species such as Phlox spp. and Pinus

edulis have greater genetic diversity in peripheral locations compared to central sites

(Levin 1977,1978; Betancourt et al. 1991).

One of the consequences of declining population density approaching the range edge is

that populations become increasingly isolated, both from populations further toward the

core of the species range and from each other (Brown 1984). As geographical isolation

increases, a reduction in both seed dispersal and pollen flow will result in decreased gene

flow between populations (Ellstrand & Hoffman 1990; van Dorp et al. 1996). The

resulting genetic isolation may lead to pronounced geographical structuring in genetic

variation within a species as population differentiation increases (Lesica & Allendorf,

1995). Both genetic drift and inbreeding are likely to be of increased importance in

isolated populations, with the result that genetic diversity may indeed be reduced toward

the species periphery (Barrett & Kohn 1991; Ellstrand & Elam 1993; Raijmann et al.

1994; Schaal & Leverich 1996; Lammi et al. 1999).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Declining seed production (Pigott & Huntley 1981; Eckert & Barrett 1993; Garcia et al.

2000; Dorken & Eckert 2001) and increased seed abortion (Garcia et al. 2000) have been

reported approaching the periphery of many species. It is possible that genetic diversity

within these peripheral populations may be severely reduced as a consequence of a small

sub-sample of the flowering population being responsible for any establishment from

seed. Poor seed production and increased geographical isolation may interact, resulting in

demographic instability in peripheral populations (Schaal & Leverich 1996) with the

potential to induce genetic bottlenecks at the periphery (Lesica & Allendorf 1995).

There has been considerable theoretical investigation of the evolutionary limits to a

species’ range (Bradshaw 1991; Hoffman & Blows 1994; Barton 2001). It is commonly

assumed that isolation and reduced size of peripheral populations will lead to a reduction

in their genetic diversity (Ellstrand & Elam 1993; Schaal & Leverich 1996) and possibly

a reduction in the likelihood that they might adapt to conditions beyond the range edge

(Bradshaw 1991).

However, it has been hypothesized that fluctuating environmental conditions in peripheral

areas might maintain more genotypes there if selection favors genetic flexibility, whereas

relatively more stable conditions in core areas may favor the high average fitness of only

a few genotypes (Safriel et al. 1994). This would potentially lead to lower diversity of

populations in core rather than peripheral regions of a species’ range. Furthermore,

although genetic divergence of peripheral populations is predicted based on increased

geographical isolation (Schaal & Leverich 1996), it has also been suggested that reduced

density of peripheral populations may render them likely to be swamped by gene flow

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. from populations further toward the core (Barton 2001). This would prevent their

divergence and adaptation to local (range-edge) conditions, thereby restricting range

expansion (Barton 2001).

Jump et al. (2003) examined patterns of genetic variability in Cirsium acaule and C.

heterophyllum. Both species showed a decline in the density of populations approaching

the range edge, indicating that peripheral populations are more geographically isolated

from one another than populations in core areas of the range. In addition to the effects of

genetic drift caused by their contemporary isolation (Ellstrand & Elam 1993; Schaal &

Leverich 1996), range-edge populations are expected to show decreased genetic diversity

as a result of historic colonization processes.

Genetic diversity may be lower in range edge populations both as a consequence of

founder effects at expanding range margins and genetic bottlenecks at the retreating edge

(Hewitt 2000). However, only C. acaule, showed decreased diversity in its range-edge

populations; the absence of this pattern in C. heterophyllum was surprising given the

parallel decline in population density and seed production approaching the range edge of

both species (Jump & Woodward 2003). The loss of diversity in isolated populations may

be slowed in plants that reproduce by both seed and clonal reproduction, as a

consequence of clonal persistence of individuals and the increased opportunity for sexual

reproduction of long-lived clones (Schaal & Leverich 1996; Young et al. 1996). Given

the possible longevity of individual clones, very few new genets need to be added

annually in order to maintain genetic diversity in such populations (Widen et al. 1994;

McLellan et al. 1997).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. At the largest scale, increasing geographical distance between populations is expected to

result in decreasing genetic similarity (isolation by distance, Jump et al. 2003).

In small populations at the edge of a species range, genetic drift may lead to reduced

within-population genetic diversity and increased between-population differentiation,

while populations admixture can lead to increased genetic diversity (Walter & Epperson

2001).

Gamer et al. (2004) present the result of an investigation of population genetic diversity

in a vertebrate species, the Italian agile frog, Rana latastei, across its entire range. Their

results showed that genetic variability was not correlated with population location with

respect to the range periphery.

Peripheral populations have often been viewed as unimportant for overall species’ range

persistence because of their small size, isolated locations and frequent occurrence in

suboptimal habitat with the consequent increased likelihood of extinction (Hoffman &

Blows 1994; Lesica & Allendorf 1995). Other authors, in contrast, have argued that

peripheral populations provide a source of adaptively significant variation upon which

natural selection may act, and are probably well-adapted to local conditions (Brussard

1984; Garcia-Ramos & Kirkpatrick 1997). Furthermore, while population density may

decline at range edges (Brown 1984), thus reducing the likelihood of the persistence of

individual populations (Caughley 1994), recent analyses challenge the view that

peripheral populations are demographically impaired and are likely to suffer local

extinction. For example, peripheral populations experience fewer extirpations than

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. centrally located populations because of range contractions that are not predicted from

historical distributions and immigration rates (Channell & Lomolino 2000).

Populations located at range margins are more isolated from sources of immigrants and

are thus more prone to genetic bottlenecks (Karron 1987; Hamrick & Godt 1990), a

situation that should lead to depleted neutral genetic variation in peripheral populations.

Some data support the hypothesis that peripheral populations exhibit lower genetic

diversity (Lammi et al. 1999; Jain et al. 1981), while others show no such relationship

(Wendel & Parks 1985; Tigerstedt 1973). The expansion pattern illustrates the limitation

of the hypothesis that peripheral populations exhibit lower genetic diversity. If range,

expansions and contractions occur along regular axes radiating from a core founder

region, then populations located at the range margins should exhibit similar patterns of

decreased genetic diversity, barring the effects of mutation and selection. Although the

margins of expansion routes may carry some signal of genetic depletion, the location of a

population relative to the expansion source may be a more important factor in

determining genetic variation than location relative to the core of the overall range.

Population genetic patterns of species at their range margin have important implications

for species conservation. Krauss et al. (2004) investigate patterns of the genetic structure

of 17 populations of the butterfly Polyommatus coridon. They stated that population size

of P. coridon and the size of the larval food plant population were not correlated with the

levels of genetic diversity. The genetic diversity of edge populations of P. coridon was

reduced compared to populations from the centre of its distribution. This might be

explained by increased towards the edge of the distribution range

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and/or a general reduction of genetic variability towards the northern edge of its

distribution.

Genetic diversity of populations decreases with increasing habitat fragmentation (e.g

Young et al. 1996; Buza et al. 2000; Pedersen & Loeschcke 2001; Keller & Largiader

2003; Williams et al. 2003). Decreasing genetic diversity, an indicator of inbreeding,

increases the extinction risk of populations due to a decline in fitness of individuals

(Saccheri et al. 1998; Reed & Frankham 2003).

Genetic data for the butterfly Polyommatus coridon along its northern range margin

showed low genetic diversity (Krauss et al. 2004). This might be due to their marginal

position at the north of the distribution range. Possible explanations for a loss of genetic

variability are bottlenecks during range expansion (Schmitt & Seitz 2002) and/or higher

fragmentation of habitats and therefore smaller populations at the border of the species’

distribution. As populations at the range margin are often the smallest, a distinction

between the two effects is not possible in most cases (Lammi et al. 1999).

1.14 - The study organism Gleditsia triacanthos, Honey Locust

In this study are reported levels of RAPD diversity and patterns of genetic structure

within and among populations of honey locust, Gleditsia triacanthos L., and a common

leguminous tree of the eastern and central United States (Figure 1.1). Gleditsia

triacanthos grows in a variety of habitats throughout its range, such as moist woodlands,

rocky upland slopes, and abandoned pastures. It belongs to the family Fabaceae. Leaves

are deciduous, alternate, pinnately or bipinnately compound, 10-20 cm long, often with 3-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6 pairs of side branches. Flowers are greenish-yellow, fragrant, small and numerous in

hanging clusters 5-13 cm long. Fruits are flattened and strap-like pods 15-40 cm long and

2.5-3.5 cm wide, dark brown at maturity, usually twisted or spiraled, with a sticky, sweet,

and flavorful pulp separating the seeds; seeds are beanlike, about 1 cm long Figure 1.2).

The common name “honey” is in reference to the sweet pulp of the fruits.

Honey Locust is tolerant of low temperatures in the north (-29 to -34°C). Over its range

G. triacanthos grows naturally to a maximum elevation of 610-760 m (Blair 1990).

Honey Locust is a fairly strictly canalized, dioecious tree (Macdonald, 2003). Males of

honey locust tend to have more flowers per inflorescence than females (Tucker, 1991).

According to Schnabel et al. (1991) male trees tend to flower every year, while in females

flower and fruit production is more sporadic. Murphy’s personal observation from 2002

and 2003 flowering seasons for trees located from Louisiana to southern Ontario showed

that flowering is initiated in late April in the southern part of the range and mid-June in

the northern part, although flowering has occurred earlier due to yearly climatic variation.

Honey Locust is pollinated by a variety of , including bees, moths and butterflies

(Schnabel 1988). The species reproduces both sexually and vegetatively (Madonald,

2003).

Seed dispersal is highly localized; most fruits fall directly beneath the maternal tree.

According to Schnabel et al. (1991) the rapid spread of the species into open field is

explained by longer-distance dispersers including deer, cattle, horses and small mammals.

42

permission of the copyright owner. Further reproduction prohibited without permission. Another characteristic feature of the Honey Locust is the thorns on its branches (Figure

1.2). These thorns can be dangerous when the tree is young. Little is known about thorn

production in Honey Locust. Macdonald (2003) showed that there is significant variation

between individuals in stem thorn pattern. Generally, each thorn produces 2 or 3 smaller,

sub-opposite lateral thorns, which may be spirally arranged (Blaser 1956).

Six species of Gleditsia, including G. triacanthos, produce thornless phenotypes

(Michener 1986). Thomlessness is possibly controlled by the condition of the female

parent, and whether she is thorn-bearing or not (Gruisiuk 1959 cited in Ghent 1995). With

increasing age thorn development tends to be reduced. In 1947 Chase observed that

nearly all trees greater than 10 years old showed a distinct thornless region in the upper

and outer shoot growth.

The species is able to reproduce vegetatively as well as sexually (Macdonald 2003).

Female trees produce large, indehiscent legumes. Flower and fruit production has been

reported to fluctuate greatly from year to year for individual trees (Schnabel & Hamrick,

1995). Long-distance events of dispersion, probably by cattle (Blair, 1990), are rare and

the fruits fall and remain within several meters of the parental tree (Schnabel & Hamrick,

1995). Therefore, large number of seedlings and juveniles can be found in relatively small

areas, where the latter can survive for decades in juvenile banks (Schnabel & Hamrick,

1995).

Specific goals of this study were to (1) determine the levels of genetic variation within

and between North American populations of Gleditsia triacanthos, (2) identify genetic

markers unique to the species using RAPDs, (3) assess the genetic variation between

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. males and females within and among populations, (4) explore a potential genetic basis for

the presence or absence of thorns within and among populations, (5) test the hypothesis

for central-peripheral hypothesis.

Based on the above objectives, I have set up some hypothesis to test from this study:

1. Plants are sessile organisms, so they are expected to show high genetic

differentiation among their populations (Hamrick & Godt 1990). High level of

genetic differentiation among populations will result from low rates of gene flow

among populations.

2. Woody plants are expected to maintain more variation within their populations

and less variation among their populations than species that belong to other plant

life forms (Hamrick & Godt 1990).

3. Populations that are more distant from each other (have greater geographic

distances between them) will show greater genetic differentiation among them.

4. According to the central-peripheral model, populations at the center of the

geographic range are expected to show: (a) greatest genetic diversity, and (b)

higher rates of gene flow between them.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 1.1 - Mean levels of allozyme genetic diversity within populations of plant

species representing different life forms. After Hamrick et al. (1992). N= number of

species; Pp= % of polymorphic loci; Ap= number of alleles per locus; Hep= genetic diversity

within populations. Values sharing letters do not differ at P < 0.05.

Life form N Pf Ap Hep

Annuals 226 29.4 b 1.45 b 0.101 b

Herbaceous perennials 228 27.5 b 1.38 b 0.096 b

Woody perennials 213 47.9 a 1.74 a 0.144 a

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 1.2 - Distribution of allozyme variation among populations of plant species.

After Hamrick et al. (1992). N= total number of entries; Hx= total genetic diversity; Hs=

mean genetic diversity within populations; Gsi“ proportion of total genetic diversity among

populations. Values sharing letters are not significantly different at P < 0.05. Different

subscripts indicate the statistically significant differences within a column, between types of

plants.

Life form N Ht Hs G st

Annuals 186 0.322 a 0.196 b 0.355 a

Herbaceous perennials 189 0.302 a b 0.220 b 0.256 b

Woody perennials 209 0.283 b 0.252 a 0.089 c

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 1.3 - Direct estimates of pollen-mediated gene immigration into isolated tree

populations, based on multi-locus paternity analyses. After Hamrick & Nason (2000).

Species Immigrant pollen

% Distance (m) Reference

A. Wind-pollinated

Pinus flexilis 6 >5000 Schuster & Mitton (2000)

Pinus sylvestris 26 >200 Harju & Muona (1989)

Pinus taeda 23-48 >200 Friedman & Adams (1985)

Pseudotsuga menziesii 29-52 > 100 Smith & Adams (1983)

Quercus macrocarpa 70 >200 Dow & Ashley (1996)

Quercus robur 65 >300 Streiff et al. (1999)

B. Insect-pollinated

Gleditsia triacanthos 40-70 >200 Schnabel & Hamrick (1995)

Cordia alliodora 3 >280 Boshier et al. (1995)

Enterolobium cyclocarpum 75 >500 Hamrick (unpublished)

Ficus spp. >90 > 1000 Nason & Hamrick (1997)

Swietenia humilis 38-68 >1600 White et al. (2002)

Tachigali versicolor 25 >500 Loveless et al. (1998)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. * ' f lb I i t '*v * /< #1

I • i ‘ t

Figure 1.1 - Geographical range of Honey Locust (Campus Public Art Program, University of Washington, Seattle, Published Online: July 1997)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 1.2 - Honey Locust leaves, branches, thorns, fruits, and seeds (from Familiar trees of South Carolina, Clemson extension Bui. 117).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 2 Materials and Methods

2.1 - Study site locations

Thirteen sites in eastern North America were selected to represent the northern, southern,

western and central parts of the native range of Honey Locust (Figure 2.1). Each tree was

sexed, based on flower observation in the spring of each year (2002-2003) by H. Murphy

and N. Macdonald. Table 2.1 identifies the study populations and their locations. There is

additional information about the thorn presence for three populations in the southern

regions SI, S2 and S3 (Appendices 1; 2; 3)

2.2 - Use of Random Amplified Polymorphic DNA (RAPD)

RAPD (random amplified polymorphic DNA) markers have been used for population

genetic analyses (Rafalski & Tingey 1993; Haymer 1994; Lynch & Milligan 1994;

Powell et al. 1996b). The RAPD procedure (Williams et al. 1990; Weising et al. 1995;

Michelia & Bova 1997) is a useful tool for assessing taxonomic identities, systematic

relationships, species’ hybridization, and population genetic structures (Le Corre et al.

1997; Aagaard et al. 1998; Kumar & Rogstad 1998), as well as reconstructing

phylogeographic patterns (Gabrielsen et al. 1997; Tollefsrud et al. 1998) due to its

sensitive nature (Bachmann 1994; Caetano-Anoles & Gresshoff 1994).

RAPD markers (Williams et al. 1990) have been increasingly employed for population

studies in recent years. They are technically simpler than other DNA-based markers (e.g.,

RFLPs), facilitate studies of large numbers of loci, and are expected to provide a far more

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. random sample of genomic DNA than do allozymes. Although there have been only a

few studies comparing RAPDs and allozymes directly as markers, most qualitative

comparisons have suggested that RAPDs and allozymes reveal similar patterns of genetic

diversity, but that RAPDs tend to provide more diagnostic population- race- or species-

specific markers (e.g., Liu & Fumier 1993; Peakall et al. 1995).

However, RAPDs also have significant limitations compared to allozymes. Most

important is that the large majority of RAPD loci provide biallelic, dominant markers.

These factors limit inferences from RAPDs, especially when studied in diploid tissues,

and may bias some population genetic parameters when compared with co dominant,

multi-allelic markers such as allozymes (Lynch & Milligan 1994). For example, recent

empirical studies of conifers (Szmidt et al. 1996) have suggested that inferring RAPD

allele frequencies from diploid tissues may result in overestimates of population

differentiation when compared with allozyme markers.

An advantage of using RAPDs in genetic analysis is cost-efficiency (Ragot & Hoisington

1993). The procedure requires little DNA (Welsh et al. 1991) and allows the use of

simple procedures for the isolation of genomic DNA (Williams et al. 1990). This

technique employs 10 base pair random primers to locate random segments of genomic

DNA to reveal polymorphisms. Primers adhere to a specific segment of the

genomic DNA cutting the DNA into many segments of a specific length which can be

measured using gel electrophoresis.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The RAPD technique has further advantages over other methods of genetic

documentation because it has a universal set of primers, so no preliminary work such as

probe isolation, filter preparation, or nucleotide sequencing is necessary (Williams et al.

1990). In many instances, only a small number of primers are necessary to identify

within species (Williams et al. 1990). Indeed, as Mulcahy et al. (1995)

report, a single primer may often be sufficient to distinguish all of the sampled varieties.

Within the last decade, technological advancements have increasingly supported the use

of genetics in determining population diversity (Wolf 1994). This research uses random

amplified polymorphic DNA (RAPD) markers to examine the population dynamics of G.

triacanthos. Williams et al. (1990) stated that the ease of the RAPD technique could lead

to the automation of genetic mapping and to extension of genetic analysis to cover

organisms which lack an ample number of phenotypic markers to completely describe

their .

The random amplification of polymorphic DNA has been used in a wide range of plant

and animal species for genetic mapping and gene tagging (Martin et al. 1991; Rafalski et

al. 1991), for parentage determination (Welsh et al. 1991), and for species identification

(Arnold et al. 1991; Chapco et al. 1992).

The RAPD technique was first employed by Williams et al. (1990) to examine human

DNA samples. The information returned for an individual RAPD analysis was quite low

but studies using multiple markers to define a genome yielded the best results. Mulcahy et

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. al. (1993) used the RAPD technique in an examination of apple cultivars where they were

able to distinguish eight distinct cultivars.

In 1995, Vicario et al. used the RAPD technique in an analysis of genetic relationships

among populations of Abies nebrodensis and Abies alba along a north-south geographic

gradient. This study also employed allozyme analysis but they reported that genetic

differences in the populations were easily detectable using the RAPD analysis with

single-primer DNA amplifications. In their RAPD results, Vicario et al. (1995) observed

high levels of genetic difference between populations confirming their hypothesis that the

two taxa were genetically distinct.

Tsuda et al. (2004) used random amplified polymorphic DNA markers to evaluate the

genetic variation of four natural populations of Betula maximowicziana (a pioneer tree

species in cool temperate forests) to obtain fundamental information on this natural

resource. Using 23 primers they obtained 61 reproductable amplified bands, of which

22 were monomorphic and 39 were polymorphic. According to their results they

demonstrated that genetic differentiation among the four populations is moderate.

AMOVA analysis showed that variation among regions was relatively high (accounting

for 10.4% of total genetic variation).

Most recently, in 2005, Renau-Morata et al. used RAPD markers to assess levels and

patterns of genetic diversity of Cedrus atlantica (Pinaceae). This tree is a large and

exceptionally long-lived conifer native to the Rif and Atlas Mountains of North America.

They decided to use RAPD analysis because of the rapidity with which RAPD markers

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. can be generated. This is an advantage because they can deliver crucial information

within the time constraints frequently demanded by urgent conservation decisions

(Mueller & Wolfenbarger 1999). Genotypic analyses of molecular variance (AMOVA)

revealed that most of the variation was found within populations, but significant

differentiation was also found between populations.

2.3 - Sample Collection and DNA Extraction

To assess the level of genetic variability within and among natural populations, samples

of leaves were taken at 13 sites across the North American range of Gleditsia triacanthos.

From these sites, three are located in the center, four in the north, three in the south and

three in the western part of the range (Figure 2.1). During their field study in 2003, H.

Murphy and N. Macdonald collected the leaf samples from honey locust trees. The

individuals within a population were chosen randomly. The number of samples varied

from 20 individuals (site C2) to 78 individuals (site W3) with a total of 549 individuals of

honey locust. Leaves were kept in plastic bags, with the site where the sample came from

and the identity of the tree from which they came. The leaves were stored in a cooler to

remain fresh during transportation to the laboratory. In the laboratory, the leaves were

kept in the freezer at -80°C until processed for genetic analysis.

Individual genomic DNA (Figure 2.2) was extracted from leaves following the protocol

for isolation of DNA from Plant tissue with the “DNeasy Plant Mini Kit” from QIAGEN

(Appendix 4). Leaves were ground with mortar and pestle, using liquid nitrogen. From

each of 549 individuals of honey locust, 100 mg of ground plant (wet weight) was

obtained in a microcentrifuge tube. Then to the ground-up plant tissue were added 400 pi

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. of Buffer API and 4 pi of RNase. The tube was vortexed vigorously, in order that no

tissue clumps were left, because clumped tissue will not lyse properly, resulting in a

lower yield of DNA. After this, the mixture was incubated for 10 min at 65 °C, mixing it

2-3 times during incubation by inverting tube. This step lyses the cells. Then 130 pi of

Buffer AP2 was added to the lysate, and they are mixed together and incubated for 5 min

on ice. This helps to precipitates detergent, proteins, and polysaccharides that were

present in the plant tissue.

The lysate was applied to a QIAshredder Mini Spin Column, placed in a 2 ml collection

tube and centrifuged for 2 min at 20,000 x g. The role of QIAshredder Mini Column was

to remove most precipitates and cell debris, but still a small amount typically passed

through and forms a pellet in the collection tube, which doesn’t need to be disturbed. The

flow-through fraction was transferred to a new tube without the cell-debris pellet. 1.5

volumes of Buffer AP3/E were added to the cleared lysate and were mixed by pipetting.

Buffer AP3/E contains ethanol, so it may form a precipitate in the lysate, but this will not

affect the DNeasy procedure. It is important to pipet Buffer AP3/E directly onto the

cleared lysate and to mix immediately. Then 650 pi of the obtained mixture was applied

to the DNeasy Mini Spin Column sitting in a 2 ml collection tube, it was centrifuged for 1

min at 6000 x g and the flow-through was discarded.

The same process was repeated with the remaining sample, and the flow-through and

collection tube were both discarded. The DNeasy Mini Spin Column was placed in a new

collection tube, and 500 pi of Buffer AW was added to the column and centrifuged for 1

min at 6000 x g. the flow-through was discarded and the collection tube was reused again.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. After that, again 500 pi of Buffer AW was added to the DNeasy Mini Spin Column and

centrifuged for 2 min at 20,000 x g. This step was to dry the membrane, because there

could be some residual ethanol that might interfere with subsequent reactions. This spin

ensures that no residual ethanol will be carried over during elution. The flow-through and

collection tube were discarded. After washing with Buffer AW, the DNeasy Mini Spin

Column membrane is slightly colored.

The Dneasy Mini Spin Column was transferred to a 1.5 ml microcentrifuge tube. 100 pi

of Buffer AE was pipetted directly onto the DNeasy membrane, incubated for 5 min at

room temperature and centrifuged fro 1 min at 6000 x g to elute. This last step was

repeated again, so in the end 200 pi sample was obtained in a new microcentrifuge tube.

The 200 pi sample of the solution (buffer + DNA) was stored at -20°C until processed

according to the RAPD (Random Amplified Polymorphic DNA-PCR) procedure. In each

of the 549 microcentrifuge tubes were recorded the site and the tree number were that

DNA sample was obtained from. Gels with 549 samples were run to see if there was

obtained DNA, and to check DNA quality and quantity.

2.4 - RAPD Analysis

Populations were studied using the randomly amplified polymorphic DNA-polymerase

chain reaction (RAPD). This technique has been widely used in plants for the

construction of genetic maps, and for genotype identification and taxonomic studies.

RAPD analysis uses a set of PCR primers of 10 in length whose sequence is

essentially random. A set of 100 primers was ordered from the University of British

Columbia. Candidate primers were tried out individually in PCR reactions to amplify

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. fragments of genomic DNA from the organism under study. Eight samples (2 from each

region) were chosen randomly from the 549 individuals to decide which of the 100

primers to use in the project. In a period of two weeks all the primers were tried, and were

selected 15 primers based on the quantity of bands generated, and band quality (Table

2.2). The primers anneal to genomic DNA at multiple sites because they are so short.

Among the set of amplified fragments are same bands that are polymorphic and others

that are monomorphic. Monomorphic bands are the same from one individual to the next;

the amplified bands that are not present in every individual are polymorphic bands

(Figure 2.3). Each position at which a band is observed in one or more samples is

considered as a genetic locus phenotype, whether or not the band is polymorphic.

RAPD amplifications (Appendix 5), employing the polymerase chain reaction (PCR)

were carried out in a 25 pi volume containing 2.5 pi of genomic DNA, 0.2 pi of dNTP’s,

2.5 pi ofNH 4 buffer, 1.25 pi of MgCb, 0.2 pi of Taq polymerase and 1 pi of primer. To

simplify the procedure the first thing to be prepared was core buffer in a 1.5 ml microtube

(enough for 100 reactions) which contains: 20 pi of dNTP’s 100 mM; 250 pi of NH 4 rxn

buffer, lOx; 125 pi of MgCb, 50 mM; and 355 pi of ddH 2 0 , with a total volume of 750

pi. This mixture can be held in the freezer at -20 °C. In another 1.5 ml microtube was

prepared the cocktail (enough for 1 0 reactions, but the amount can be adjusted as needed).

It is very important to make sure that the cocktail is prepared just before use, in order not

to allow the Taq polymerase to react with the primer. This mixture contains: 2 pi of Taq

polymerase, 5u/pl; 10 pi of primer, 10 pM; and 138 pi of ddFfeO, with a total volume of

150 pi. Before preparing the reaction mixture both core buffer and cocktail separately

should be mixed by inversion and spin to collect solution. Then, in a PCR tube I prepared

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. the reaction mixture by mixing: 7.5 |_il of core buffer; 15.0 pi of cocktail, and 2.5 pi of

DNA sample with a total volume of 25.0 pi. Ultratherm Taq polymerase was supplied by

Genomics One, Intemacional Inc.

2.5 - DNA amplification

The purpose of a PCR (Polymerase Chain Reaction) is to make a huge number of copies

of a gene. There are three major steps in a PCR: denaturation at 94 °C, annealing at 35 °C

and extension at 72 °C. During the denaturation, the double strand melts open to a single

stranded DNA, and all enzymatic reactions stop. During annealing the polymerase can

attach and starts copying the template. Once there are a few bases built in, the ionic bond

is so strong between the template and the primer, that it does not break anymore. The

temperature of 72 °C during extension is the ideal temperature for the polymerase. The

primers, where there are a few bases built in, already have a stronger ionic attraction to

the template than the forces breaking these attractions. Primers that are on positions with

no exact match get loose again (because of higher temperature) and don’t give an

extension of the fragment. This is done on an automated cycler, which can heat and cool

the tubes with the reaction mixture in a very short time. In this study the PCR reaction

was carried out in a robocycler set with the following program: an initial denaturation

step of 94 °C for 2 min followed by 40 cycles of denaturation (94 °C, 30 sec), annealing

(35 °C, 1 min) and extension (72 °C, 2 min) with a terminal extension of 72 °C for 5 min.

Different annealing temperatures were tried in a few samples, ranging from 35-58 °C. In

the end, the annealing temperature was decided to be 35 °C, because at this temperature I

got clear bands with no smears.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.6 - Electrophoresis

Both edges of a gel mold were sealed with a 1 ” masking tape and were placed in a level

platform, and then were attached the combs. A 1.4% agarose gel was prepared by

weighting 3.5 g agarose. It was transferred in a 500 ml flask and 250 ml of 0.5x TBE

buffer was added. The solution was boiled in a microwave for 6 min, and then the

solution was cooled to 60 °C. The agarose was poured into the gel mold and was allowed

to solidify. The electrode tank was filled with 0.5x TBE buffer. The masking tape was

removed from both ends of the gel mold., the gel mold was mounted on the electrode tank

making sure no bubbles were formed beneath the mold, and the comb was removed

gently. The gel has 20 wells to accomodate the samples. In the first and last wells were

loaded 2 pi of DNA ladder mixed with 2 pi of loading dye and 8 pi of TE buffer. The

ladder used was 100 bp DNA ladder. This is ideal for determining the size of DNA

strands from 100-1,500 base pairs. The ladder was supplied by Promega Corporation

(Madison, WI, USA), and consists of 11 double-stranded DNA fragments with sizes of

100,200, 300,400, 500, 600, 700, 800, 900,1000 and 1500 bp. The 500 bp band is

present at triple the intensity of the other fragments and serves as a reference indicator.

All other fragments appear with equal intensity on the gel. The ladder is supplied in

lOmMTris-HCl (pH 7.5), ImM EDTA. It is stored at -20 °C. Blue/orange 6X loading dye

is used for loading DNA samples into gel electrophoresis wells and tracking migration

during electrophoresis. Eighteen samples were loaded in a gel. The samples were mixed

in a piece of parafilm with the loading dye before being loaded to the gel with 2 pi

loading dye in proportion for 10 pi sample. Then the tank was closed, and the electrode

wires were attached to the power supply. It was run for three hours at 160V.

59

with permission of the copyright owner. Further reproduction prohibited without permission. 2.7 - Staining and documentation

After electrophoresis, the power supply was switched off and the tank cover was

removed. The gel was removed from the molder and was transferred in a tray with

Ethidium bromide staining solution in a 1000 ml H 2 O. The gel was stained for 20 min.

Ethidium bromide solution was reused for any other gel but staining time was for an hour.

After staining the gel was rinsed with dFfeO. Then the gel was photographed under UV

light (Figure 2.4).

Bands were identified and characterized using GeneTools software and then further

edited visually to eliminate both false bands and those bands below a level of optical

density that could be reliably scored. Sample band molecular weights were calculated by

the software itself using the standard lane nearest to the “unknown” sample. GeneTools

features include: 'One Click' technology for a full, rapid and accurate analysis in

seconds; auto track, band, peak, lane and edge finding even on smiling gels and grimaced

bands; auto and manual background subtraction with a range of methods; numerous

applications, including a module for spot and slot blot; multi-tier analysis for high

throughput screening; molecular weight libraries; track profile comparison; pattern

matching analysis and dendogram display; choice of calibration types; user defined

quantification units; direct exporting of results to Excel and Word.

RAPD phenotypes for each primer were scored as present (+) or absent (-) for each

individual. We only compared presence-absence data, and did not analyze them assuming

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Hardy-Weinberg equilibrium since it was not known whether the populations used in this

study were in Hardy-Weinberg equilibrium. The data from RAPDs do not depend on

strict dominant and recessive allelic frequency. In this study, the number of individuals

where a certain band is absent presents the number of homozygous recessive individuals

(q2). We can not consider the number of individuals where a band is present as p2,

because we don’t know if these individuals are homozygous dominant (p2) or

heterozygous (2pq). Thus, we calculated the allele frequency for the absence of a band (q)

as the square root of q2. Than we found out the allele frequency for the presence of a

band (p) from the equation p + q=l,sop=l-q.

Phylip software (web pages by Joe Felsenstein, Department of Genome Science and

Department of Biology, University of Washington, DC) was used to build a phylogenetic

tree of similarities between 549 individuals of honey locust. Three programs were used to

compute this: RESTDIST, NEIGHBOR, and DRAWTREE and DRAWGRAM.

RESTDIST computes a distance matrix from restriction sites or fragments. NEIGHBOR

constructs a tree by successive clustering of lineages, setting branch lengths as the

lineages join. DRAWTREE and DRAWGRAM are intearctive tree-plotting programs that

take a tree description in a file and read off it. With my data, I first created a matrix from

each sample to each sample based on how many + or - bands (presences or absences)

were shared. The number of shared + and - were then divided by the total possible (400).

Appendix 6 is a summary table showing mean and standard error of similarity values

between regions and sites (note first column is from region, second column is to region,

third column is from site, fourth column is to site).

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 7 shows an image of the run parameters for the restdist.exe program in Phylip.

To be able to look at the tree generated and easily distinguish regions and sites, sample

names were recorded (e.g., C_CD_1) such that the first letter represents region (North,

Central, South, West), the middle values represent sites and the last numbers just

represents individual samples. The file that came out from this is a list of original code to

a new coding. After this, the tree was generated (with a size of four sheets of paper tall

and three sheets of paper wide), and when assembling it together there is a 1 cm overlap

(Appendix 8).

2.8 - Statistics used to measure genetic differentiation within and among populations

Several measures of genetic distance have been proposed by different authors (Cavalli-

Sforza & Edwards 1967; Nei 1972; Kimura 1980; Reynolds et al. 1983; Nei & Kumar

2000). Most of these measures are actually dissimilarity measures and not mathematically

true distance measures (B-Rao & Majumdar 1999). In general the various methods of

measuring genetic diversity will give the same rank order of diversity, but they may give

very different numerical values (Edwards 2003). In particular, Edwards (2003) stated that

Wright’s fixation index, Nei’s genetic distance and similar measures can seriously

understate the relative importance of genetic differences between populations as

compared to differences within them.

According to Edwards (2003) once the material has been classified into a number of

variant forms or ‘alleles’ (at whatever level), it would be natural to suggest that the level

of diversity within a population can be measured by the number of different alleles within

that population, while the diversity between two populations can be measured by the

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. number (and/or proportion) of alleles found in one population and not the other. I selected

the statistics used in this study to confirm with those used in similar papers based on the

systematic research I have done on papers listed in Appendix 9. In that table are shown

the titles of the papers, year published, author, and the statistics used to assess genetic

diversity.

Within-population genetic diversity in most of the cases is measured by allelic

diversity: the average number of alleles per locus assayed; percent polymorphism (P):

percent of assayed loci for which two or more allelic variants exist; heterozygosity: the

proportion of individuals in a population that are heterozygous.

Genetic differentiation among populations is manifested in differences in allele

frequencies and in the way that these alleles are assembled into genotypes (genotypic

frequencies). W right’s fixation index ( F s t ) is “the reduction in heterozygosity expected

with random mating at any one level of a population hierarchy relative to another, more

inclusive level of the hierarchy” (Hartl & Clark 1997).

Fst = (Hj -H s) / Ht, where Hr is the total expected heterozygosity and Hs is the average

(expected) heterozygosity among populations.

Fst ranges from zero (no genetic differentiation among subpopulations) to a maximum of

one; in other words, the higher the value, the greater the degree of genetic differentiation.

Distance metrics: Distance metrics summarize the amount of genetic divergence between

pairs of individuals, populations, or species. An example of a common genetic distance

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. based on allele frequencies in two populations that are being compared is that of Nei

(1972). Nei considered a single locus with k alleles in two populations X and Y. The

probability

Jxxthat two alleles chosen at random from population X are identical is:

Jxx= ZPi2> where p* is the frequency of the i-th allele in population X. Similarly, for

population Y:

Jyy = where qi is the frequency of the i-th allele in population Y. Jxy is defined as

the probability that two alleles are identical when one is drawn from population X and the

other from population Y such that:

J x y = Z P iQ i-

Finally, the normalized genetic identity is defined as:

I = Jxy / V( JxxJyy)-

Nei’s genetic distance D is calculated as the negative natural logarithm of Nei’s I.

Genetic distances may be used to summarize differentiation across all population pairs

within a single study or as “common yardsticks” to compare across studies and taxa

(Avise 1994).

Estimating indirect gene flow: A number of techniques exist for estimating gene flow

between populations. If we know Fst, we can estimate gene flow using the following:

Fst = 1 / (l+4Nm), where N is the population size and m the proportional rate of

migration. Solving for Nm we have:

Nm ~(1-Fst) / 4Fst.

Nm is measure of gene flow. When there is no migration, Fst equals 1. As migration

increases, Fst drops rapidly, asymptotically approaching zero. Generally it is suggested

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. that Nm values of « 1 will result in strong population differentiation, whereas

“populations” with Nm values > 4 will function as a single randomly breeding

(panmictic) unit (Kimura & Maruyama 1971).

Shannon’s diversity index (Shannon & Weaver 1949): it is the index of phenotypic

diversity. For each locus this value (Ho) is calculated as:

Ho- -Xp^lnpi2, where pi is the frequency of the presence or absence in the band.

Proportion of diversity within populations is the ratio H pop /H sp , proportion of diversity

between populations is the ratio (Hsp-HPop)/Hsp, where Hpop is the average over the

different populations; Hsp is the diversity calculated from the phenotypic frequencies p in

all the populations considered together.

Analysis of Molecular Variance (AMOVA) is a method of estimating population

differentiation directly from molecular data and testing hypothesis such differentiation. A

variety of molecular data - molecular marker data (for example, RFLP or AFLP), direct

sequence data, or phylogenetic trees based on such molecular data - may be analyzed

using this method (Excoffier et al. 1992). AMOVA treats any kind of raw molecular data

as a Boolean vector pi, that is, an lx N matrix of Is and Os, 1 indicating the presence of a

marker and 0 its absence (Excoffier et al. 1992). Euclidean distances between pairs of

vectors are then calculated. To compute AMOVA, we need to make certain assumptions

about the nature of the population (Excoffier et al. 1992), for example, that mating is

entirely random and non-assortative, that no inbreeding occurs. If non-random mating and

inbreeding is occurring, it will result in lower heterozygosity, and if the rates of non-

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. random mating or inbreeding differ between populations, fixation estimates will be

confounded (Bishop 1996).

Bishop (1996) stated that the effects of selection are not fully accounted for by this

model, so selection can have very different effects on different alleles and allele

combinations. All variance among different allele frequencies due to genetic drift can be

assumed to be the product of a degree of sampling error that is common to all alleles.

However, according to Bishop (1996), selection acting on different alleles is non-random,

hence any given between-population difference in the frequency of a given allele is

potentially non-representative of allele frequency variation as a whole.

Because of the non-random nature of the effects of selection on allele frequencies,

increasing the percentage of the genome that is sampled will not necessarily yield an

unbiased estimate of allele differentiation across the whole genome, at least, not as

readily as would be the case when compensating for the effects of differential genetic

drift, stated Bishop. Using neutral, non-selected genetic markers can be a useful means of

avoiding the confounding effects of selection, if neutral markers can be identified.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Land cover type Mix oupland f and bottomland deciduous forest and pasture/grassland (minor) Upland deciduous forest Pasture/grassland Deciduous forest and pasture/grassland (minor) Deciduous forest Mix ofdeciduous forest and Mix ofdeciduous forest and young, sparse, woody vegetation forest pasture/abandoned fields Mix ofbottomland deciduous forest and pasture/grassland Bottomland deciduous forest Bottomland deciduous forest Bottomland deciduous forest Upland deciduous forest and prairie (minor) Mix oupland f and bottomland deciduous

113 853 632 598 range (km) centre ofgeographic Approx. distance from

54 89 137 42 567 180 124 160 647 67 155 700 2 0 0 2 1 0 population Approx. size of

,48”/89°17,24” 3 7 0 3 7 37°34’12”/89°11’24” 36°24’36”/87055’48” 39o37’H ”/83°15’08” 40°22’12’783°03’08” 10” 19”/82°41’ ’ °47 41 37 15 706 830 41o55’2r782o30’45” 31°35’58”/91°12,27” 31°0r27791°50’32”°22’44”12”/9 ’ 1 18 32° 37°34’12”/89°11’24” 500 175 65 501 670 39°18’37796°39’19” 39°08’04”/95°25’59” approx. middle ofsite Latitude/Longitude at geographic range and the land cover type in which the sampled trees occur at the site. Table 2.1 - Population locations, their latitude and longitude at approximate middle ofsite, total population size, approximate distance from centre of Cedar Lake, IL Giant City State Park, IL Land Between the Lakes, TN Deer Creek Marina, OH Pelee Island, ON Point Pelee, ON Pomme de Terre, LA Tensas River, LA Milford Lake, KS Tuttle Creek, KS Natchez State Park, MS SI S2 S3 Cl C2 C3 N1 N2 Delaware State Park, OH N3 N4 W1 W2 Lake, Perry KS Site Site Location, State W3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 2.2 - Primers used generating RAPDs. Pc- primer code; P. seq.- nucleotide sequence of the primers; Nb - number of band each primer generated in all individuals; Min. - the minimum length of the band generated from each primer in bp; Max. - the maximum length of the band generated from each primer in bp.

No. Pc P. seq. Nb M in Max 1. 210 GCA CCG AGA G 41 100 1330

2. 220 GTC GAT GTC G 39 160 1480

3. 222 AAG CCT CCC C 31 100 1390

4. 235 CTG AGG CAA A 23 310 1960

5. 245 CGC GTG CCA G 48 220 1990

6. 251 CTT GAC GGG G 24 280 1480

7. 261 CTG GCG TGA C 16 370 1480 8. 266 CCA CTC ACC G 25 280 1270

9. 275 CCG GGC AAG C 32 370 1330

10. 277 AGG AAG GTG C 14 430 940

11. 282 GGG AAA GCA G 14 340 970

12. 284 CAG GCG CAC A 27 100 1060

13. 285 GGG CGC CTA G 17 400 970

14. 287 CGA ACG GCG G 16 310 850

15. 288 GCT GGG CCG A 32 250 1690

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 104“W 100*W 96°W 92°W 88°W 84"W 80”W -46’N

WYj MN W/J ON

■42”N

CO W3. OH • N2 W2) • N1 MO WV -38”N

34“N- NC AR

SC

GA

LA «!

500 Kilometers

100CW 96“W 92°W 88“W 80°W

Figure 2.1 - Thirteen locations of Gleditsia triacanthos selected for this study, distributed in four regions of the native range (in grey shading): Central region with three sites (C l, C2, C3), Northern region with four sites (Nl, N2, N3, N4), Southern region with three sites (SI, S2, S3), and Western region with three sites (W l, W2, W3); the white dot represents the approximate centre of the range (adapted from Murphy 2005)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.2 - Agarose gel with presence of DNA from extracted samples

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. RAPD p rim e r sets

Set 1 Set 2 Set 3 Individuals A . B C D ... A .. B , C D . A B C ... D

,‘v ' t ' # i I ; ■ :

; > . t?l i * ,..r. >* .., * ...... > * RAPD bands on ; electrophoresis

jSp^^^E^iiBSSS Monomorphic< jV i bands -(,', > > v“* t,t , * r *» > *• .....‘ ri .>r , ** U I, ’ A . - .V f. *1'. w- . i • . m '■' ; , V„v ' . ' r>

,p/. >,'>.’,4 '< -'' > . i

Polymorphic11 bands I fc P I S P

Fragments that PGR-ampiify willi genomic DiNA from some individuals but not others, using the same primer set

Fiptre 2.J - RAID t*dmi<|ue: mouomoiphit and polvnioijiliic bawls

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission Figure 2.4 - Gel electrophoresis generating RAPDs; the first and the last line is the 100 bp size standard; lines 1-16 are the samples after the PCR process

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 3 Results

3.1 - Fingerprinting of Honey Locust individuals: general patterns

A total of 400 individual fingerprint patterns from 549 trees across thirteen populations

were examined (see Appendix 10). The smallest band consisted of 100 bp, and it was

detected by three primers: 284, 210 and 222. The largest band was 1990 bp, and was

detected by primer 245. A total of 78 (out of 400) bands were present in all 549 of the

individual trees sampled. In consideration of populations within each region, there were

223 out of 400 bands (55.75%) present in central populations, 231 (57.75%) in northern

populations, 232 (58%) in southern populations, and 343 bands present in western

populations (85.75%) (see Appendix 11).

As the above results suggest, in plants from the central region of the range, many of the

bands have lower occurrence. If we consider all geographic regions together, 398 of the

400 bands are present at least once in all regions (see Appendix 11). The two missing

bands are: p288_1480, which is completely absent in the central region but was present in

very low frequency in the southern region (four individuals out of 102 in the south); the

other band is p284_100, which was completely absent in the southern region and is

almost absent in the western region (present in 1 out of 182 individuals).

No specific bands were present in all female trees and absent in males, or vice-versa (see

Appendix 12). Regarding the two phenotypic categories of thomed and thornless

individuals, 298 of the 400 bands were present in both categories. One band, p284_100

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. was completely absent in both categories. 101 out of 400 bands were present in one and

not in the other category of thorn presentation. From these 101 bands, 98 are absent in the

thornless individuals, and 3 bands are absent in the thorny individuals (see Appendix 13).

The frequency p was derived as the number of bands present (+) divided by the total

number of individuals in each phenotypic category. The frequency q was taken as the

number of absent bands (-) divided by the total number of individuals in each category.

Mean allele (an allele is considered a band) frequencies were estimated for the thirteen

populations (Table 3.1) with an average of 0.11 in all populations. Table 3.1 shows the

percentage of polymorphic loci (presence of more than one allele) in the thirteen

populations of honey locust. These numbers varied from 65.75% (at site C2) to 92.75%

(at sites S2 and W3). In general, as we can see from the results, individuals of honey

locust reflect high levels of genetic polymorphism.

Mean allele frequencies were also calculated separately for each of the four regions

(Table 3.2). Across all regions only two monomorphic bands were scored, one in the

center and one in the south of the geographic range (Table 3.2). No monomorphic bands

were detected in the female, male and vegetative individuals (Table 3.3). For individuals

of different thominess (Table 3.4) the percentage of polymorphic loci varied from

75.25% (in trees with no thorns) to 99% (in trees with thorns). Average allele frequency

did not differ among these plants.

3.2 - Patterns of genetic diversity within and among populations of Honey Locust

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Results that show the distribution of genetic variation (Shannon’s index of diversity, Ho)

within and among populations of Honey Locust are presented in Table 3.5. According to

this index, 94% of the genetic variation is detected within the thirteen populations of

Gleditsia triacanthos, and only 6% of the differentiation is detected between and among

these populations.

Table 3.5 also shows the values for Wright’s fixation index (F st) for the proportion of

genetic diversity within and among populations. These results show that the proportion of

variation within the thirteen populations is 96.57%, while just 3.43% is the proportion

among the populations. Estimates of the genetic heterozygosity, in total, across the

thirteen populations (i.e., Hr) were 0.1022, and the average heterozygosity within

populations (Hs) was 0.0986.

Results for estimates of Nei’s genetic distances (G st) between individuals within a

population varied from 0.2917 (in site W3) to 0.6703 (in site C2) (Table 3.6). Nei’s pair­

wise sites genetic distances are shown in Table 3.7. These distances varied from 0.3848

between sites Cl and S2 populations, to 0.8495 between sites C2 and S3 populations.

The pair-wise gene flow values (Nm) varied from 1.8 between sites C2 and N2

populations, to 5.8 between sites Cl and S2 populations (Table 3.8)

3.3 - Genetic diversity within and among the four regions of Honey Locust

geographic range

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. According to Shannon’s index of diversity (Ho), the proportion of genetic diversity

within the four regions of honey locust distribution was 97.83%;just 2.17% of this

variation is portioned among the regions (Table 3.5). Very similar values for the

proportion of diversity within and among regions were obtained by calculating Wright’s

fixation index (F st)- These values were, respectively, 98.59% and 1.41% (Table 3.5).

The heterozygosity in the four regions (species total) (H t) is 0.1022, and the average

heterozygosity in region (Hs) is 0.1004 (see Table 3.5).

Nei’s genetic distances between individuals within a region varied from 0.16 (West) to

0.2116 (South) (Table 3.9). Nei’s pair-wise genetic distances between two regions were

very similar across the six pairs (C-N, C-S, C-W, N-S, N-W, and S-W) (Table 3.10a).

In Table 3.11 are grouped together the pair-wise genetic distances between populations

within a region. The average genetic distance in the central region is 0.645; meanwhile

this parameter is 0.569 for the three marginal regions together.

Table 3.12 shows the values of gene flow estimates (Nm) in populations within regions.

The average estimated gene flow in the central region was 2.9 and 3.7 for the three

marginal regions together.

Figure 3.1 shows the distribution of gene flow and genetic distances in the four regions.

To make a comparison between the central region and peripheral regions, the graph

shows two columns representing, respectively, the gene flow and genetic distance in the

periphery of the geographic range. The figure indicates us that the gene flow is higher in

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. the periphery of the range than in the center. The highest estimates of gene flow occurred

between individuals from the populations within the southern region.

3.4 - Genetic diversity within and between male, female and vegetative individuals

According to estimates of Shannon’s index of diversity (Ho), the greatest proportion of

genetic variability was seen within the sexes (99.61%), and only a very small amount of

genetic variation is seen between the sexes (0.39%) (Table 3.5). This result is supported

by measures of Wright’s fixation indices (F st), shown in Table 3.5. These were,

respectively, 99.98% within the sexes and 0.02% between the sexes. The absolute level of

genetic heterozygosity in male/female/vegetative individuals (H t) was 0.1022, and the

average heterozygosity in trees of each sex was 0.1018.

Table 3.13 shows the values calculated for Nei’s genetic distances within female, male

and vegetative (non-flowering) individuals (G st)- Pair-wise genetic distances between

male/female/vegetative groups of individuals are: female-male 0.0526; female-vegetative

0.061, and male-vegetative 0.0657 (see Table 3.10b).

3.5 - Genetic diversity within and between the thorniness degree in Honey Locust

The degrees of thominess are compared based in the information for the three populations

of southern region SI, S2, S3. The individuals present have different degree of

thominess. Murphy (2005) classified these trees in the four classes: individuals with few

thorns, many thorns, no thorns, and some thorns (see Appendices 2.1, 2.2,2.3). In the

present study, individuals were classified into just two categories: trees having some

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. thorns present; and trees having no thorns. According to Shannon’s index of diversity

(H0) 99.35% of the total genetic variation was distributed within the thominess degrees,

and 0.65% of this variation is distributed between these categories of thominess (Table

3.5). Table 3.5 also presents the values of Wright’s fixation index (FSt) within the degree

of thominess and between the degree the thominess, and these values are, respectively,

92.5% and 7.5%. Once again the greatest differentiation is observed within the four

degrees of thominess. The heterozygosity in total (Ht) is 0.1022, and the average

heterozygosity (Hs) is 0.0929.

Nei’s genetic distances within thorny individuals is 0.2176, and within thornless

individuals is 0.4119 (Table 3.14). The pair-wise genetic distance between

thomy/thomless individuals is 0.2564 (Table 3.10c). Gene flow among the trees with

different thominess degrees is estimated at 2.5 individuals per generation.

3.6 - Correlations between geographical distances, genetic distances and patterns of

gene flow

Straight forward geographic distance did not significantly explain genetic distance among

populations (Figure 3.2): neither did the matrix of 78 pair-wise genetic distances (G st)

among 13 populations (G st values taken from Table 3.7). At the regional level, the

greatest between-site geographic distance is in the North (162.5 km) where as the mean

genetic distance (Nei’s genetic distance) there was the smallest (0.5326). However, no

significant regression relation appears for the regions overall (Table 3.16). In

comparisons of genetic diversity (Shannon’s index) with geographic distance from the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. center, three central populations cluster together; for peripheral populations, the graph is

almost linear, line suggesting that genetic diversity increases with geographic distance

(Figure 3.3). At the regional level, in the North, where mean between-site geographic

distance was the greatest (162.5 km), the genetic diversity according to Shannon’s index

is the highest; in the South where the mean geographic distance is the smallest (120 km)

the genetic diversity value is the smallest (Table 3.16). Comparing Center region with

Periphery of range, the mean values of geographic distances are almost identical (140 km

in Center, 140.83 km in periphery), but it is seen a higher genetic diversity in periphery

than in the center, and a smaller genetic distance in periphery than in center (Table 3.16).

Figure 3.4 shows the correlation between geographic distance between the thirteen

populations and 78 pair-wise gene flow values. I had hypothesized that gene flow should

be higher in small geographic distances, but this happened only between some proximal

populations. For the rest of the between-population correlations, I don’t see a significant

relationship. At the regional level, mean gene flow was greatest in the South, and least in

the Center (Table 3.16). Comparing the Central region with the Periphery of the range,

the mean value of gene flow is greater in periphery (Figure 3.1).

3.7 - Genetic variation and population size

At the population level, there is no apparent correlation between population size and

genetic diversity (Figure 3.5), or between population size and genetic distance (Figure

3.6). At the regional level, mean genetic diversity (according to Shannon’s index, Ho)

was smallest in the South, where the mean population size is the greatest (Figure 3.7). For

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. the other regions, it doesn’t follow that the greater the population size, the smaller the

genetic diversity (Table 3.16). The mean gene flow is the greatest in the South where the

mean population size is the greatest, too (Figure 3.8). In the North, where the mean

population size is the smallest, the greatest mean value of genetic distance is present

(Figure 3.9).

3.8 - AMOVA results

AMOVA results are presented in Table 3.17. In the output of the program regions are

considered as groups. According to AMOVA results, the percentage of genetic variation

within populations is very high, 92.94%; among populations within regions the variation

is moderate, 6.91%; and among regions there is only a very small amount of variation,

0.15%.

3.9 - Phylip dendrogram

The output of Phylip is a rooted tree which starts with a single individual among the 549

individuals sampled. This first individulas belongs to the first population Cl of the

central region (see Appendix 2.8). Analyzing this tree shows how related are the other

548 individuals to the first one. Most of the individuals within a population cluster

together, such as individuals from the N l, W l, W3, C3, N2, N3, S2, Cl populations.

According to the tree the most scattered individuals are those belonging to W2, W3 and

S3 populations.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. At the regional level, there are two populations from the Western region which cluster

together (W1 and W3), and two populations from the Northern region (N3 and N4). The

individuals of the rest of the populations are found in different positions o f the tree where

they cluster, together with other individuals from other populations that don’t belong to

the same region. This fact supports the relatively high levels of gene flow found between

populations (Table 3.8).

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83 94.5 76.5 72.5 89.75 89.75 65.75 91.25 87.25 92.75 92.75 bands Percentage ofpolymorphic

9 41 68 94 35 51 22 29 22 94.5 137 110 bands Number ofabsent

82 q ± S E 0.89±0.01 0.91 0.91 ± 0.004 0.90 ± 0.005 41 0.88 ± 0.007 Mean value of

p ± S E 0.11 0.11 ±0.01 0.12 ±0.01 0.88 ±0.01 0.10±0.005 0.09 ± 0.004 0.12 ±0.005 0.88 ± 0.005 0.12 ±0.007 0.09±0.005 0.91 ± 0.005 0.09 ± 0.004 0.11 ±0.0050.08 ± 0.004 0.91 ± 0.004 0.89 ± 0.005 0.92 ± 0.004 30 92.5 0.11 0.11 ± 0.002 0.89 ± 0.002 86 0.11 0.11 ±0.004 0.89 ± 0.004 Mean value of

20 0.10 ±0.006 0.90± 0.006 23 38 50 49 43 0.11 ±0.004 0.89 ± 0.004 21 549 individuals SI S2 S3 C2 C3 47 Cl 50 N1N3 32 44 N2 N4 W3 78 W1W2 54 Sites No of Total absence (q) ofbands ± standard error in the thirteen populations ofHoney Locust, number ofmonomorphically absent bands, Table 3.1 - Sites according to regions, number ofindividuals in each site, the mean allele frequencies for presence (p) and and percentage ofpolymorphic bands present at each site

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 100 99.75 99.75 bands Percentage ofpolymorphic

1 bands Number ofabsent

83 q±SE 0.88 ±0.88 0.003 0 0.90 ± 0.003 1 0.89 ± 0.002 Mean value of

p±SE 0.10 ±0.003 0.90 ± 0.003 0.12 ±0.003 0.10 ±0.003 0.10 ±0.003±0.003 0.90 0 0.11 ±0.002 Mean value of

117 102 148 182 549 No. of individuals West Total South North Central Regions and absence (q) ofbands ± standard error in each ofthe fourmonomorphically regions ofHoney Locust absent distribution; bands, numberand percentage of ofpolymorphic bands present in each region Table3.2 -Regions ofthe geographic range, number ofindividuals in each region, the mean allele frequencies for presence (p)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 100 100 bands Percentage ofpolymorphic

0 bands Number ofabsent

84 q ±q SE 0.90 ± 0.002 0 0.89 ± 0.002 Meanvalue of

p±SE 0.10 ±0.002 0.11 ±0.002 0.10 ± 0.002 0.90±0.002 Mean value of

53 158 0.10 ±0.002 0.90±0.002 0 No. of individuals Male 197 Sexes Total 496 Female 141 Vegetative Uncategorized bands ± standard error, number ofmonomorphically absent bands, and percentage ofpolymorphic bands in these individuals Table 3.3- Number offemale, male andvegetative individuals, the mean allele frequencies for presence (p) and absence (q) of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75.25 bands Percentage ofpolymorphic

99 bands Number ofabsent

85 q±SE 0.90 ± 0.003 0.90 ± 0.005 Mean value of

p ±p SE 0.10 ±0.0030.10 ±0.005 0.90 ±0.003 4 99 0.10 ± 0.003 Mean value of

18 82 100 449 No. of individuals Total Thorn Thoms No thorns Uncategorized presence/absence Table 3.4- The number ofthorned and thornless individuals, the mean allele frequencies forpresence (p) and absence (q) of band ± standard error, number ofmonomorphically absent bands, and percentage ofpolymorphic bands in these individuals

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.5 - Proportion of diversity in Honey Locust according to Shannon’s index of diversity - Ho, and according to Wright’s fixation index - F s t ; H t - heterozygosity in total, Hs - the average heterozygosity in populations, regions, sex classes, and the patterns of thorn production

Proportion of diversity Ho Ht H s Fst

Proportion of diversity within sex 0.9961 0.9998 classes

Proportion of diversity among sex 0.0039 0.1022 0.1018 0.0002 classes

Proportion of diversity within 0.9935 0.9250 thorniness groups

Proportion of diversity among 0.065- 0.1022 0.0929 0.0750 thorniness groups

Proportion of diversity within regions 0.9783 0.9859

Proportion of diversity among regions 0.0217 0.1022 0.1004 0.0141

Proportion of diversity within 0.94 0.9657 populations

Proportion of diversity among 0.06 0.1022 0.0986 0.0343 populations

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.6 - Mean values of Shannon’s index of genetic diversity between individuals within a population (Ho) and of Nei’s mean genetic distances between individuals within a population ( G s t)

S ites Ho JST

C1 2.2755 0.3704 C2 2.2593 0.6703 C3 2.4997 0.3759 N1 2.5389 0.4076 N2 2.717 0.5573 N3 2.8518 0.3692 N4 2.8477 0.3281 51 2.1708 0.6097 52 2.5687 0.3288 53 2.1079 0.3962 W1 2.6703 0.4355 W2 2.0479 0.4234 W3 2.6719 0.2917 Mean 2.479 0.428 Variation in total 2.6372 0.0852

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 W3 0.56 0.57 0.456 0.5186 0.6143 0.5947 0.5934 0.4586 0.6055 0.5483 0.4578 1 W2 0.6514 0.7345 0.5212 0.5951 0.82480.5644 0.5785 0.5007 0.5228 0.6543 0.6558 0.8148 1 W1 0.6573 0.6473 Gleditsia triacanthos 1 0.6458 S3 0.512 0.6387 0.8093 0.6928 0.5167 0.5628 0.8001 0.4902 0.5029 0.84950.7362 0.7009 1 S2 0.3848 0.6748 0.4867 0.5608 1 0.4459 SI • 0.7996 0.6245 0.5820 1 0.5414 0.4714 0.5526 0.613 88 1 0.5201 1 0.5508 0.5146 0.6953 N2 N3 N4 0.92 0.7701 0.5923 0.724 0.6032 0.4935 0.6803 0.7745 0.5186 0.4931 0.6455 0.6647 0.4806 0.465 0.6642 0.5082 0.6321 0.5972 1 N1 0.5597 1 C3 0.58460.6465 0.511 0.6528 1 0.7039 Table 3.7- Matrix ofaverage genetic distance (Nei’s genetic distance) among 13 populations of S2 SI S3 Cl C2 1 N2 N4 C3 N1 N3 W2 W3 W1 Sites C l C2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.8 - Matrix of average gene flow (Nm) among the 13 populations of Gleditsia triacanthos

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 1 - 2 2.5 - 3 3.5 2.7 - 4 4.0 2.8 3.6 - 5 2.1 1.8 2.3 2.6 -

6 3.3 2.4 2.9 3.8 3.0 - 7 3.8 3.1 3.8 4.2 3.4 3.3 -

8 3.7 2.8 3.4 3.3 2.7 2.7 4.1 - 9 5.8 3.4 3.8 4.2 2.6 3.7 4.1 5.4 - 10 4.6 2.2 3.1 3.4 2.1 3.5 3.7 3.1 4.8 -

11 2.7 2.4 2.7 3.0 2.4 2.8 2.7 3.0 3.5 2.8 - 12 3.6 2.2 4.1 3.1 2.1 3.4 3.7 2.9 4.1 5.4 2.7 -

13 3.7 3.3 4.3 4.3 2.8 2.9 3.8 4.2 3.7 3.8 3.2 3.6 -

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.9 - Mean values of Shannon’s index of genetic diversity between individuals within a region (H0) and of Nei’s mean genetic distances between individuals within a region ( G s t)

Regions Ho G St

Central 2.457 0.2021 North 2.8816 0.1691 South 2.3922 0.2116 West 2.5894 0.16 Mean 2.58 0.1857 Variation in total 2.6372 0.085

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.10 - a) Matrix of average genetic distance (Nei’s genetic distance) among four regions; b) Matrix of average genetic distance (Nei’s genetic distance) among sex classes; c) Matrix of average genetic distance (Nei’s genetic distance) among thorned - no thorns categories

a) ______Regions c N S W C 1 0.2258 0.2394 0.2888 N 1 0.232 0.2129 S 1 0.2489 w 1

b)

Sexes Female Male Vegetative Female 1 0.0526 0.061 Male 1 0.0657 Vegetative 1

c)

Thorn presence/absence Thorns No thorns Thorns 1 0.2564 No thorns 1

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.11 - Matrix of average genetic distance (Nei’s genetic distance) between populations within a region, mean values and their respective standard errors in each region

Centre region

Sites Cl C2 C3 Cl 1 0.7039 0.5846 C2 1 0.6465 C3 1 Mean 0.645 Standard error 0.03

North region

Sites N1 N2 N3 N4 N1 1 0.6647 0.4806 0.465 N2 1 0.5508 0.5146 N3 1 0.5201 N4 1 Mean 0.5326 Standard error 0.03

South region

Sites SI S2 S3 SI 1 0.4459 0.8001 S2 1 0.4902 S3 1 Mean 0.5787 Standard error 0.11

West region

Sites W1 W2 W3 W1 1 0.6514 0.5186 W2 1 0.6143 W3 1 Mean 0.5948 Standard error 0.04 Mean in periphery 0.5687 Standard error 0.02

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.12 - Matrix of average gene flow among populations within a region, the mean values and the respective standard errors in each region

Center region

Sites C l C2 C3

C l - 2.5 3.5 C2 - 2.7 C3 - Mean 2.9 Standard error 0.3

North region

Sites N1 N2 N3 N4 N1 - 2.6 3.8 4.2 N2 - 3.0 3.4 N3 - 3.3

N4 - Mean 3.4 Standard error 0.2

South region

Sites SI S2 S3 SI - 5.4 3.1 S2 - 4.8 S3 - Mean 4.4 Standard error 0.7

West region

Sites W1 W2 W3 W1 - 2.7 3.2 W2 - 3.6 W3 - Mean 3.2 Standard error 0.3 Mean in Periphery 3.7 Standard error 0.4

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.13- Mean values of Shannon’s index of diversity between female, male and vegetative (non-flowering) individuals (Ho) and of Nei’s mean genetic distances between female, male and vegetative (non-flowering) individuals (Gst)

S e x es Ho Gst

Female 2.6033 0.1206 Male 2.6455 0.1007 Vegetative 2.5851 0.1075 Mean 2.6113 0.1096 Variation in total 2.6216 0.3603

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.14 - Mean values of Shannon’s index of diversity between thorned and thornless individuals (Ho) and of Nei’s mean genetic distances between thorned and thornless individuals ( G s t)

Thorniness degree Ho Gst

Thorns 2.366 0.4119 No thorns 2.368 0.2176 Mean 2.367 0.3148 Variation in total 2.3822 0.2127

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.15 - Matrix of average geographic distance among 13 populations of Gleditsia triacanthos (in km)

Sites Cl C2 C3 N1 N2 N3 N4 SI S2 S3 W1 W2 W3 Cl 0 30 210 705 750 855 885 690 795 630 810 615 825 C2 0 180 690 735 855 885 675 780 615 825 720 840 C3 0 630 690 825 855 630 735 585 975 885 1005 N1 0 90 240 270 1230 1335 1200 1470 1350 1470 N2 0 165 180 1320 1410 1275 1500 1365 1500 N3 0 30 1455 1560 1410 1575 1425 1560 N4 0 1470 1575 1350 1605 1455 1575 SI 0 105 90 945 945 1035 S2 0 165 975 990 1065 S3 0 870 870 960 W1 0 165 120 W2 0 135 W3 0

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.16 - Geographic regions of Honey Locust range, their average population size - Ps, average geographic distance between populations in a region (in km) - Go, values of Shannon’s index of diversity in regions and their standard error - Ho ± SE, mean values of gene flow in regions and their standard error - Nm ± SE, and mean values of genetic distances in regions and their standard error — G s t ± SE.

Regions Ps ±SE Gd (in km) ± SE H0±SE Nm± SE G st ^ SE

C 108 ±38 140 ±56 2.457 ±0.35 2.9 ±0.3 0.645 ± 0.03

N 103 ±45 162.5 ±37 2.8816 ± 3.4 ±0.2 0.5326 ± 0.03 0.35 S 239 ± 120 ±23 2.3922 ± 4.4 ± 0.7 0.5787 ±0.11 136 0.29 w 143 ±42 140 ±13 2.5894 ± 3.2 ±0.3 0.5948 ± 0.04 0.31

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 3.17 - AMOVA design and results

Source of Sum of Variance Percentage variation d.f. squares components of variation

Among groups 3 477.386 0.05642 Va 0.15

Among populations within groups 9 1258.456 2.58486 Vb 6. 91

Within populations 536 18644.836 34.78514 Vc 92. 94

Total 548 20380.678 37.42643 P<0.05

Fixation Indices FSC : 0.06917 FST : 0.07057 FCT : 0.00151

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. _ 6 w O 8 5 c 8 to ■ =5 4 II o> ■ ■ o 3 BBffi r £ 0 * BIb oS '.t'H ■ ■ ? 2 I ' "• B ■WB ...... z ■ lllim ■■RB ■ 1 t■ . mgm ° H m m ■ 1 q= 1 111 Wm o (■H c0> O 0 ■ D Center North South West Periphery R egions

Figure 3.1 - Mean values of gene flow ± standard error and genetic distance ± standard error at each region

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. :xjxx "XTrry H¥* :?*■&>& Wr- —• ------*------♦ ------—♦ ------* ------M- ~ * — ♦■♦------—m m -^ m i , ► ■ . * ♦ ♦ ^ m m m m x m

_____ : ______s a g s ■MBWMBMWMMMI>'^>)A''l^>'!-s--i'' " " '^ v,v> - ,-i > S- ; v "S'1-' -’ w '"■' ' /,'?>?»'✓*^ -,'>J:\/;'x<*t

200 400 600 800 1000 1200 1400 1600 1800 Geographic distance (km)

Figure 3.2 - The relationship between pair-wise geographic distances (Table 3 .1 5 ) and pair-wise genetic distances (G st ) among 13 populations of Gleditsia triacanthos

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 900

u 800 £ I t g f f f f 0>c wmmSMk o 700 ^ ■ S j l l B 600 E= ■*E 500 3 | „., ^ .,.. ... ■■■-;.-.. g ^ y s j g y r t J 2 400 ------(0 Q> =5 £ 300 u a 200 2 D> 100 O« o 0 WKKMmKKMKtmKKtKtk 0.5 1 1.5 2 2.5 Genetic diversity within populations

Figure 3.3 - Correlation between geographic distances from the center of the range (taken from Table 2.1) in km and mean values of Shannon’s index of genetic diversity between individuals within a population

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1800

1600

| 1400

$0 1200 1w 1000 O 800 !E j§- 600 o> S 400 O) 200 ___ 4 * A 0 ♦______

0 1 2 3 4 5 6 7 gen e flow (Nm)

Figure 3.4 - The relationship between pair-wise geographic distances and pair-wise gene flow values among 13 populations of Gleditsia triacanthos

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Population size

Figure 3.5 - Relationship between population size and mean values of Shannon’s index of genetic diversity between individuals within a population of Gleditsia triacanthos

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0.6 - f '

« .. ■ H W B I 0.5 -

0.4 - .>.;.|V;»^i~g.;..2

■■■■■■■■■■MWWBWBI —

Population size

Figure 3.6 - The relationship between population size and Nei’s mean genetic distances between individuals within a population of Gleditsia triacanthos

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. @W®3 8 I S l R i W ■ — ------m & m m

Average population size

Figure 3.7 — Relationship between population size and mean values o f Shannon’s index of genetic diversity ± standard error in the four geographical regions of Gleditsia triacanthos range

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 50 100 150 200 250 300 Average population size

Figure 3.8 - The relationship of mean values of population size and mean values of gene flow ± standard error in the four regions of Gleditsia triacanthos range

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0.8 ^ 1 1 1 0.7 ^ m ■“,|"',-?, y"ra»ryr~.v;jt'K! '-'"* '■ " S ♦ ------

------± ------(..,;i,„f..;„i;,..^ i .£ 0 5

------HBb b BBb HWMI

0.1 ^ I

50 100 150 200 250 300 Average population size

Figure 3.9 - The relationship between mean values of population size and mean values of Nei’s genetic distance ± standard error in the four regions of Gleditsia triacanthos range

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 4 Discussion

4.1 - The use of markers

The use of dominant markers to assess genetic variability among individuals and

populations is promising because many polymorphic loci can be obtained fairly easily, in

a relatively short time and at low cost, without any prior knowledge of the genome of the

species under study (Hardy 2003). Therefore, RAPDs should find major population

genetics applications, notably in the field of genetic conservation, where molecular

markers need to be developed at a reasonable cost (Hardy 2003).

In the present study, RAPD markers proved to be a powerful method for the detection of

spatial genetic variation. With 15 primers, we obtained 400 markers (Appendix 3.1) and

could differentiate the 549 G. triacanthos individuals, reflecting a rich allelic diversity in

the populations. RAPD results indicate that G. triacanthos appears to maintain a

relatively high level of genetic diversity (Pp = 86%; G st = 0.428). Hamrick et al. (1992)

reported mean values for most woody species based on isozymes to be Pp = 59.5%, Gst =

0.183 for angiosperms, and Pp = 71.1%, Gst = 0.169 for gymnosperms.

Tero et al. (2003) investigated the distribution of genetic variation within and between

seven subpopulations of Silene tatarica in northern Finland by using amplified fragment

length polymorphism (AFLP) markers. Relatively high values of genetic diversity among

subpopulations (Fst) indicated a clear subpopulation differentiation. There was no

correlation seen between geographical and genetic distances among the subpopulations,

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. nor any correlation between the subpopulation size and amount of genetic variation.

Estimates of gene flow suggested a low level of gene flow between the subpopulations,

and the assignment tests proposed a few long-distance bi-directional dispersal events may

have occurred between subpopulations.

4.2 - Choice of primers

Primers used in the present study (Table 2.2) differed substantially in their ability to

produce markers that were polymorphic in form between and within Honey Locust

individuals and populations. Similar findings have been reported in other studies where

RAPDs have been used for analysis of genetic diversity in plant populations (see, e.g.,

Huff et al. 1993). Consequently, estimations based on a small number of primers may be

seriously biased. However, choice of suitable primers may be tailored to the study in

question. In our material, primers 245,210,220 appear to be the most useful for

discrimination between individuals because they produced highly polymorphic markers at

this level. For genetic mapping and linkage studies, primer 245 appears to be potentially

suitable, because it produces markers that are highly polymorphic within populations.

4.3 - Genetic diversity within and between populations

The levels of genetic variation in G. triacanthos are generally consistent with predictions

based on its ecological and life history characteristics (Schnabel & Hamrick 1990a). Thus

Hamrick and Godt (1990), in the most recent review of allozyme diversity in plants,

concluded that high levels of variation were most strongly correlated with a wide

geographic range, outcrossed mating system, and long generation times. All three traits

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. are characteristic of G. triacanthos and help explain the high levels of within-population

genetic diversity found in my study. One of the most notable features of genus Gleditsia

is its high percentage of polymorphic loci per population, and its genetic diversity

(Schnabel & Hamrick 1995). These values, even considering the small numbers of loci

examined, are much higher than those reported for seed plants in general (p=29.0% -

57.7%; Hamrick & Godt 1990).

Plant species generally are variable at slightly greater than 50% of their loci (Hamrick &

Godt 1990). The corresponding estimate for G. triacanthos in our study was 86% of the

loci polymorphic (Table 3.1). This value is very close to the value that Schnabel and

Hamrick (1990a) estimated for G. triacanthos, 81% of the loci polymorphic. This

percentage of polymorphic loci is much higher than those of temperate-zone species

(48.5%), species with widespread geographic ranges (43.8%), and outcrossing-animal

species (50.1%), and it is also higher than those of long-lived woody perennial species

(64.7%; Hamrick & Godt 1990). These comparisons suggest that the genetic diversity

levels of G. triacanthos are higher than its associates, the temperate-zone species.

G. triacanthos maintains relatively high levels of variation compared to the average plant

species. For example, its estimated mean genetic diversity at 0.428 is substantially higher

than that of temperate-zone species (0.146), long-lived woody perennial species (0.177),

outcrossing-animal species (0.167), and also higher than species with widespread

geographic ranges (0.202) (Hamrick & Godt 1990).

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The relatively high level of genetic variation found in G. triacanthos is however

consistent with several aspects of its biology. First, geographic range has been shown to

be strongly associated with the level of variation maintained within populations and also

at the species level (Hamrick & Godt 1990). Widely distributed plant species tend to

maintain more variation than more narrowly distributed species. G. triacanthos is very

widely dispersed across the eastern half of North American range (Figure 1.1) where

large, contiguous populations exist (Murphy 2005). Second, the breeding system of a

species is an important determinant of variability at both the species and population level.

G. triacanthos is outcrossing, and an insect-pollinated species. This combination is well-

known to be associated with high levels of genetic variation (Hamrick & Godt 1990).

Third, long-lived perennial species, like G. triacanthos, generally maintain relatively

higher levels of variation than annual and short-lived perennial species.

Woody species maintain more variation within species and within populations than

species with other life forms but have less variation among populations (Table 1.1; 1.2).

Woody species with large geographic ranges, outcrossing breeding systems, and wind or

animal-ingested seed dispersal have more genetic diversity within species and

populations but less variation among populations than woody species with other

combinations of traits. Although life history and ecological traits explain a significant

proportion (34%) of the variation among species for the genetic parameters measured, a

large proportion of the inter-specific variation is unexplained. The specific evolutionary

history of each species must play an important role in determining the level and

distribution of genetic diversity. In this study, 92.94% of the variation is found within

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. populations of Honey Locust (Table 3.17). This value is almost the same with the one

found by Schnabel & Hamrick (1990), when estimating the total variation in Honey

Locust due to differences within populations (94%).

In addition, although Honey Locust is a colonizing species with populations most likely

founded by few individuals, rapid population growth and long generation time probably

overcome the effects that genetic drift would have on allele and genotype frequencies

(Schnabel & Hamrick 1990). Genetic drift changes the genetic variation in two ways: (i)

the decrease of variation within populations (loss of heterozygosity and eventual fixation

of alleles), and (ii) the increase of differentiation among populations. In this study genetic

drift doesn’t have a great influence in genetic diversity because the level of differentiation

among populations is low. Approximately 7% of the total variation in Honey Locust (c.f.

6% variation among populations found by Schnabel & Hamrick in 1990) is due to

differences among populations. This estimate is lower than expected, based upon several

life history traits and is comparable to the levels of differentiation found in conifers and

other wind-pollinated tree species (e.g., Alnus crispa, Bousquet et al. 1987). Honey

Locust is insect-pollinated, produces heavy, animal-dispersed fruits, and is an early

colonizer of old fields and pastures, in particular bottomlands (Murphy 2005). These

traits are often associated with moderate genetic differentiation among populations (G st =

0.15-0.25; Loveless & Hamrick 1984). The low level of genetic differentiation observed

in this study indicates that gene flow among populations is probably high. As shown in

Table 3.8, gene flow values among the thirteen populations of Honey Locust (Nm) ranged

from 1.8-5.8 individuals per generation. Values greater than 4.0 indicate that gene flow

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. has a major role in shaping the genetic structure of populations. The high values of gene

flow between and among the thirteen populations across the four regions may explain the

similarity between individuals presented in Appendix 2.8.

It is a common observation that plant species, including populations and individuals

within populations, have clustered distributions within natural landscapes (McCauley

1995a). Such spatial arrangements can significantly affect evolutionary factors such as

selection and genetic drift, and thus may have important consequences for the genetic

composition of plant populations. However, the influence of such evolutionary factors on

the distribution of genetic variation also depends on the dispersal ability of the organism

and its impact on gene flow among populations. High rates of gene flow can homogenize

genetic differences among populations even in the face of intense selection. Any factor,

such as habitat fragmentation, that changes the spatial relationships between individuals

or populations could have important consequences for gene flow and for genetic structure

(Nason & Hamrick 1997). Many tropical tree species within fragmented habitats are in

danger of losing their genetic diversity, due to genetic drift, and may also experience

increased rates of inbreeding (Hamrick 1997). According to Hamrick (1997), a key factor

in predicting the effects of forest disturbance on the genetic composition of the remaining

forest fragments is the rate of gene flow among fragments.

Drift and migration influence species and genetic diversity in fairly similar and

straightforward ways (Vellend 2005). The effects of drift and migration are frequently

manifested as positive correlations of diversity with the area or connectivity of localities

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (Rosenzweig 1995; Frankham et al. 2002), and these variable locality characteristics may,

in turn, drive positive correlations between species diversity and genetic diversity

(Vellend 2005).

Dunphy and Hamrick (2005) estimated gene flow and patterns of genetic diversity in

Albizia lebbeck, an invasive leguminous tree in the dry forest of southwestern Puerto

Rico. Gene flow was measured indirectly by estimating the effective number of

immigrants per generation (Nm): Nm = ( 1- F s t ) / 4 F s t , where F s t is the proportion of total

genetic diversity due to differences among populations (Wright 1951). Genetic diversity

estimates calculated for 10 populations of 24 trees each indicated that these populations

likely arose from multiple introductions. The combination of individuals from disparate

locations led to high estimates of genetic diversity. Indirect estimates of gene flow

indicated that only 0.69 migrants per generation move between populations, suggesting

that the relative amount of genetic diversity within populations should increase due to

genetic drift. Gene flow levels were measured also directly by using paternity analysis.

Indirect and direct measures of gene flow lead to slightly different predictions, and the

apparent absence of migration-drift equilibrium for this invasive species indicates that the

direct estimates are more reliable (Dunphy and Hamrick 2005).

Significant genetic variation was observed at all hierarchical levels, i.e., between

individuals within a population (Table 3.6), among populations (Table 3.7), between

individuals within a region (Table 3.9), among regions (Table 3.10a), and between

populations within a region (Table 3.11). Despite differentiation among regions and

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. among populations, genetic differentiation among populations was not related to

geographic distance in G. triacanthos (Figure 3.2). Similarly, no correspondence between

geographic distance and gene flow was found here for G. triacanthos populations (Figure

3.4). There was not significant positive correlation between population size and genetic

diversity in G. triacanthos populations (Figure 3.5). In fact one of the southern

populations, S3, had the greatest population size, but almost the lowest value of diversity

among its individuals. Moreover, population N3 which had the smallest population size

and population N4 with 200 individuals both have almost the same values of genetic

diversity (Table 3.6). This seems more likely be because these two populations belong to

the same region, and are only 30 km apart from each other.

Habitat fragmentation may have significant consequences for population genetic structure

because geographic distance and physical barriers may impede gene flow (Mossman &

Waser 2001). Following fragmentation, populations may be both small and isolated and

experience lower levels of immigration from outside (Soule 1987a). Habitat isolation

may cause gene flow between populations to decrease and genetic drift within

populations to increase, owing to smaller population sizes. As a result, within-population

genetic variation is expected to be lower and genetic differentiation among populations

greater, following fragmentation. Recent studies have confirmed theoretical expectations

that variables such as distance between habitat fragments, size of populations, and habitat

area may affect genetic variation (Lande & Barrowclough 1987; Saunders & Hobbs

1991).

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. While fragmentation is expected to decrease genetic variation within populations, some

authors have suggested that overall genetic variation may be maintained because of

genetic differentiation among populations (e.g., Harrison & Hastings 1996). Both

distance and the intervening habitat between populations likely influence the amount of

genetic differentiation, however the effects are not consistent across species. The distance

between populations may also influence the amount of inter-population genetic

differentiation, but the effect varies across species.

Donaldson et al. (2002) examined the effects of habitat fragmentation on the pollinator

diversity and reproductive success of seven perennial plant species in Renosterveld shrub

lands, in South Africa. They sampled the pollinators in small (0.5-2ha), medium (3-10ha)

and large (>30ha) habitat fragments during the peak flowering period in spring and

summer. Donaldson et al. (2002) compared fruit set and seed set in seven shrubby plant

species on different-sized fragments. Hand-pollinated controls were used to determine

pollination deficits in three species. Seed-germination studies were done on two species

to determine the effect of reduced seed set on reproductive output. Overall, the species

richness of bees, flies and butterflies did not vary significantly among different-sized

fragments. However, the abundance of particular species of bees and monkey beetles was

significantly affected by fragment size, together with other factors such as vegetation

cover and the ratio of grass species to shrub species. In four of the seven species fragment

size and distance to large remnants of vegetation had a significant influence on seed or

fruit set. According to these results, perennial species respond in different ways to

fragmentation, and populations in small fragments do not always experience pollination

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. deficits. There needs to be a greater focus on the habitat requirements of pollinators to

predict the effects of habitat fragmentation on pollination systems in as for as they affect

plant reproductive success.

The distribution of genetic diversity can be influenced by various life-history traits, with

breeding system having a particularly significant effect (Hamrick & Godt 1996).

Inbreeding species are frequently characterized by a high degree of population genetic

differentiation and relative uniformity within populations; whilst out breeding species

tend to be more diverse within, with less genetic differentiation, between populations

(Hamrick & Godt 1996).

4.4 - Peripheral populations in comparison to central populations

Peripheral populations may contain important genetic diversity since they likely face

environmental conditions atypical of the species’ overall distribution (Kark et al. 1999).

According to the ‘abundant-centre distribution’ model species abundance tend to be

greater toward the centre of the geographical range and lower at the periphery (Sagarin &

Gaines 2002; Murray & Lepschi 2004). The three main predictions of the abundant-

centre distribution are: (1) abundance should be higher in sites closer to the centre of the

range; (2) species should occupy more sites towards the centre of the range; and (3)

abundance and occupancy should decline linearly towards the edge of the range. But

Murphy et al. (2005), in an analysis of the distribution of abundance across the entire

range of 134 eastern North American tree species, showed that the abundant-centre

distribution model was in fact not well supported for most of the species. According to

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. the results, sites closest to the centre were not always those with the greater abundance of

the species.

Murphy et al. (2005) analyzed a spatial dataset of abundance across the geographical

ranges of 134 tree species in eastern North America to test macro ecological hypotheses

concerning the distribution of abundance across geographical ranges. The four

hypotheses tested were: (a) species occur in low abundance throughout most of their

geographical range; (b) there is a positive inter-specific relationship between abundance

and range size; (c) species are more abundant in the center of their range; and (d) there is

a bimodal distribution of spatial autocorrelation in abundance across a species range. The

results of Murphy et al. (2005) demonstrated that (a) most species (85%) are abundant

somewhere in their geographical range; (b) species achieving relatively high abundance

somewhere tend to have larger range sizes; (c) the widely held assumption that species

exhibit an ‘abundant-centre distribution’ is not well supported for the majority of species;

they suggest ‘abundant-core’ as a more suitable term since the core is not necessarily at

the geometric centre of the species range; and (d) there is no evidence of a bimodal

distribution of spatial autocorrelation in abundance. According to Murphy et al. (2005)

high abundance for many tree species can be achieved at any position in the range,

though suitable sites are found with less frequency toward range edges.

Marginal populations are theorized to be less variable for several reasons, including small

population sizes, reduced gene flow, and historical factors (e.g., Nei et al. 1975; Cwynar

& MacDonald 1987). Evidence from electrophoretic studies, however, has been mixed.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Peripheral populations are expected to diverge from central populations as a result of the

interwoven effects of isolation, genetic drift, and natural selection.

Available empirical evidence suggests that peripheral populations are often genetically

and morphologically divergent from central populations. Peripheral populations may

have reduced genetic variation compared to central populations, but this is not always the

case. Peripheral populations showed reduced genetic variation compared to central

populations in conifers such as Chamaecyparis lawsonti (Millar & Marshall 1992), Pinus

contorta (Cwynar & MacDonald 1987), P. ponderosa (Hamrick et al. 1989), etc.; in

deciduous such as Betula (Coyle et al. 1982) and Gleditsia (Schnabel & Hamrick 1990a);

and in herbaceous species including Avena (Jain et al. 1981), Sarracenia (Schwaegerle &

Schaal 1979), etc.

At the same time, however, results.from peripheral populations of Picea abies (Tigerstedt

1973), Pinus edulis (Betancourt et al. 1991), Camelia japonica (Wendel & Parks 1985),

and Phlox spp. (Levin 1977,1978) did not reveal reduced genetic variation compared to

central populations. Founder effects and drift due to reduced gene flow should cause

peripheral populations to have different alleles or gene frequencies than central

populations.

There has been considerable theoretical investigation of the evolutionary limits to a

species’ range (Bradshaw 1991; Hoffman & Blows 1994; Barton 2001). It is commonly

assumed that isolation and reduced size of peripheral populations will lead to a reduction

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. in their genetic diversity (Ellstrand & Elam 1993; Schaal & Leverich 1996) and possibly

a reduction in the likelihood that they might adapt to conditions beyond the range edge

(Bradshaw 1991).

However, it has been hypothesized that fluctuating environmental conditions in

peripheral areas might maintain more genotypes there if selection favours genetic

flexibility, whereas relatively more stable conditions in core areas may favour the high

average fitness of only a few genotypes (Saffiel et al. 1994). This would potentially lead

to lower diversity of populations in core rather than peripheral regions of a species’

range. Furthermore, although genetic divergence of peripheral populations is predicted

based on increased geographical isolation (Schaal & Leverich 1996), it has also been

suggested that reduced density of peripheral populations may render them likely to be

swamped by gene flow from populations further toward the core (Barton 2001). This

would prevent their divergence and adaptation to local (range-edge) conditions, thereby

restricting range expansion (Barton 2001).

Jump et al. (2003) examined patterns of genetic variability in Cirsium acaule and C.

heterophyllum. Both species showed a decline in the density of populations approaching

the range edge, indicating that peripheral populations are more geographically isolated

from one another than populations in core areas of the range. In addition to the effects of

genetic drift caused by their contemporary isolation (Ellstrand & Elam 1993; Schaal &

Leverich 1996), range-edge populations are expected to show decreased genetic diversity

as a result of historic colonization processes.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Genetic diversity may be lower in range edge populations both as a consequence of

founder effects at expanding range margins and genetic bottlenecks at the retreating edge

(Hewitt 2000). However, only C. acaule, showed decreased diversity in its range-edge

populations; the absence of this pattern in C. heterophyllum was surprising given the

parallel decline in population density and seed production approaching the range edge of

both species (Jump & Woodward 2003). The loss of diversity in isolated populations may

be slowed in plants that reproduce by both seed and clonal reproduction, as a

consequence of clonal persistence of individuals and the increased opportunity for sexual

reproduction of long-lived clones (Schaal & Leverich 1996; Young et al. 1996). Given

the possible longevity of individual clones, very few new genets need to be added

annually in order to maintain genetic diversity in such populations (Widen et al. 1994;

McLellan et al. 1997).

At the largest scale, increasing geographical distance between populations is expected to

result in decreasing genetic similarity (isolation by distance, Jump et al. 2003).

In small populations at the edge of a species range, genetic drift may lead to reduced

within-population genetic diversity and increased between-population differentiation,

while populations admixture can lead to increased genetic diversity (Walter & Epperson

2001).

According to Murphy (2005) there are many factors that influence the distribution of

abundance and population performance across the range in Honey Locust, and effects of

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. these factors appear to differ regionally and latitudinally. These factors should be the

ones that will also influence patterns of genetic diversity in Honey Locust. According to

Murphy’s (2005) results, abundance and performance of plants in G. triacanthos

populations were not simply related to position in the range, as predicted by the central-

peripheral model. Populations at the western periphery of the species’ range appear to

have a relatively broader niche, show active recruitment and high density and abundance,

but at the same time high levels of developmental instability and low survivorship.

Populations in the southern part of the range had a relatively narrower niche breadth, and

showed low recruitment, density, abundance and developmental instability, but high

survivorship. Geographically central and northern parts of the Gleditsia triacanthos range

contained populations with a mix of demographic structures and a range of population

performance values. Moreover, trees in the southern part of the range appear to have

virtually no niche overlap with trees from the central part of the range. The niche space

occupied by western trees overlaps to some degree with that of the central trees and to a

lesser extent, with that of southern trees (Murphy 2005).

Murphy’s (2005) results suggest abiotic conditions may be more limiting in the western

region of the range, while competition likely plays a more significant role in limiting

population performance, distribution and niche breadth in southern populations. The

successional stage of the site probably influences population performance and abundance

of trees in central and northern parts of the range and a lack of available suitable habitat

may limit further extension of the range to the north (Murphy 2005). Based upon the

present results, plants in central populations had higher values of genetic distances from

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. peripheral populations, and gene flow was higher (Figure 3.1). In the three groups of

peripheral populations, higher levels of gene flow accounted, especially in the south

where gene flow is the highest (Table 3.16). This may be explained by the fact that mean

population size in the south is greater than in the other regions, and mean geographic

distance between southern populations was least.

In the south where gene flow is the highest between southern populations, the genetic

diversity is the smallest. This might be connected with the fact that a very high proportion

of the landscapes surrounding the southern sites are composed of rich bottomland

deciduous forest (see Table 2.1). Sites in western, northern and central parts of the range

tend to occur on a broader range of land-cover types, including more open vegetation

such as pasture/grassland, and land-cover classified as sparse, woody vegetation (Murphy

2005).

In the northern region where the mean geographic distance is the highest and mean

population size is the lowest we got the highest value of genetic diversity and the lowest

value of genetic distance in the four regions. Northern sites tended to produce very little

fruit, while fruit production in central sites was relatively low (Murphy 2005).

Mean geographic distance in central populations does not differ significantly from that of

peripheral populations. Mean population sizes are greater in the periphery of the range.

We have evidence of less gene flow and higher differentiation between populations in the

center of the range of Gleditsia triacanthos than in the periphery (Table 3.16). This is not

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. in accord with the classical view of the ‘Central-Marginal Model’ that states that central

populations are more genetically variable than marginal populations because of fewer

ecological niches at the margins (da Cunha & Dobzhansky 1954), or because of a greater

importance of heterosis in central populations (Wallace 1984).

4.5 - Female/Male differentiation

According to the present results no significant genetic variation exists in general between

female and male individuals of G. triacanthos. Mean genetic diversity based on

Shannon’s index of diversity is essentially identical in female and male categories (Table

3.13). This is supported also by the fact that > 99% of the variation occurs between

individuals of the same sex, and a tiny amount of differentiation is seen between the

individuals of the two categories (Table 3.5). Mean genetic distance among female

individuals was greater than the one among male individuals (Table 3.13). This variation

can be explained by the fact that females of Honey Locust tend to have fewer flowers per

inflorescence than males (Tucker 1991; Macdonald 2003), or by the other fact that male

trees tend to flower every year, while flower and fruit production in females is more

sporadic (Schnabel et al. 1991; Murphy 2005). According to Murphy (2005), there is

higher mortality among females than among males. Moreover, Schnabel et al. (1991)

suggested males of G. triacanthos may be more associated with clonal growth than

females. These facts may also contribute to female individuals having a greater mean

inter-individual genetic distance than male individuals.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4.6 - Thorn presence/absence differentiation

Little is known about thorn production in honey locust. Macdonald (2003) showed that

there is significant variation between individuals in terms of stem thorn production

patterns. In the present study, there is not sufficient information about thorn

presence/absence for all individuals. I have information only for the individuals in the

three southern populations. Based on the results, very little genetic variation was detected

among thomed vs thornless individuals; the highest amount of genetic variation was

evident between individuals in the same category of thorn production (Table 3.5). In

general, thorn development tended to be reduced in older individuals. Moreover, after

about 10 years of age, thomed trees can show thornless regions in the upper and outer

shoots (Chase 1947). Mean genetic diversity was the same in the two categories, however

the two groups differ significantly in the values of mean genetic distance, where it was

much higher among individuals having thorns (Table 3.14).

4.7 - Are my hypotheses supported or rejected?

Hypothesis 1. To see if there is high or low genetic differentiation among populations I

was focused on the gene flow values among the thirteen populations of Honey Locust,

presented in Table 3.8, and on the mean values of gene flow among populations within a

region, presented in Table 3.12. Values of gene flow were relatively high, ranging from

1.8 individuals per generation between sites C2 and N2 to 5.8 individuals per generation

between sites Cl and S2. High values of gene flow between populations show that there

is less genetic differentiation among populations of Honey Locust. It was expected there

would be high levels of genetic differentiation among plant populations, because plants

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. are sessile organisms and less gene movement will occur. As my results show the

opposite, this means that my first hypothesis is being rejected.

Hypothesis 2. Honey Locust is a woody plant. As shown in Table 3.1, high levels of

polymorphism within the thirteen populations of this study were detected. Also, there

were high levels of genetic diversity within populations (see Table 3.5 and Table 3.17). In

comparison with species of other life forms (Table 1.1 and Table 1.2), our values for

Honey locust are very high. The second hypothesis, that woody plants maintain more

variation within- and less variation among populations, than other plant life forms is

therefore supported from my results. The high values of within-population diversity in G.

triacanthos are associated with the three life traits that are characteristic of this plant: (a)

wide geographic range; (b) outcrossed mating system; and (c) long generation times

(Hamrick & Godt 1990).

Hypothesis 3. It was expected that more distant populations should show greater genetic

differentiation than more proximal populations. According to my results, in Figures 3.2

and 3.4 there is no evident correlation between pair-wise geographic distances and pair­

wise genetic distances; neither between pair-wise geographic distances and pair-wise

gene flow. Thus the third hypothesis was rejected.

Hypothesis 4. (a) Central populations are expected to be more diverse genetically than

peripheral populations. In Table 3.16, genetic diversity (according to Shannon’s index of

diversity) was not the highest; I got the highest value of genetic diversity in the northern

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sites. This hypothesis was therefore rejected, because at a regional level central

populations are not the most genetically diverse.

(b) Central populations are expected to show less differentiation, and high rates of gene

flow. The values of gene flow in the four regions can be found in Figure 3.1. Highest

values of gene flow were in the south. The central region has in fact the lowest values of

gene flow. When gene flow is the lowest, genetic differentiation is greatest. Thus, this

hypothesis was rejected too, because central populations show least gene flow among

them.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Conclusions

1- Honey Locust individuals show high levels of polymorphism. This estimate in the

present study is 86% of loci polymorphic.

2- Honey Locust maintains high levels of genetic variation within populations

(92.94%), moderate variation between population within regions (6.91%), and

very little variation among regions (0.15%). The high levels of variation within

populations are most strongly correlated with a wide geographic range, outcrossed

mating system, and long generation times for G. triacanthos individuals.

3- In the Center of the geographic range, mean gene flow between populations is the

smallest in comparison with the periphery of the range, while mean Nei’s genetic

distance is the greatest. In the periphery, the mean gene flow is the greatest in the

South where genetic diversity according to Shannon’s index is the smallest. This

is explained by the fact that in the South the mean population size is the greatest,

and mean geographic distance between populations is the smallest.

4- No specific bands and no significant genetic variation exist between female and

male individuals of Honey Locust even though female and male individuals differ

in the fact that male trees flower every year while females have a more sporadic

fruit and flower production, or in the other fact that female individuals have a

higher mortality than males.

5- Very little genetic variation is detected among thomed - no thom individuals.

This is because of non-sufficient information about thom absence/presence for all

individuals, and all these individuals belonged to the southern region where the

conditions are the same.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REFERENCES

Aagaard, J.E., Krutoskii, K.V., Strauss, K. 1998. RAPD markers of mitocondrial origin exhibit lower population diversity and higher differentiation than RAPDs of nuclear origin in Douglas fir. Molecular Ecology 7: 801 -812.

Adams, W.T. 1992. Gene dispersal within forest tree populations. New Forestry 6: 217- 240.

Aguirre-Planter, E., Fumier, G.R. & Eguiarte, L.E. 2000. Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from Southern Mexico and Guatemala. American Journal of Botany 87:362-371.

Alatalo, J.M. & Totland, O. 1997. Response to simulated climatic change in an alpine and subarctic pollen-risk strategist, Silene acaulis. Global Change 1:74-79.

Aldrich, P.R., Hamrick, J.L., Chavarriage, P. & Kochert, G. 1998. Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Molecular Ecology 7: 933-944.

Allendorf, F.W, Ryman, N. & Utter, F.M. 1987. Genetics and fishery management past, present, and future. Pages 1-19 in eds. N. Ryman and F.M. Utter. Population Genetics and Fishery Management. Washington Sea Grant Program; Seattle, WA.

Altukhov, Y.P. & Salmenkova, E.A. 1987. Stock transfer relative to natural organization, management and conservation of fish populations. Pages 333-344 in eds. N. Ryman and F.M. Utter. Population genetics and fishery management. Washington Sea Grant Program; Seattle, WA.

Andrewartha, H.G. & Birch, L.C. 1954. The Distribution and Abundance of Animals. University of Chicago Press; Chicago, IL.

Armour, J.A.L. & Jeffreys, A.J. 1992. Biology and application of minisatellite loci. Current Opinion in Genetics and Development 2: 850-856.

Arnold, M., Buckner, C.M. & Robinson, J.J. 1991. Pollen-mediated intregression and speciation in Lousiana irises. Proceedings of the National Academy of Sciences USA 88: 1398-1402.

Austerlitz, F., Jung-Muller, B., Godelle, B. & Gouyon, P.H. 1997. Evolution of coalescence times, genetic diversity and structure during colonization. Theory of Population Biology 51: 148-164.

Austerlitz, F., Mariette, S., Machon, N., Gouyon, P.H. & Godelle, B. 2000. Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154: 1309-1321.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Avise, J.C. 1994. Molecular markers, natural history and evolution. Chapman & Hall; New York, NY.

Avise, J.C. 1996. Toward a regional perspective. of in the Southeastern United States. Pages 431-470 in eds. J.C. Avice & J.L. Hamrick. Conservation Genetics. Chapman & Hall, New York.

Avise, J.C. 2000. Phylogeography: the history and formation of species. Harward University Press; Cambridge, MA.

Bachmann, K. 1994. Molecular markers in plant ecology. New Phytologist 126: 403-418.

Baguette, M. 2003. Long distance dispersal and landscape occupancy in a metapopulation of the cranberry ffitillary butterfly. Ecography 26: 153-160.

Banuelos, M.J. & Obeso, J.R. 2004. Resource allocation in the dioecious shrub Rhamnus alpinus: the hidden costs of reproduction. Evolutionary Ecology Research 6: 397-413.

Barrett, S.C. & Kohn, J.R. 1991. Genetic and evolutionary consequences of small population size in plants: implications for conservation. In eds. D.A. Falk and K.E. Holsinger. University of Oxford Press; Oxford, UK.

Barton, N.H. 2001. Adaptation of the edge of a species’ range. In eds. J. Silvertown, J. Antonovics. Integrating ecology and evolution in a spatial context. Blackwell Sciences; Oxford, UK.

Bauert, M.R., Kalin, M., Edwards, P.J. 1998. No genetic variation detected in the arctic clonal plant Saxifraga cernua using RAPD markers. Molecular Ecology 7: 1701-1708.

Bertiller, M.B., Sain, C.L., Bisigato, A.J., Coronato, F.R., Area, J.O. & Graff, P. 2002. Spatial sex segregation in the dioecious grass Poa ligularis in northern Patagonia: the role of environmental patchiness. Biodiversity and Conservation 11: 69-84.

Betancourt, J.L., Schuster, W.S., Mitton, J.B. & Anderson, R.S. 1991. Fossil and genetic history of a Pinyon Pine ( Pinus edulis) isolate. Ecology 72: 1685-1697.

Bishop, G.R. 1996. Analysis of molecular variance [Internet]. Edinburgh: Biomathematical & Statistics Scotland; Smart. Avaible from: http://www.bioss.sari. ac.uk/smart/unix/mamova/slides/ffames.htm.

Blair, R.M. 1990. Gleditsia triacanthos L. honeylocust. In eds. Bums, M., Honkala, B.H., technical coordinators. Silvics of North America. Volume 2. Hardwoods. Handbook, 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 358- 364.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Blaser, H.W. 1956. Morphology of the determinate thom-shoots of Gelditsia. American Journal of Botany 43: 22-28.

Boles, R. 1996. Genetic structure and sexual reproductive potential of the perennial aroid green dragon, Arisaema dracontium in different parts of the species’ range. MSc. Thesis, University of Windsor, Windsor, Canada.

Bosch, M. & Waser, N.M. 1999. Effects of local density on pollination and reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae). American Journal of Botany 86: 871-879.

Bradshaw, A.D. 1991. Genostasis and the limits to evolution. Philosophical Transactions of the Royal Society of London, Series B 333: 289-305.

Bradshaw, A.D. 1965. Evolutionary significance of in paints. Advances in Genetics 13: 115-156.

B-Rao, C. & Majumdar, K.C. 1999. Reconstruction of phylogenetic relationships. Journal of Bioscience 24: 121-137.

Brody, A.K. 1997. Effects of pollinators, herbivores, and predators on flowering phenology. Ecology 78: 1624-1631.

Brown, J.H. 1984. On the relationship between abundance and distribution of species. American Naturalist 124: 255-279.

Brown, J.H. & Lomolino, M.V. 1998. .2nd edn. - Sinauer Associates, Sunderland, MA.

Brassard, P.F. 1984. Geographic patterns and environmental gradients: the central- marginal model in Drosophila revisited. Annual Review of Ecology and 15: 25-64.

Buza, L., Young, A. & Thrall, P. 2000. , inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biology of Conservation 93: 177-186.

Caetano-Anoles, G., Gresshoff, P.M. 1994. DNA amplification fingerprinting: a general tool with applications in breeding identification and phylogenetic analysis of plants. Pages 17-31 in eds. Schierwater, B., Streit, B., Wagner, G.P., De Salle, R. Molecular Ecolology Evolution: Approaches and Applications. Birkhauser; Basel, Switzerland.

Cain, M.L., Damman, H. & Muir, A. 1998. Seed dispersal and the halocene migration of woodland herbs. Ecological Monographs 68: 325-347.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Cain, M.L., Milligan, B.G. & Strand, A.E. 2000. Long-distance seed dispersal in plant populations. American Journal of Botany 87: 1217-1227.

Campbell, D.R. 1985a. Pollen and gene dispersal: the influences of competition for pollination. Evolution 39: 418-431.

Campton, D.E. 1987. Natural hybridization and in fishes: methods of detection and interpretation. Pages 161-192 in eds. N. Ryman and F.M. Utter. Population genetics and fishery management. Washington Sea Grant Program; Seattle, WA.

Caruso, C. 1999. Pollination of Ipomopsis aggregate (Polemoniaceae): effects of intra- vs. inter-specific competition. American Journal of Botany 86: 663-668.

Caughley, G. 1994. Directions in . Journal of Animal Ecology 63: 215-244.

Caughley, G., Gride, D., Barker, R.& Brown, B. 1988. The edge of the range. Journal of Animal Ecology 57: 771-785.

Cavalli-Sforza, L.L. & Edwards, A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 32: 550-570.

Chakraborty, R., Meagher, T. & Smouse, P.E. 1988. Parentage analysis with genetic markers in natural populations: the expected proportion of offspring with unambiguous paternity. Genetics 118: 527-536.

Channell, R. & Lomolino, M.V. 2000. Dynamic biogeography and conservation of . Nature 403: 84-86.

Chapco, W., Ashton, N.W., Martel, R.K., Antonishyn, N. & Crosby, W.L. 1992. A feasibility study of the use of random amplified polymorphic DNA in the population genetics and systematics of grasshoppers. Genome 35: 569-574.

Chase, S. B. 1947. Propagation of thornless honeylocust. Journal of Forestry 45:715-722.

Chung, M. Y., Nason, J., Chung, M.G., Kim, K., Park, C., Sun, B. & Pak, J. 2002. Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). American Journal of Botany 89: 1229-1236.

Clark, J.S. 1998. Why trees migrate so fast: confronting theory with dispersal biology and the paleo-record. American Naturalist 152: 204-224.

Clark, J.S., Lewis, M. & Harvath, L. 2001. Invasion by extremes: population spread with variation in dispersal and reproduction. American Naturalist 157: 537-554.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Coltman, D.W. 2005. Evolutionary genetics: Differentiation by dispersal. Nature 433: 23- 24.

Coyle, B.F., Sharik, T.L. & Feret, P.P. 1982. Variation in leaf morphology among disjunct and continuous populations of river birch ( Betula nigra L.). Silvae Genetica 31: 122-125.

Crawford, T.J. 1984. The estimation of neighbourhood parameters for plant populations. 52: 273-283.

Csurhes, S.M., & Kriticos, D. 1994. Gleditsia triacanthos L. (Caesalpiniaceae), another thorny, exotic fodder tree gone wild. Plant Protection Quarterly 9: 101-105.

Cumutt, J.L., Pirum, S.L. & Maurer, B.A. 1996. Population variability of sparrows in space and time. Oikos 76: 131-144.

Cwynar, L.C. & MacDonald, G.M. 1987. Geographical variation of lodgepole pine in relation to population history. American Naturalist 129: 463-469.

Da Cunha, A.B. & Dobzhansky, T. 1954. A further study of chromosomal polymorphism in Drosophila willistoni in relation to environment. Evolution 8: 119-134.

Devlin, B., Clegg, J. & Ellstrand, N.C. 1992. The effect of flower production on male reproductive success in wild radish populations. Evolution 46: 1030-1042.

Dick, C.W., Etchelecu, G. & Austerlitz, F. 2003. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Molecular Ecology 12: 753-764.

Di-Giovanni, F., Kevan, P.G., Arnold, J. 1996. Lower planetary boundary layer profiles at atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. Forest Ecology and Management 83: 87-97.

Dolan, R.W. 1994. Patterns of isozyme variation in relation to population sze, isolation, and phytogeographic history in royal catchfly ( Silene regia; Caryophyllacea). American Journal of Botany 81: 965-972.

Donaldson, J., Nanni, I., Zachariades, C., Kemper, J. 2002. Effects of habitat fragmentation on pollinator diversity and plant reproductive success in Renosterveld shrublands of South Africa. Conservation Biology 16: 1267-1276.

Dorken, M.E. & Eckert, C.G. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). Journal of Ecology 89: 339-350.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Dunphy, B.K. & Hamrick, J.L. 2005. Gene flow among established Puerto Rican populations of the exotic tree species, Albizia lebbeck. Heredity 94: 418-425.

Eckert, C.G. & Barrett, S.C.H. 1993. Clonal reproduction and patterns of genotypic diversity in Decodon verticillatus (Lythraceae). American Journal of Botany 80: 1175- 1182.

Edwards. A.W.F. 2003. Human Genetic Diversity: Lewontin's Fallacy. BioEssays 25: 798-801.

Ehrlick, P.R. & Raven, P.H. 1969. Differentiation of populations. Science 165: 1228- 1232.

El-Kassaby, Y. & Ritland, K. 1996a. Genetic variation in low elevation Douglas-fir of British Columbia and its relevance to gene conservation. Biodiversity Conservation 5: 779-794.

El-Kassaby, Y. & Ritland, K. 1996b. Impact of selection and breeding on the genetic diversity in Douglas fir. Biodiversity Conservation 5: 795-813.

Ellstrand, N.C. 1988. Pollen as a vehicle for the escape of engineered genes? Trends in Ecology and Evolution 6: S30-S32.

Ellstrand, N.C. 1992a. Gene flow among seed plant populations. New Forestry 6: 241- 256.

Ellstrand, N.C. 1992b. Gene flow by pollen: implications for plant conservation genetics. Oikos 63: 77-86.

Ellstrand, N.C. & Elam, D.R. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24: 217-242.

Ellstrand, N.C. & Hoffman, C.A. 1990. Hybridization as an avenue of escape for engineered genes: implications for plant conservation. Annual Review of Ecology and Systematics 24: 217-242.

Ennos, R.A. 1994. Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72: 250-259.

Epperson, B.K. & Alvarez-Buylla, E.R. 1997. Limited seed dispersal and genetic structure in life stages of Cecropia obtusifolia. Evolution 51: 275-282.

Epperson, B.K. 1993. Recent advances in correlation analysis of spatial patterns of genetic variation. 27: 95-155.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Excoffier, L., Smouse, P.E., & Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.

Falconer, D.S. 1989. Introduction to . 438 pages, Wiley; New York, NY.

Falk, D.A., Knapp, E.E. & Guerrant, E.O. 2001. Introduction to restoration genetics. Pages 1-32. White Paper for Society for Ecological Restoration.

Falk, D.A., Millar, C.I. & Olwell, M. editors. 1996. Restoring diversity. Island Press; Washington, DC.

Fischer, M., Husi, R., Prati, D. 2000. RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany 87: 1128-1137.

Frankham, R., Ballon,J.D. & Briscoe, D.A. 2002. Introduction to conservation genetics. Cambridge University Press; Cambridge, UK.

Freeman, D.C., Klikoff, L.G. & Harper, K.T. 1976. Differential resource utilization by the sexes of dioecious plants. Science 193: 597-599.

Freeman, S. & Herron, J.C. 1998. Evolutionary analysis. Prentice-Hall; Upper Saddle River, New Jersey.

Futuyama, D.J. 1987. On the role of species in . American Naturalist 130: 465- 473.

Gabrielsen, T.M., Bachmann, K., Jakobsen, K.S, Brochmann, C. 1997. Glacial survival does not matter: RAPD phylogeography of Nordic Saxifraga oppositifolia. Molecular Ecology 6: 831-842.

Gaggiotti, O. & Marciano, R. 1996. Genetic variability in fish populations. Gather/Scatter (UCSD Supercomputer Center) 12: 22-23.

Garcia, D., Zamora, R., Gomez, J.M, Gordano, P. & Hodar, J.A. 2000. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. Journal of Ecology 88: 436-446.

Garcia-Ramos, G., Kirkpatrick, M. 1997. Genetic models of adaptation and gene flow in peripheral populations. Evolution 51: 21-28.

Gamer, T., Pearman, P. & Angelone, S. 2004. Genetic diversity across a vertebrate species’ range: a test of the central-peripheral hypothesis. Molecular Ecology 13: 1047- 1053.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ghent A.W. 1995. A possible mode of induction of pinnateness in Honey Locust, as implied by consistent gradients of 1-, mixed-, and 2-pinnate leaves. American Midland Naturalist 133:213-228.

Gilpin, M.E. & Soule, M.E. 1986. Minimum viable populations: the processes of species extinctions. In eds. M.E. Soule. Conservation biology: The science of scarcity and diversity. Sunderland, MA.

Gottlieb, L.D. 1984. Genetics and morphological evolution in plants. American Naturalist 123: 681-709.

Gouyon, P.-H., Vichot, F. & Van Damme, J.M.M. 1991. Nuclear-cytoplasmic male sterility: single-point equilibria versus limit cycles. American Naturalist 137: 498-514.

Gram, W.K. & Sork, V.L. 2001. Association between environmental and genetic heterogeneity in forest tree populations. Ecology 82: 2012-2021.

Griffith, B., Scott, J.M., Carpenter, J.W. & Reed, C. 1989. Translation as a species conservation tool: status and strategy. Science 245: 477-480.

Gross, R.S. & Werner, P. A. 1983. Relationships among flowering phenology, insect visitors, and seed-set of individuals: experimental studies on four co-occurring species of goldenrod ( Solidago : Compositae). Ecological Monographs 53: 95-117.

Gugerli, F. 1998. Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114: 60-66.

Guo, Q. F., Taper, M., Schoenberger, M. & Brandle, J. 2005. Spatial-temporal population dynamics across species range: from centre to margins. Oikos 108: 47-57.

Gyllenberg, M. & Hanski, I. 1992. Single-species metapopulation dynamics: A structured model. Theoretical Population Biology. Academic Press; New York, NY.

Haag, C.R., Riek, M., Hottinger, J.W., Pajumen, V.L & Ebert, D. 2005. Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age. Genetics 170: 1809-1820.

Hamrick, J.L. 1997. Gene flow in tropical forests. CTFS Newsletter, University of Georgia, GA.

Hamrick, J. L., & Godt, M.J.W. 1997. Allozyme diversity in cultivated crops. Crop Science 37:26-30.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Hamrick, J.L. & Godt, M.J.W. 1990. Allozyme diversity in plant species. Pages 43-63 in eds. A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir. Plant population genetics. Sinauer; Sunderland, MA.

Hamrick, J.L. & Godt, M.J.W. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London Series B 351: 1291-1298.

Hamrick, J.L., Godt, M.J.W., Sherman-Broyles, S.L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forestry 6 : 95-124.

Hamrick, J.L. & Nason, J.D, 1996. Consequences of dispersal in plants. Pages 203-236 in eds. O.E. Rhodes, Jr., R.K. Chesser & M.H. Smith. Population dynamics in ecological space and time. University of Chicago Press; Chicago, IL.

Hamrick, J.L. & Nason, J.D. 2000. Gene flow in forest trees. Pages 81-90 in eds. A.Young, D.Boshier & T.Boyle. Forest Conservation Genetics: Principles and Practice.

Hamrick, J.L., Blantoon, H.M. & Hamrick, K.J. 1989. Genetic structure of geographically marginal populations of ponderosa pine. American Journals of Botany 76: 1559-1568.

Hamrick, J.L., Linhart, Y.B. & Mitton, J.B. 1979. Relationships between life history characteristics and electrophoretically-detectable genetic variation in plants. Annual Reviews of Ecology and Systematics 10: 173-200.

Hamrick, J.L., Murawski, D.A., Nason, J.D, 1993. The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Journal of Vegetation Science 107/108:281-297.

Hanski, I. 1999. Metapopulation Ecology. Oxford University Press; Oxford, UK.

Hanski, I. & Gilpin, M.E. (eds.) 1997. Metapopulation biology: ecology, genetics, and evolution. Academic Press; San Diego, CA.

Harada, Y. & Iwasa, Y. 1996. Analyses of spatial patterns and population processes of clonal plants. Researches on Population Ecology 38: 153-164.

Hardy, O.J. 2003. Estimation of pair-wise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Molecular Ecology 12: 1577-1588.

Harrison, S. & Hastings, A. 1996. Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology and Evolution 11: 180-184.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Hartl, D.L. and Clark, A.G. 1997. Principles of population genetics. 3rd edition. Sunderland (MA): Sinauer Associates.

Haymer, D.S. 1994. Random amplified polymorphic and microsatellites: what are they, and can they tell us anything we don’t already know? Annual Review of Entomology 87: 717-722.

Hengeveld, R. & Haeck, J. 1982. The distribution of abundance. I. Measurements. Journal of Biogeography 9: 303 316.

Hengeveld, R. 1990. Dynamic biogeography. Cambridge University Press; Cambridge, UK.

Hewitt, G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907-913.

Hjelmroos, M. 1991. Evidence of long-distance transport of Betula pollen. Grana 30: 215-228.

Hoffmann, A. & Blows, M. 1994. Species borders: ecological and evolutionary perspectives. Trends in Ecology and Evolution 9: 223-227.

Holt, R.D. & Keitt, T.H. 2005. Species’ borders: a unifying theme in ecology. OIKOS 108: 3-6.

Houghton, J., Filho, L., Callander, B., Harris, N., Kattenburg, A., & Maskell, K. 1996. Climate change 1995- the science of climate change. Working group I, second assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press; Cambridge, UK.

Huang, J.C., Wang, W.K., Hang, K.H., Chiang, T.Y. 2001. Population differentiation and phylogeography of Hydrophila pogonocalyx based on RAPD fingerprints. Aquatic Botany 70: 269-280.

Huff, D.R., Peakall, R. & Smouse, P.E. 1993. RAPD variation within and among natural populations of outcrossing buffalograss. Theoretical Application in Genetics 8 6 : 927- 934.

Ingvarsson, P.K. & Lundberg, S. 1995. Pollinator functional response and plant population dynamics: pollinators as a limiting resource. Evolutionary Ecology 9: 421- 428.

Inouye, D.W., Moraks, M.A. & Dodge, G.J. 2002. Variation in timing of abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Nina, in context of climate change. Oecologia 130: 543-550.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Irwin, R.E. 2001. Field and allozyme studies investigating optimal mating success in two sympatric spring-ephemeral plants, Trillium erectum and Trillium grandiflorum. Heredity 87: 178-189.

Ives, A.R. & Whitlock, M.C. 2002. Inbreeding and metapopulations. Science 295: 454- 455.

Jain, S.K., Rai, K.N., Singh, R.S. 1981. Population biology of Avena XI. Variation in peripheral isolates of A. barbata. Genetica 56: 213-215.

Jones, B. & Gliddon, C. 1999. Reproductive biology and genetic structure in Lloydia serotina. Plant Ecology 141:151-161.

Jump, A.S. & Woodward, F.I. 2003. Seed production and population density decline approaching the range-edge of Cirsium species. New Phytologist 160: 000-000.

Jump, A.S., Woodward, F.I. & Burke, T. 2003. Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation. New Phytologist 160: 359-370.

Kalisz, S., Hanzawa, F.M., Tonsor, S.J, Thiede, D.A. & Voigt, S. 1999. Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology 80: 2620-2634.

Kalisz, S., Nason, J.D., Hanzawa, F.M. & Tonsor, S.J. 2001. Spatial population genetic structure in Trillium grandiflorum : the roles of dispersal, mating, history, and selection. Evolution 55: 1560-1568.

Kark, S., Alkon, P. U., Safriel, U. N. & Randi, E. 1999. Conservation priorities for chukar partridge in Israel based on genetic diversity across an ecological gradient. Conservation Biology 13: 542-552.

Karron, J.D. 1987. A comparisn of levels of genetic polymorphism and self­ incompatibility in geographically restricted and widespread plant congeners. Evolutionary Ecology 1: 47-58.

Keller, I. & Largiader, C.R. 2003. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proceedings of the Royal Society of London Series B. Biological Sciences 270: 417-423.

Kendall, W.S. 1992. Fractal scaling in the geographic distribution of populations. Ecological Models 64: 65-69.

Kimura, M. & Maruyama, T. 1971. Pattern of neutral polymorphism in geographically structured population. Genetical Research 18: 125-131.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Ecology 16: 111-120.

Knapp, E.E., Goedde, M.A. & Rice, K.J. 2001. Pollen limited reproduction in blue oak: implications for wind-pollination in fragmented populations. Oecologia 128: 48-55.

Knowles, P., Perry, D.J. & Foster, H.A. 1992. Spatial genetic structure in two tauarack [Larix laricima (Du Roi) K. Koch] populations with differing establishment histories. Evolution 46: 572-576.

Kot, M., Lewis, M.A. & Van den Driessche, P.H. 1996. Dispersal data and the spread of invading organisms. Ecology 77: 2027-2042.

Kozlowski, J. 1992. Optimal allocation of resources to growth and reproduction: implications for age and size at maturity. Trends in Ecology and Evolution 7: 15-18.

Krauss, J., Schmitt, T., Seitz, A., Steffan-Dewenter, I. & Tscharntle, T. 2004. Effects of habitat fragmentation on the genetic structure of the monphagous butterfly Polyommatus coridon along its northern range margin. Molecular Ecology 13: 311-320.

Kumar, A., Rogstad, S. H. 1998. A hierarchical analysis of minisatellite DNA diversity in Gambel oak (Quercus gambelii Nutt Fagaceae). Molecular Ecololgy 7: 859-870.

Lammi, A., Siikamaki, P. & Mustajarvi, K. 1999. Genetic diversity, population size, and fimess in central and peripheral populations of a rare plant Lychnis viscaria. Conservation Biology 13: 1069-1078.

Lande, R. 1991. Population dynamics and extinction in heterogeneous environments: the northern spotted owl. Pages 566-580 in eds. C.M. Perrius, J.D. Lebreton & G.J.M. Hirons. Bird population studies. Relevance to conservation and management. Oxford University Press; Oxford, UK.

Lande, R.& Barrowclough, G. 1987. Effective population size, genetic variation, and their use in population management. Pages 27-123 in eds. M. Soule. Viable populations for conservation. Cambridge University Press; Cambridge, UK.

Lavigne, C., Godelle, B., Rebound, X. & Gouyon, P.H. 1996. A method to determine the mean pollen dispersal of individual plants growing within a large pollen source. Theory of Applied Genetics 93: 1319-1326.

Lawton, J.H. 1993. Range, population abundance and conservation. Trends in Ecology & Evolution 8:409-413.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Lawton, J.H. 1995. Population dynamic principles: 147-163, In: Extinction rates (Edited by J.H. Lauton, R.M. May). Oxford University Press; Oxford, UK.

Lawton, J.H., Nee, S., Letcher, A.J. & Harvey, P.H. 1994. Animal distributions: patterns and processes. Pages 41-58 in eds. P.J. Edwards, R.M. May &N.R. Webb. Large scale Ecology and Conservation Biology. Blackwell; Oxford, UK.

Le Corre, V., Dumolin-Lapegue, S., Kremer, A. 1997. Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraeae (Matt.) Liebl.: the role of history and geography. Molecular Ecology 6 : 519-529.

Le Corre, V. & Kremer, A. 1998. Cumulative effects of founding events during colonization on genetic diversity and differentiation in an island and stepping-stone model. Journal of Evolutionary Biology 11: 495-512.

Lenormand, T. 2002. Gene flow and the limits to natural selection. Trends in Ecology & Evolution 17: 183-189.

Lesica, P. & Allendorf, F.W. 1995. When are peripheral populations valuable for conservation? Conservation Biology 9:753 760.

Lesica, P. & Allendorf, F.W. 1999. and the restoration of plant communities: mix or match? Restoration Ecology 7: 42-50.

Levin, D.A. 1970. Developmental instability and evolution in peripheral isolates. American Naturalist 104: 343-353.

Levin, D.A. 1977. Organization of genetic variability in Phlox drummondii. Evolution 31:477-494.

Levin, D.A. 1978. Genetic variation in annual phlox-self-compatible versus self­ incompatible species. Evolution 32: 245-263.

Levin, D.A. 1979. The nature of plant species. Science 204: 381-384.

Levin, D.A. 1981. Dispersal versus gene flow in plants. Annals of Missouri Botanical Garden 6 8 : 232-253.

Levin, D.A. 2000. The origin, expansion, and demise of plant species. Oxford University Press; New York, NY.

Levin, D.A. 1984. and proximity-dependent crossing success in Phlox drummondii. Evolution 38: 116-127.

Levin, D.A. 1988. Consequences of stochastic elements in plant migration. American Naturalist 132: 643-651.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Levin, D.A. & Kerster, H.W. 1974. Gene flow in seed plants. Evolution Biology 7: 139- 220.

Lindgren, D., Paule, L., Shen, X.H. et al. 1995. Can viable pollen carry Scots pine over long distances? Grana 34: 64-69.

Liu, Z. & Fumier, G.R. 1993. Comparison of allozyme, RFLP, & RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theoretical and Applied Genetic 87: 97-105.

Lomolino, M.V., & Channel, R. 1995. Splendid isolation: pattern of geographic range collapse in endangered mammals. Journal of Mammology 76: 335-347.

Loveless, M.D. & Hamrick, J.L. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65-95.

Lovett-Doust, J., O’Brien, G. & Lovett-Doust, L. 1987. Effect of density on secondary sex characteristics and sex ratio in Silene alba (Caryophyllaceae). American Journal of Botany 74: 40-46.

Lynch, M. & Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91-99.

Macdonald, N. 2003. Secondary sexual dimorphism in Gleditsia triacanthos, honey locust, at local and regional levels. MSc. Thesis, University of Windsor, Windsor, Canada.

Maki, M. 2001. Genetic differentiation within and among island populations of the endangered plant Aster miyagii (Asteraceae), an endemic to the Ryukyu islands. American Journal of Botany 8 8 : 2189-2194.

Manicacci, D., Olivieri, I., Perrot, V., Atlan, A., Gouyon, P.H., Prosperi, J.M. & Couvet, D. 1992. Landscape ecology: population genetics at the metapopulation level. Landscape Ecology 6 : 147-159.

Martin, G. B., Williams, J.G.K. & Tanksley, S.D.1991. Rapid identification of markers linked to Pseudomonos resistance gene in tomato by using random primers and near- isogenic lines. Proceedings of Natural Academy of Science 8 8 : 2336-2340.

Mateu-Andres, I. & Segarra-Moragues, J.G. 2003. Patterns of genetic diversity in related taxa of Antirrhinum L. assessed using allozymes. Biological Journal of the Linneau Society 79: 299-307.

Matlack, G.R. 1994. Plant species migration in a mixed-history forest landscape in eastern North America. Ecology 75: 1491 -1502.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Matolweni, L.O., Balkwill, K. & McLellan, T. 2000. Genetic diversity and gene flow in the morphologically variable, rare endemics Begonia dregei and Begonia homonyma (Begoniaceae). American Journal of Botany 87: 431-439.

Maurer, B.A. & Villard, M.A. 1994. Geographic variation in abundance of North American birds. Research and Exploration 10: 306-317.

McCauley, D. E. 1995a. Effects of population dynamics on genetics in mosaic landscapes. Pages 178-198 in eds. L. F. Lennart Hansson & G. Merriam. Mosaic Landscapes and Ecological Processes. Chapman and Hall; London.

McLellan, A., Prati, D., Kaltz,, O. & Schmid, B. 1997. Structure and analysis of phenotypic and genetic variation in clonal plants. In eds. H. de Kroon & J. Groenendael. The ecology and evolution of clonal plants. Backhuys Publishers; Leiden, the Netherlands.

Meagher, T.R. & Thompson, E. 1986. The relationship between single parent and parent pair genetic likelihoods in genealogy reconstruction. Theory of Population Biology 29: 87-106.

Meffe, Gary K., and C. Ronald Carroll. 1994. Principles of Conservation Biology. Sinauer Associates; Sunderland, MA.

Meyer, S.E., Kitchen, S.O. & Carlson, S.L. 1995. Seed germination timing patterns in intermountain Penstemon (Scrophulariaceae). American Journal of Botany 82: 377-389.

Michelia, M.R., Bova, R. 1997. Fingerprinting methods based on arbitrary primed PCR. Springer; Berlin, Germany.

Michener, D.C. 1986. Phenotypic instability in Gleditsia triacanthos (Fabaceae). Brittonia 38:360-361.

Millar, C.l. & Marshall, K.A. 1992. A llozym e variation of Port-Orford-cedar (Chamaecyparis lawsonii): implications for genetic conservation. Forest Science 37: 1060-1077.

Mishler, B.D. 1999. Getting rid of species? Pages 307-315 in eds. R.A. Wilson. Species: New Interdisciplinary Essays. MIT Press; University of California, Berkeley, CA.

Mishler, B.D., Donoghue, M.J. 1982. Species concepts: a case for pluralism. Systematic Zoology 31: 491-503.

Molan, U. 1993. Relationships between flowering phenology and life-history strategies in tundra plants. Arctic and Alpine Research 25: 391-402.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Montalvo, A.M, Conard, S.G., Conkle, M.T. & Hodgskiss, P.D. 1997. population structure, genetic diversity and clone formation in Quercus chrysollpis (Fagaceae). American Journal of Botany 84: 1553-1564.

Montgomery, M.E., Woodworth, L.M., Nurthen, R.K., Gilligan, D.M., Briscoe, D.A. & Frankham, R. 2000. Relationship between population size and loss of genetic diversity: comparison of experimental results with theoretical predictions. Conservation Genetics 1: 33-43.

Morjan, C.L., Riesenberg, L.H. 2004. How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Molecular Ecology 13: 1341-1356.

Mossman, C.A. & Waser, P.M. 2001. Effects of habitat fragmentation on population genetic structure in white-footed mouse ( Peromyscus leucopus). Canadian Journal of Zoology 79: 285-295.

Mueller, U. G. & Wolfenbarger, L. L. 1999. AFLP genotyping and fingerprinting. Trends in Ecology and Evolution 14: 389-394.

Mulcahy, D.L., Cresti, M., Sansavini, S., Douglas, G.C., Linskens, H.F., Bergamini, G., Vignani, R., Pancaldi, M. 1993. The use of random amplified polymorphic DNAs to fingerprint apple genotypes. Scientia Horticultuae 54: 89-96.

Murphy, H.T. 2005. Patch-and regional-level population biology, with particular reference to Gleditsia triacanthos (Fabaceae): Landscape and plant ecology across the geographic range. PhD Dissertation. University of Windsor, Windsor, Canada.

Murphy, H.T. & Lovett-Doust, J. 2004. Landscape-Level Effects on Developmental Instability: Fluctuating Asymmetry across the Range of Honey Locust, Gleditsia triacanthos (Fabaceae). International Journal of Plant Sciences 165: 795-803

Murphy, H.T., VanDerWal, J. & Lovett-Doust, J. 2005. Distribution of abundance across the range in eastern North American trees. Global Ecology and Biogeography 14: 00-00.

Murray, B.R. & Lepschi, B.J. 2004. Are locally rare species abundant elsewhere in their geographical range? Austral Ecology 29: 287-293.

Nason, J.D. & Hamrick, J.L. 1997. Reproductive and genetic consequences of forest

fragmentation: two case studies of Neotropical canopy trees. Journal of Heredity 8 8 : 264- 276.

Nason, J.D., Herre, E.A., Hamrick, J.L. 1998. The breeding structure of a tropical keystone plant resource. Nature 391: 685-687.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Nassar, J.M., Hamrick, J.L. & Fleming, T.H. 2001. Genetic variation and population structure of the mixed-mating cactus, Melocactus curvispinus (Cactaceae). Heredity 87: 69-79.

Nei, M. 1972. Genetic distance between populations. American Naturalist 106: 283-292.

Nei, M. 1975. Molecular population genetics and evolution. In eds. A. Neuberger & E. Tatum. Volume 40, Frontiers of Biology. Amsterdam, the Netherlands.

Nei, M. & Kumar, S. 2000. and . 266 pages, Oxford University Press; Oxford, UK.

Nunney, L. & Elam, D.R. 1994. Estimating the effective population size of conserved populations. Conservation Biology 8 : 175-184.

Oostermeijer, J.G.B., Van Euck, M.W. & Den Nijs, J.C.M. 1994. Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia 97: 289-296.

Pakeman, R.J. 2001. Plant migration rates and seed dispersal mechanisms. Journal of Biogeography 28: 795-800.

Pannell, J.R. & Charlesworth, B. 1999. Neutral genetic diversity in a metapopulation with recurrent and recolonization. Evolution 53: 664-676.

Peakall, R., Smouse, P.E. & Huff, D.R. 1995. Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dachtyloides. Molecular Ecology 4: 135-147.

Pearl, M. 1992. Conservation of Asian primates: aspects of genetics and behavioural ecology that predict vulnerability. Pages 297-320 in eds. P.L. Fielder & S.K. Jain. Conservation Biology: The theory and practice of nature conservation preservation and management. Chapman & Hall; New York, NY.

Pedersen, A. A. & Loeschcke, V. 2001. Conservation genetics of peripheral populations of mygalomorph spider Atypus affinis (Atypidae) in northern Europe. Molecular Ecology 10: 1133-1142.

Peng, C.J., Liu, S.L., Chiang, T.Y. 1999. Conservation of Ludwigia x taiwanensis (Onagraceae) in Taiwan. Endemic Species Research 10: 73-78.

Perry, D.J. & Knowles, P. 1991. Spatial genetic structure within three sugar maple ( Acer saccharum March.) stands. Heredity 6 6 : 137-142.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Pigott, C.D. & Huntley, J.P. 1981. Factors controlling the distribution of Tillia cordata at the northern limits of its geographic range III. Nature and causes of seed sterility. New Phytologist 87: 817-839.

Pitelka, L.F. & The plant migration workshop group. 1997. Plant migration and climate change. American Scientist 85: 464-473.

Pleasants, J.M. 1980. Competition for bumblebee pollinators in Rocky Mountain plant communities. Ecology 61:1446-1459.

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. & Rafalski, A. 1996b. The comparison of RFLP, RAPD, AFLP & SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2: 225-238.

Pullium, H.R. 1988. Sources, sinks, and population regulation. American Naturalist 132: 652-661.

Pyke, G.H. 1984. Optimal foraging theory: a critical review. Annual Review of Ecology and Systematics 15: 523-575.

Rafalski, J.A. & Tingey, S.V. 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trend in Genetics 9: 275-280.

Ragot, M. & Hoisington, D.A. 1993. Molecular marker for plant breeding: comparisons of RFLP and RAPD genotyping costs. Theoretical and Applied Genetics 8 6 : 975-984.

Raijmann, L.L., Van Leeuwen, N.C., Kersten, R., Oostermeijer, J.G.B., DenNijs, H.C.M. & Menken, S.B.J. 1994. Genetic variation and outcrossing rate in relation to population size in Gentiana pneumonanthe L. Conservation Biology 8 : 1014-1026.

Rapson, G.L. & Wilson, J.B. 1988. Non-adaptation in Agrostis capillaries L. (Poaceae). Functional Ecology 2: 479-490.

Rathcke, B. 1983. Competition and facilitation among plants for pollination. Pages 305- 327 in eds. L. Real. Pollination biology. Academic Press; New York, NY.

Raven, P.H., Evert, R.F. & Eichhom, S.E. 1986. Biology of plants. 4th edition. New York, NY.

Reed, D.H. & Frankham, R. 2003. Correlation between fitness and genetic diversity. Conservation Biology 17: 230-237.

Reekie, E.G. & Bazzaz, F.A. 1987. Reproductive effort in plants. American Naturalist 129: 876-919.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Renau-Morata, B., Nebauer, S.G., Sales, E., Allainguillaume, J., Caligari, P. & Segura, J. 2005. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. American Journal of Botany 92: 875-884.

Reynolds, J.B., Weir, B.S. & Cockerham, C.C. 1983. Estimation of the co-ancestory co­ efficient; basis for a short term genetic distance. Genetics 105: 767-779.

Rice, K.J. & Mack, R.N. 1991. Ecological genetics of Bromus tectorum. III. The demography of reciprocally sown populations. Oecologia 8 8 : 91-101.

Rieseberg, L.H., Burke, J.M. 2001. The biological reality of species: gene flow, selection, and collective evolution. 50: 47-67.

Robledo-Armicio, J.J. & Gil, L. 2005. Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94: 13-22.

Rocha, O.J. & Aguilar, G. 2001. Reproductive biology of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica: a comparison between trees left in pastures and trees in continuous forest. American Journal of Botany 8 8 : 1607-1614.

Rogers, C.A. & Levetin, E. 1998. Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometereology 42: 65-72.

Rosenzweig, M.L. 1995. Species diversity in space and time. Cambridge University press; New York, NY.

Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W. & Hanski, I. 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392: 491-494.

Safriel, U. N., Volis, S. & Kark, S. 1994. Core and peripheral-populations and global climate-change. Israel Journal of Plant Science 42: 331-345.

Sagarin, R. D. & Gaines, S. D. 2002. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecology Letters 5: 137-147.

Saunders, D. & Hobbs, R. 1991. The role of corridors in conservation: What do we know and where do we go? Pages 421-427 in eds. D. Saunders & R.J. Hobbs. Nature Conservation 2: the role of corridors. Surrey Beatty and Sons; Chipping Norton, New South Walls.

Schaal, B.A. & Leverich, W.J. 1996. Molecular variation in isolated plant populations. Plant Species Biology 11: 33-40.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Schmitt, T. & Seitz, A. 2002. Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implication for conservation. Biology of Conservation 107: 291-297.

Schnabel, A. 1988. Genetic structure and gene flow in Gleditsia triacanthos L. Ph.D. Dissertation, University of Kansas, Lawrence, KS.

Schnabel, A. & Hamrick, J.L. 1990a. Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae). American Journal of Botany 77: 1060-1069.

Schnabel, A. & Hamrick, J.L. 1995. Understanding the population genetic structure of Gleditsia triacanthos L: The scale and pattern of pollen gene flow. Evolution 49:921-931.

Schnabel, A., Laushman, R.H., Hamrick, J.L. 1991. Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae). Heredity 67: 357-364.

Schnabel, A., Nason, J.D., Hamrick, J.L. 1998. Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Molecular Ecology 7: 819-832.

Schwaegerle, K.E. & Schaal, B.A. 1979. Genetic variability and founder effect in pitcher plant Sarraceniapupurea L. Evolution 33: 1210-1218.

Scudder, G.G.E. 1989. The adaptive significance of marginal populations: a general perspective. In eds. C.D. Levigs, L.B. Holtby, M.A. Henderson. Proceedings of the National Workshop on Effects of Habitat Alternation on Salmonid stocks. Canadian Journal of Fisheries and Aquatic Sciences 105: 180-185.

Silvertown, J.W. & Lovett Doust, J. 1993. Introduction to plant population ecology. 210 pages, Blackwell Scientific Publications; London, UK.

Shannon, C.E. & Weaver, W. 1949. The mathematical theory of communication. University of Illinois press; Urbana, IL.

Slatkin, M. 1977. Gene flow and genetic drift in a species subject to frequent local extinctions. Theory of Population Biology 12: 253-262.

Slatkin, M. 1985a. Gene flow in natural populations. Annual Review of Ecology and Systematics 16: 393-430.

Slatkin, M. 1985b. Rare alleles as indicators of gene flow. Evolution 39: 53-65.

Slatkin, M. 1987. Gene flow and the geographical structure of natural populations. Science 236: 787-792.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Smouse, P.E. & Sork, V.L. 2004. Measuring pollen flow in forest trees: an exposition of alternative approaches. Forest Ecology and Management 197: 21-38.

Smouse, P.E. & Meagher, R. 1994. Genetic analysis of male reproductive contributions in Chamaelirium luteum (L.) Gray (Liliaceae). Genetics 136: 313-322.

Smouse, P.E. & Peakall, R.1999. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82: 561-573.

Sork, V.L., Nason, J., Campbell, D.R. & Fernandez, J.F. 1999. Landscape approaches to historical and contemporary gene flow in plants. Trends in Evolution and Ecology 14: 219-224.

Sork, V.L., Campbell, D.R., Dyer, R.J., Fernandez, J.F., Nason, J., Petit, R., Smouse, P.E. & Steinberg, E. 1998. Proceedings from a workshop on gene flow in fragmented, managed, and continuous populations. Research paper no. 3. National Center for Ecological Analysis and Synthesis; Santa Barbara, CA.

Sork, V.L., Huang, S. & Wiener, E. 1993. Macrogeographic and fine-scale genetic structure in a North American oakspecies Quercus rubra L. Annales des Sciences Forestieres 50: 128-136.

Soule, M.E. 1987a. Viable populations for conservation. Cambridge University Press; Cambridge, UK.

Soule, M.E. 1987b. Conservation biology: the science of scarcity and diversity. Sinauer Associates, Inc.; Sunderland, MA.

Stevens, G.1992. Spilling over the limits to species coexistence. Pages 40-58 in eds. N. Eldridge. Systematics, Ecology and the Biodiversity Crisis. Columbia University Press; New York, NY.

Stinson, K.A. 2004. Natural selection favors rapid reproductive phenology in Patentilla pulcherrima (Rosaceae) at opposite ends of a subalpine snowmelt gradient. American Journal of Botany 91: 531-539.

Stokes, K. E., Bullock, J. M. & Watkinson, A. R. 2004. Population dynamics across a parapatric range boundary: Ulex gallii and Ulex minor. Journal of Ecology 92: 142-155.

Streiff, R., Lobbe, T., Bacilieri, R., Steinkellner, H., Glossl, J. & Kremer, A. 1988. Withi- population genetic structure in Quercus robur L. & Quercus petraea (Matt.) Liebl. Assessed with isozymes and microsatellites. Molecular Ecology 7: 317-328.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Suyama, Y.K., Obayashi, K. & Hayashi, I. 2000. Clonal structure in a dwarf bamboo (Sosa senanensis) population inferred from amplified fragment length polymorphism (AFLP) fingerprints. Molecular Ecology 9: 901-906.

Szmidt, A.E., Wang, X. & Lu, M. 1996. Empirical assessment of allozyme and RAPD variation in Pinus sylvestris L. using haploid tissue analysis. Heredity 76: 412-420.

Taylor, L.R. 1986. Synoptic dynamics, migration and the Rothamsted insect survey. Journal of Animal Ecology 55: 1-38.

Tero, N., Aspi, J., Siikamaki, P., Jakalaniemi, A. & Tuomi, J. 2003. Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Molecular Ecololy 12: 2073-2085.

Tigerstedt, P.M.A. 1973. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas 75: 47-60.

Tilman, D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80: 1455-1474.

Tollefsrud, M.M, Bachmann, K., Jacobsen, K.S., Brochmann, C. 1998. Glacial survival does not matter - II: RAPD phylogeography of Nordic Saxifraga cespitosa. Molecular Ecology 7: 1217-1232.

Tonsor, S.J., Kalisz, S. & Fisher, J. 1993. A life-history based study of population structure: to adults in Plantago lanceolata. Evolution 47: 833-843.

Torimaru, T. & Tomaru, N. 2004. Fine-scale clonal structure and diversity within patches of a clone-forming dioecious shrub, Ilex leucoclada (Aquifoliaceae). Annals of Botany 95: 295-304.

Totland, O. 1997. Limitations on reproduction in alpine Rannunculus acris. Canadian Journal of Botany 75: 137-144.

Totland, O. 1999. Effects of temperature on performance and phenotypic selection on plant traits in alpine Ranunculus acris. Oecologia 120: 242-251.

Tracey, M.L. & Ayala, F.J. 1973. in natural populations: is it compatible with the hypothesis that many polymorphisms are maintained by natural selection. Genetics 77 (3): 569-589.

Tsuda, Y., Goto, S. & Ide, Y. 2004. RAPD analysis of genetic variation within and among four natural populations of Betula maximowicziana. Silvae Genetica 53: 5-6.

Tucker, S.C. 1991. Helical floral organogenesis in Gleditsia, a primitive caesalpinioid legume. American Journal of Botany 78: 1130-1149.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Turner, M.E., Stephens, J.C. & Anderson, W.W. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proceedings of the National Academy of Science USA 79: 203-207.

Ueno, S., Tomura, N., Yoshimaru, H., Manabe, T. & Yamamoto, S. 2000. Genetic structure of Camellia japonica L. in an old growth evergreen forest, Tsushima, Japan. Molecular Ecology 9: 647-656.

Van Dorp, D., Van den Hoek, W.P.M.& Daleboudt, C. 1996. Seed dispersal capacity of six perennial grassland species measured in a wind tunnel at varying wind speed and height. Canadian Journal of Botany 74: 1956-1963.

Van Treuren, R., Bijlsma, R., Ouborg, N.J. & Van Delden, W. 1993. The effects of population size and plant density on outcrossing rates in locally endangered Salvia pratensis. Evolution 47: 1094-1104.

Vellend, M. 2003. Island biogeography of genes and species. American Naturalist 162: 358-365.

Vellend, M. 2004. Parallel effects of land-use history on species diversity and genetic diversity of forest herbs. Ecology 85: 3043-3055.

Vellend, M. 2005. Species diversity and genetic diversity: parallel processes and correlated patterns. American Naturalist 166: 199-215.

Vellend, M. & Geber, M.A. 2005. Connections between species diversity and genetic diversity. Ecology Letters 8 : 767-781.

Vellend, M., Myers, J.A., Gardescu, S. & Marks, P.L. 2003. Dispersal of Trillium seeds by deer: Implications for long-distance migration of forest herbs. Ecology 84: 1067-1072.

Vellend, M. & Waterway, M.J. 1999. Goegraphic patterns in the genetic diversity of a northern sedge, Carex rariflora. Canadian Journal of Botany 77: 269-278.

Vicario, F., Vendramin, G.G., Rossi, P., Lio, P., Giannini, R. 1995. Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between A bies alba and the relic population of Abies nebrodenis. Theoretical Applied Genetics 90: 1012-1018.

Vida, G. 1994. Global issues of genetic diversity. 9-19, In eds. V. Loeschcke, J. Tomiuk & S.K. Jain. Conservation Genetics. Timber Press; Portland, OR.

Vucetich, J.A. & Waite, T.A. 2003. Spatial patterns of demography and genetic processes across the species’ range: null hypothesis for landscape conservation genetics. Conservation Genetics 4: 639-645.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Wade, M.J. & McCauley, D.E. 1988. Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42: 995-1005.

Wallace, B. 1984. A possible explanation for observed differences in the geographical distributions of chromosomal arrangements of plants and Drosophila. Egyptian Journal of Genetics and Cytology 13: 121-136.

Walter, R. & Epperson, B.K. 2001. Geographic pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations. Molecular Ecology 10: 103-111.

Ward, R.D., Skibinski, D.O., Woodwark, M. 1992. Protein heterozygosity, protein structure, and taxonomic differentiation. Evolutionary Biology 26: 73-159.

Waser, N.M. 1978a. Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers. Ecology 59: 934-944.

Waser, N.M. 1983. Competition for pollination and floral character differences among sympatric plant species: a review of evidence. Pages 277-293 in eds. C.E. Jones & R.J. Little. Handbook of experimental pollination biology. Van Nostrand Reinhold; New York, NY.

Waser, N.M. & Price, M.V. 1998. What plant ecologists can learn from zoology: perspectives in plant ecology. Evolution and Systematics 1: 130-150.

Waser, N.M., Chittka, L., Price, M.V., Williams, N. & Ollerton, J. 1996. Generalization in pollination systems, and why it matters. Ecology 77: 279-296.

Weidema, I.R., Siegismund, H.R. & Philip, M. 1996. Distribution of genetic variation within and among Denish populations of Armeria maritima, with special reference to the effects of population size. Heredity 124: 121-129.

Weising, K., Nybom, H., Wolff, K., Meyer, W. 1995. DNA fingerprinting in plants and fungi. CRC Press; Boca Raton, FL.

Welsh, J. Honeycutt, R.J., McClelland, M. & Sobral, B.W.S. 1991. Parentage determination in maize hybrids using the arbitrary primed polymerase chain reaction (AP-PCR). Theoretical Applied Genetics 82: 473-476.

Wendel, J.F. & Parks, C.R. 1985. Genetic diversity and population structure in Camellia japonica L. (Theaceae). American Journal of Botany 72: 52-65.

White, P.S. & Walker, J.L. 1997. Approximating nature’s variation: selecting and using reference information in restoration ecology. Restoration Ecology 5: 338-349.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Whitlock, M.C. & McCauley, D.E. 1990. Some population genetic consequences of colony formation and extinction: genetic correlations within founding groups. Evolution 44: 1717-1724.

Widen, B. 1993. Demographic and genetic effects on reproduction as related to population size in a rare, perennial herb, Senecio integrifolius (Asteracea). Biological Journal of the Linnean Society 50: 179-195.

Widen, B., Cronberg, N. & Widen, M. 1994. Genotypic diversity, molecular markers and spatial distribution of genets in clonal plants, a literature survey. Folia Geobotanica & Phytotaxonomica 29: 245-263.

Williams, B.L., Brawn, J.D. & Paige, K.N. 2003. Landscape scale genetic effects of habitat fragmentation on a high gene flow species: Speyeria idolia (Nymphalidae). Molecular Ecology 12: 11-20.

Williams, D.G., Mack, R.N. & Black, R.A. 1995. Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology 76: 1569- 1580.

Williams, J.G., Kubelik, A.R., Livak, K.J., Rafalski, J.A. & Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Resources 18: 6531-6535.

Winkler, E. & Stocklin, J. 2002. Sexual and vegetative reproduction of Hieracium pilosella L. under competition and disturbance: A grid-based simulation model. Annals of Botany 89: 525-536

Wolf, C.M. 1994. A follow-up survey of avian and mammalian translocations. Unpublished M.S. thesis, University of Wisconsin at Madison, Wisconsin, WI.

Wolf, C.M., Grifith, B., Reed, C. & Temple, S.A. 1996. Avian and mammalian translocations: update the reanalysis of 1987 survey data. Conservation Biology 10: 1142-1153.

Wright, S. 1931. Evolution and genetics of populations. Volume 4. Variability within and among natural populations. University of Chicago Press; Chicago, IL.

Wright, S. 1946. Isolation by distance under diverse systems of mating. Genetics 31: 39- 59.

Wright, S. 1951. The genetic structure of populations. Annals of Eugenics 15: 323-354.

Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Wright, S. 1968-1978. Evolution and the Genetics of Populations, 4 volumes. University of Chicago Press, Chicago, IL.

Young, A., Boyle, T. & Brown, T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution 11: 413-418.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDICES

Appendix 1 - Information about the presence of thorns in the population of Natchez State Park (NAT), SI.

No. TREE_# THORNS 1. 0 many 2. 3 few 3. 5 few 4. 6 many 5. 12 many 6. 13 som e 7. 14 few 8. 16 few 9. 17 som e 10. 18 som e 11. 19 few 12. 20 som e 13. 21 som e 14. 22 few 15. 23 som e 16. 27 som e 17. 29 som e 18. 30 few 19. 31 none 20. 35 many 21. 37 som e

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 2 - Information about the presence of thorns in the population of Pomme de Terre (PDT), S2.

No. TREE_# THORNS 1. 0 som e 2. 2 few 3. 4 none 4. 6 few 5. 9 few 6. 10 none 7. 12 few 8. 14 som e 9. 18 som e 10. 20 som e 11. 22 few 12. 23 none 13. 25 som e 14. 26 som e 15. 28 som e 16. 30 som e 17. 31 som e 18. 34 few 19. 36 som e 20. 38 som e 21. 39 som e 22. 41 som e 23. 43 som e 24. 45 few 25. 47 few 26. 49 few 27. 50 few 28. 52 som e 29. 56 som e 30. 58 few 31. 59 few 32. 63 none 33. 64 som e 34. 65 few 35. 67 many 36. 68 few 37. 69 few 38. 71 som e 39. 73 som e 40. 74 few 41. 75 few 42. 76 few 43. 77 few

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 3 - Information about the presence of thorns in the population of Tensas River (TR), S3.

No. TREE_# THORNS 1. 1 none 2. 5 som e 3. 7 none 4. 8 few 5. 10 few 6. 11 few 7. 12 few 8. 13 none 9. 15 few 10. 16 few 11. 20 few 12. 21 few 13. 22 som e 14. 23 som e 15. 25 none 16. 27 few 17. 29 few 18. 31 none 19. 32 few 20. 33 few 21. 34 few 22. 35 few 23. 36 none 24. 37 none 25. 38 som e 26. 40 none 27. 41 none 28. 42 few 29. 44 few 30. 45 few 31. 48 few 32. 50 few 33. 51 few 34. 52 none 35. 53 none 36. 54 none 37. 55 few 38. 56 none

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 4 - DNA Preparation. Protocol for Isolation of DNA form Plant tissue. DNeasy Plant Mini Kit from QIAGEN

1. Add 400 pi of Buffer API and 4 pi of RNase A stock solution (100 mg/ml) to a maximum of 100 mg of ground (wet weight) or 20 mg (dried) plant or fungal tissue and vortex vigorously. No tissue clumps should be visible. Vortex or pipet further to remove any clumps. Clumped tissue will not lyse properly and will therefore result in a lower yield of DNA. In the rare case where clumps cannot be removed by pipetting and vortexing, a disposable micropestle may be used. Note: Do not mix Buffer API and RNase A before use. 2. Incubate the mixture for 10 min at 65°C. Mix 2-3 times during incubation by inverting tube. This step lyses the cells. 20 DNeasy Plant Mini and DNeasy Plant Maxi Handbook 01/2004 3. Add 130 pi of Buffer AP2 to the lysate, mix, and incubate for 5 min on ice. This step precipitates detergent, proteins, and polysaccharides. Optional: Centrifuge the lysate for 5 min at 20,000 x g (14,000 rpm). Some plant materials can generate very viscous lysates and large amounts of precipitates during this step resulting in shearing of the DNA in the next step (see “Lysate filtration with QIAshredder”, page 13). In this case, optimal results are obtained if the majority of these precipitates are removed by centrifugation for 5 min at 20,000 x g (14,000 rpm). After centrifugation, apply supernatant to QIAshredder Mini Spin Column and continue with step 4. 4. Apply the lysate to the QIAshredder Mini Spin Column (lilac) placed in a 2 ml collection tube and centrifuge for 2 min at 20,000 x g (14,000 rpm). It may be necessary to cut the end off the pipet tip to apply the lysate to the QIAshredder Mini Column. The QIAshredder Mini Column removes most precipitates and cell debris, but a small amount will pass through and form a pellet in the collection tube. Be careful not to disturb this pellet in step 5. 5. Transfer flow-through fraction from step 4 to a new tube (not supplied) without disturbing the cell-debris pellet. Typically 450 pi of lysate is recovered. For some plant species less lysate is recovered. In this case determine volume for the next step. 6. Add 1.5 volumes of Buffer AP3/E to the cleared lysate and mix by pipetting. Example: To 450 pi lysate add 675 pi Buffer AP3/E. Reduce the amount of Buffer AP3/E accordingly if less lysate is recovered. A precipitate may form after the addition of ethanol but this will not affect the DNeasy procedure. Note: Ensure ethanol has been added to Buffer AP3/E (see “Things to do before starting”). Note: It is important to pipet Buffer AP3/E directly onto the cleared lysate and to mix immediately. 7. Apply 650 pi of the mixture from step 6, including any precipitate which may have

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. formed, to the DNeasy Mini Spin Column sitting in a 2 ml collection tube (supplied). Centrifuge for 1 min at >6000 x g (corresponds to >8000 rpm for most microcentrifuges) and discard flow-through.* Reuse the collection tube in step 8 . 8. Repeat step 7 with remaining sample. Discard flow-through* and collection tube. 9. Place DNeasy Mini Spin Column in a new 2 ml collection tube (supplied), add 500 pi Buffer AW to the DNeasy Mini Spin Column and centrifuge for 1 min at >6000 x g (>8000 rpm). Discard flow-through and reuse the collection tube in step 10. Note: Ensure ethanol is added to Buffer AW. * Flow-through fractions contain Buffer AP3/E, and are therefore not compatible with

bleach. See page 6 for further information. DNeasy Plant Mini and DNeasy Plant Maxi Handbook 01/2004 21 10. Add 500 pi Buffer AW to the DNeasy Mini Spin Column and centrifuge for 2 min at 20,000 x g (14,000 rpm) to dry the membrane. It is important to dry the membrane of the DNeasy Mini Spin Column since residual ethanol may interfere with subsequent reactions. This spin ensures that no residual ethanol will be carried over during elution. Discard flow-through and collection tube. After washing with Buffer AW, the DNeasy Mini Spin Column membrane is usually only slightly colored. In the rare case that the membrane remains significantly colored after washing with Buffer AW, refer to “Darkly colored membrane” in the Troubleshooting Guide on page 26. Note: Following the spin, remove the DNeasy Mini Spin Column from the collection tube carefully so the column does not come into contact with the flow-through, as this will result in carryover of ethanol. 11. Transfer the DNeasy Mini Spin Column to a 1.5 ml or 2 ml microcentrifuge tube (not supplied) and pipet 100 pi of Buffer AE directly onto the DNeasy membrane. Incubate for 5 min at room temperature (15-25°C) and then centrifuge for 1 min at >6000 x g (>8000 rpm) to elute. Elution with 50 pi (instead of 100 pi) increases the final DNA concentration in the eluate significantly, but also reduces overall DNA yield. If larger amounts of DN A (>20 pg) are loaded, eluting with 200 pi (instead of 100 pi) increases yield. See “Elution” on page 13. 12. Repeat step 11 once. A new microcentrifuge tube can be used for the second elution step to prevent dilution of the first eluate. Alternatively, the microcentrifuge tube can be reused for the second elution step to combine the eluates. Note: More than 200 pi should not be eluted into a 1.5 ml microcentrifuge tube because the DNeasy Mini Spin Column will come into contact with the eluate.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 5 - RAPD Protocol

Preparation o f reaction mixture

1. Prepare core buffer in a 1.5 ml microtube (enough for 100 reactions):

2 0 pi dNTP’s, 100 mM

250 pi NH4 rxn buffer, lOx 125 pi MgCh, 50 mM 355 pi SupH20 750 pi total volume

Mix by inversion and spin to collect solution.

2. Prepare the cocktail in a 1.5 ml microtube (enough for 10 reactions, adjust amount according to need). Cocktail should be prepared just before use.

2 pi Taq polymerase, 5 u/pl 10 pi Primer, 10 pM 138 ul supFfeO 150 pi total volume Mix by inversion and spin to collect solution.

3. Prepare the reaction mixture by mixing the following components in a PCR tube:

7.5 pi Core buffer 15.0 pi Cocktail 2.5 ul DNA sample 25.0 pi total volume

Flick the bottom of PCR tubes and spin to collect the mixture. Overlay the mixture with 1 drop of mineral oil.

Stock and final concentrations per 25 pi of reaction mixture:

Components Stock Concentration Final Concentration Vol/Rxn dNTPs 100 mM 0.8 mM 0.2 pi NFLjrxn buffer lOx lx 2.5 pi MgCb 50 mM 2.5 mM 1.25 pi

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Taq 5 u/pl 1 u/rxn 0.2 pi Primer 10 pM 0.4 pM 1.0 |il supH^O 17.35 pi DNA 2 ng/pl ______5 ng/pl ______2.5 pi

DNA amplification

1. Place PCR tubes in a thermal cycler. Amplify using the following temperature profile:

Temperature (°C) Time No. of cycles

94 2 min 1

94 30 sec 35 1 min 40

72 2 min

72 5 min 1

Hold temperature: 25 °C

Note: Conditions optimized for Hybaid OmniGene thermalcycler.

2. After amplification remove the PCR tubes from the thermal cycler. Add 3 pi of lOx loading buffer to each tube. Mix by flicking the bottom of the tube and spin to collect the mixture. The mixture is now ready for loading in the agarose gel.

Electrophoresis

1. Get a gel mold and seal both edges with 1” masking tape. Place in a level platform and attach combs. 2. Prepare 1.4% agarose by weighing 3.5 g agarose. Transfer this to a 500 ml flask and add 250 ml 0.5x TBE buffer.

3. Boil for 6 min in a microwave. Allow the solution to cool to 60 °C. 4. Pour agarose unto the gel mold and allow to solidify. 5. Fill the electrode tank with 0.5x TBE buffer.

6 . Remove masking tape from both ends of the gel mold. Mount the gel mold on to the electrode tank making sure no bubbles form beneath the mold. 7. Gently remove the comb.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 8. Load 10 p.1 of 1 Kb DNA ladder on the first well and 10 jj.1 of each reaction mixture in the succeeding wells making sure no oil is pipetted out with the mixture. A gel can accommodate 54 samples in 2 comb positions. 9. Close tank and attach electrode wires to the power supply. Run for 3 h at 160 V.

Staining and documentation 1. After electrophoresis, switch off the power supply and remove the tank cover. 2. Remove the gel from the molder and transfer in a tray with EtBr staining solution in a 1000 ml H 2 O. Stain for 20 min. EtBr staining solution can be reused but staining time should be for an hour. 3. After staining rinse with dt^O. 4. Photograph the gel under UV light.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 6 - Mean and standard error of similarity values between regions and sites

Case Processing Summary

Cases Included Excluded Total N Percent N Percent N Percent similarity * regionfrom ’ regionto * sitefrom * siteto 301007 100.0% 0 .0% 301007 100.0%

Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Center Center Cb CD 2450 .8410 .00043 GC 1000 .8271 .00056 LBL 2350 .8217 .00050 Total 5800 .8308 .00031 GC CD 1000 .8271 .00056 GC 380 .8440 .00119 LBL 940 .8195 .00074 Total 2320 .8268 .00047 LB CD 2350 .8217 .00050 GC 940 .8195 .00074 LBL 2209 .8301 .00079 Total 5499 .8247 .00041 Total CD 5800 .8308 .00031 GC 2320 .8268 .00047 LBL 5499 .8247 .00041 Total 13619 .8276 .00023 North CD DM 1600 .8218 .00050 DS 1150 .8081 .00067 PIG 2200 .8097 .00058 PP 2450 .8107 .00060 Total 7400 .8124 .00031 GC DM 640 .8184 .00077 DS 460 .8052 .00093 PIG 880 .8046 .00086 PP 980 .8087 .00088 Total 2960 .8090 .00046 LB DM 1504 .8127 .00066 DS 1081 .8011 .00079 PIG 2068 .7998 .00070 PP 2303 .8029 .00069 Total 6956 .8038 .00037 Total DM 3744 .8176 .00037 DS 2691 .8048 .00046 PIG 5148 .8048 .00041 PP 5733 .8072 .00041 Total 17316 .8084 .00021 South CD NAT 1050 .8329 .00059 PDT 2150 .8235 .00053 TR 1900 .8376 .00045 Total 5100 .8307 .00032

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Center South GC NIST.. 420 .8314 .00087 PDT 860 .8193 .00075 TR 760 .8303 .00063 Total 2040 .8259 .00045 LB NAT 987 .8238 .00076 PDT 2021 .8118 .00064 TR 1786 .8254 .00061 Total 4794 .8194 .00040 Total NAT 2457 .8290 .00043 PDT 5031 .8181 .00037 TR 4446 .8315 .00034 Total 11934 .8253 .00023 West CD ML 2700 .8138 .00037 PL 2500 .8377 .00043 TC 3900 .8162 .00037 Total 9100 .8214 .00025 GC ML 1080 .8123 .00057 PL 1000 .8336 .00061 TC 1560 .8154 .00053 Total 3640 .8195 .00036 LB ML 2538 .8056 .00048 PL 2350 .8313 .00055 TC 3666 .8102 .00045 Total 8554 .8146 .00030 Total ML 6318 .8102 .00027 PL 5850 .8344 .00031 TC 9126 .8136 .00026 Total 21294 .8183 .00018 Total CD CD 2450 .8410 .00043 DM 1600 .8218 .00050 DS 1150 .8081 .00067 GC 1000 .8271 .00056 LBL 2350 .8217 .00050 ML 2700 .8138 .00037 NAT 1050 .8329 .00059 PDT 2150 .8235 .00053 PIG 2200 .8097 .00058 PL 2500 .8377 .00043 PP 2450 .8107 .00060 TC 3900 .8162 .00037 TR 1900 .8376 .00045 Total 27400 .8227 .00015

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Stjd. Error regionfrom regionto sitefrom siteto N Mean of Mean Center Total GC c b 1000 .8271 .00056 DM 640 .8184 .00077 DS 460 .8052 .00093 GC 380 .8440 .00119 LBL 940 .8195 .00074 ML 1080 .8123 .00057 NAT 420 .8314 .00087 PDT 860 .8193 .00075 PIG 880 .8046 .00086 PL 1000 .8336 .00061 PP 980 .8087 .00088 TC 1560 .8154 .00053 TR 760 .8303 .00063 Total 10960 .8194 .00023 LB CD 2350 .8217 .00050 DM 1504 .8127 .00066 DS 1081 .8011 .00079 GC 940 .8195 .00074 LBL 2209 .8301 .00079 ML 2538 .8056 .00048 NAT 987 .8238 .00076 PDT 2021 .8118 .00064 PIG 2068 .7998 .00070 PL 2350 .8313 .00055 PP 2303 .8029 .00069 TC 3666 .8102 .00045 TR 1786 .8254 .00061 Total 25803 .8147 .00019 Total CD 5800 .8308 .00031 DM 3744 .8176 .00037 DS 2691 .8048 .00046 GC 2320 .8268 .00047 LBL 5499 .8247 .00041 ML 6318 .8102 .00027 NAT 2457 .8290 .00043 PDT 5031 .8181 .00037 PIG 5148 .8048 .00041 PL 5850 8344 .00031 PP 5733 .8072 .00041 TC 9126 .8136 .00026 TR 4446 .8315 .00034 Total 64163 .8189 .00011 North Center DM CD 1600 .8218 .00050 GC 640 .8184 .00077 LBL 1504 .8127 .00066 Total 3744 .8176 .00037 DS CD 1150 .8081 .00067 GC 460 .8052 .00093 LBL 1081 .8011 .00079 Total 2691 .8048 .00046

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error reglonfrom regionto sitefrom siteto N Mean of Mean North Center ..pr— ■ CD 2200 .8097 .00058 GC 880 .8046 .00086 LBL 2068 .7998 .00070 Total 5148 .8048 .00041 pp CD 2450 .8107 .00060 GC 980 .8087 .00088 LBL 2303 .8029 .00069 Total 5733 .8072 .00041 Total CD 7400 .8124 .00031 GC 2960 .8090 .00046 LBL 6956 .8038 .00037 Total 17316 .8084 .00021 North DM DM 992 .8233 .00079 DS 736 .8011 .00087 PIG 1408 .8017 .00072 PP 1568 .8022 .00075 Total 4704 .8063 .00041 DS DM 736 .8011 .00087 DS 506 .8135 .00122 PIG 1012 .7930 .00091 PP 1127 .7942 .00089 Total 3381 .7982 .00049 PI DM 1408 .8017 .00072 DS 1012 .7930 .00091 PIG 1936 .8092 .00098 PP 2156 .7894 .00076 Total 6512 .7985 .00045 PP DM 1568 .8022 .00075 DS 1127 .7942 .00089 PIG 2156 .7894 .00076 PP 2352 .8039 .00079 Total 7203 .7977 .00041 Total DM 4704 .8063 .00041 DS 3381 .7982 .00049 PIG 6512 .7985 .00045 PP 7203 .7977 .00041 Total 21800 .7999 .00023 South DM NAT 672 .8221 .00084 PDT 1376 .8114 .00070 TR 1216 .8254 .00059 Total 3264 .8188 .00042 DS NAT 483 .8139 .00094 PDT 989 .7996 .00081 TR 874 .8129 .00080 Total 2346 .8075 .00051 PI NAT 924 .8084 .00092 PDT 1892 .8001 .00071 TR 1672 .8154 .00069 Total 4488 .8075 .00045

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfnom regionto sitefnom siteto N Mean of Mean North South ..PP"...... fro — 1029 .8135 .00090 PDT 2107 .8008 .00070 TR 1862 .8153 .00071 Total 4998 .8088 .00045 Total NAT 3108 .8139 .00048 PDT 6364 .8027 .00037 TR 5624 .8171 .00036 Total 15096 .8104 .00024 West DM ML 1728 .8055 .00053 PL 1600 .8273 .00056 TC 2496 .8085 .00048 Total 5824 .8128 .00032 DS ML 1242 .7954 .00062 PL 1150 .8167 .00072 TC 1794 .7977 .00059 Total 4186 .8022 .00040 PI ML 2376 .7946 .00058 PL 2200 .8178 .00061 TC 3432 .7936 .00051 Total 8008 .8006 .00035 PP ML 2646 .7935 .00057 PL 2450 .8184 .00063 TC 3822 .7971 .00049 Total 8918 .8019 .00034 Total ML 7992 .7967 .00030 PL 7400 .8199 .00033 TC 11544 .7986 .00027 Total 26936 .8039 .00018 Total DM CD 1600 .8218 .00050 DM 992 .8233 .00079 DS 736 .8011 .00087 GC 640 .8184 .00077 LBL 1504 .8127 .00066 ML 1728 .8055 .00053 NAT 672 .8221 .00084 PDT 1376 .8114 .00070 PIG 1408 .8017 .00072 PL 1600 .8273 .00056 PP 1568 .8022 .00075 TC 2496 .8085 .00048 TR 1216 .8254 .00059 Total 17536 .8132 .00019

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error reqionfrom regionto sitefrom siteto N Mean of Mean North i otal US CD 1150 .8081 .00067 DM 736 .8011 .00087 DS 506 .8135 .00122 GC 460 .8052 .00093 LBL 1081 .8011 .00079 ML 1242 .7954 .00062 NAT 483 .8139 .00094 PDT 989 .7996 .00081 PIG 1012 .7930 .00091 PL 1150 .8167 .00072 PP 1127 .7942 .00089 TC 1794 .7977 .00059 TR 874 .8129 .00080 Total 12604 .8027 .00023 PI CD 2200 .8097 .00058 DM 1408 .8017 .00072 DS 1012 .7930 .00091 GC 880 .8046 .00086 LBL 2068 .7998 .00070 ML 2376 .7946 .00058 NAT 924 .8084 .00092 PDT 1892 .8001 .00071 PIG 1936 .8092 .00098 PL 2200 .8178 .00061 PP 2156 .7894 .00076 TC 3432 .7936 .00051 TR 1672 .8154 .00069 Total 24156 .8022 .00021 PP CD 2450 .8107 .00060 DM 1568 .8022 .00075 DS 1127 .7942 .00089 GC 980 .8087 .00088 LBL 2303 .8029 .00069 ML 2646 .7935 .00057 NAT 1029 .8135 .00090 PDT 2107 .8008 .00070 PIG 2156 .7894 .00076 PL 2450 .8184 .00063 PP 2352 .8039 .00079 TC 3822 .7971 .00049 TR 1862 .8153 .00071 Total 26852 .8032 .00020

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean North Total Total c b 7400 .8124 .00031 DM 4704 .8063 .00041 DS 3381 .7982 .00049 GC 2960 .8090 .00046 LBL 6956 .8038 .00037 ML 7992 .7967 .00030 NAT 3108 .8139 .00048 PDT 6364 .8027 .00037 PIG 6512 .7985 .00045 PL 7400 .8199 .00033 PP 7203 .7977 .00041 TC 11544 .7986 .00027 TR 5624 .8171 .00036 Total 81148 .8050 .00011 South Center NA CD 1050 .8329 .00059 GC 420 .8314 .00087 LBL 987 .8238 .00076 Total 2457 .8290 .00043 PD CD 2150 .8235 .00053 GC 860 .8193 .00075 LBL 2021 .8118 .00064 Total 5031 .8181 .00037 TR CD 1900 .8376 .00045 GC 760 .8303 .00063 LBL 1786 .8254 .00061 Total 4446 .8315 .00034 Total CD 5100 .8307 .00032 GC 2040 .8259 .00045 LBL 4794 .8194 .00040 Total 11934 .8253 .00023 North NA DM 672 .8221 .00084 DS 483 .8139 .00094 PIG 924 .8084 .00092 PP 1029 .8135 .00090 Total 3108 .8139 .00048 PD DM 1376 .8114 .00070 DS 989 .7996 .00081 PIG 1892 .8001 .00071 PP 2107 .8008 .00070 Total 6364 .8027 .00037 TR DM 1216 .8254 .00059 DS 874 .8129 .00080 PIG 1672 .8154 .00069 PP 1862 .8153 .00071 Total 5624 .8171 .00036 Total DM 3264 .8188 .00042 DS 2346 .8075 .00051 PIG 4488 .8075 .00045 PP 4998 .8088 .00045 Total 15096 .8104 .00024

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean South South NA ..NAT— 441 .8538 .00187 PDT 903 .8252 .00080 TR 798 .8364 .00070 Total 2142 .8353 .00062 PD NAT 903 .8252 .00080 PDT 1849 .8246 .00086 TR 1634 .8270 .00062 Total 4386 .8256 .00046 TR NAT 798 .8364 .00070 PDT 1634 .8270 .00062 TR 1406 .8508 .00054 Total 3838 .8377 .00040 Total NAT 2142 .8353 .00062 PDT 4386 .8256 .00046 TR 3838 .8377 .00040 Total 10366 .8321 .00028 West NA ML 1134 .8173 .00057 PL 1050 .8385 .00063 TC 1638 .8196 .00056 Total 3822 .8241 .00037 PD ML 2322 .8062 .00049 PL 2150 .8282 .00056 TC 3354 .8053 .00047 Total 7826 .8119 .00031 TR ML 2052 .8194 .00045 PL 1900 .8465 .00051 TC 2964 .8213 .00044 Total 6916 .8276 .00030 Total ML 5508 .8134 .00030 PL 5100 .8371 .00035 TC 7956 .8142 .00029 Total 18564 .8203 .00020 Total NA CD 1050 .8329 .00059 DM 672 .8221 .00084 DS 483 .8139 .00094 GC 420 .8314 .00087 LBL 987 .8238 .00076 ML 1134 .8173 .00057 NAT 441 .8538 .00187 PDT 903 .8252 .00080 PIG 924 .8084 .00092 PL 1050 .8385 .00063 PP 1029 .8135 .00090 TC 1638 .8196 .00056 TR 798 .8364 .00070 Total 11529 .8245 .00024

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Casa Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean South Total PD CD 2150 .8235 .00053 DM 1376 .8114 .00070 DS 989 .7996 .00081 GC 860 .8193 .00075 LBL 2021 .8118 .00064 ML 2322 .8062 .00049 NAT 903 .8252 .00080 PDT 1849 .8246 .00086 PIG 1892 .8001 .00071 PL 2150 .8282 .00056 PP 2107 .8008 .00070 TC 3354 .8053 .00047 TR 1634 .8270 .00062 Total 23607 .8133 .00019 TR CD 1900 .8376 .00045 DM 1216 .8254 .00059 DS 874 .8129 .00080 GC 760 .8303 .00063 LBL 1786 .8254 .00061 ML 2052 .8194 .00045 NAT 798 .8364 .00070 PDT 1634 .8270 .00062 PIG 1672 .8154 .00069 PL 1900 .8465 .00051 PP 1862 .8153 .00071 TC 2964 .8213 .00044 TR 1406 .8508 .00054 Total 20824 .8275 .00018 Total CD 5100 .8307 .00032 DM 3264 .8188 .00042 DS 2346 .8075 .00051 GC 2040 .8259 .00045 LBL 4794 .8194 .00040 ML 5508 .8134 .00030 NAT 2142 .8353 .00062 PDT 4386 .8256 .00046 PIG 4488 .8075 .00045 PL 5100 .8371 .00035 PP 4998 .8088 .00045 TC 7956 .8142 .00029 TR 3838 .8377 .00040 Total 55960 .8209 .00012 West Center ML CD 2700 .8138 .00037 GC 1080 .8123 .00057 LBL 2538 .8056 .00048 Total 6318 .8102 .00027 PL CD 2500 .8377 .00043 GC 1000 .8336 .00061 LBL 2350 .8313 .00055 Total 5850 .8344 .00031

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfnom regionto sitefrom siteto N Mean of Mean West Center TC CD 3900 .8162 .00037 GC 1560 .8154 .00053 LBL 3666 .8102 .00045 Total 9126 .8136 .00026 Total CD 9100 .8214 .00025 GC 3640 .8195 .00036 LBL 8554 .8146 .00030 Total 21294 .8183 .00018 North ML DM 1728 .8055 .00053 DS 1242 .7954 .00062 PIG 2376 .7946 .00058 PP 2646 .7935 .00057 Total 7992 .7967 .00030 PL DM 1600 .8273 .00056 DS 1150 .8167 .00072 PIG 2200 .8178 .00061 PP 2450 .8184 .00063 Total 7400 .8199 .00033 TC DM 2496 .8085 .00048 DS 1794 .7977 .00059 PIG 3432 .7936 .00051 PP 3822 .7971 .00049 Total 11544 .7986 .00027 Total DM 5824 .8128 .00032 DS 4186 .8022 .00040 PIG 8008 .8006 .00035 PP 8918 .8019 .00034 Total 26936 .8039 .00018 South ML NAT 1134 .8173 .00057 PDT 2322 .8062 .00049 TR 2052 .8194 .00045 Total 5508 .8134 .00030 PL NAT 1050 .8385 .00063 PDT 2150 .8282 .00056 TR 1900 .8465 .00051 Total 5100 .8371 .00035 TC NAT 1638 .8196 .00056 PDT 3354 .8053 .00047 TR 2964 .8213 .00044 Total 7956 .8142 .00029 Total NAT 3822 .8241 .00037 PDT 7826 .8119 .00031 TR 6916 .8276 .00030 Total 18564 .8203 .00020 West ML ML 2862 .8181 .00043 PL 2700 .8219 .00041 TC 4212 .8024 .00036 Total 9774 .8124 .00025

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean West West PL ML 2700 .8219 .00041 PL 2450 .8556 .00051 TC 3900 .8234 .00040 Total 9050 .8316 .00030 TC ML 4212 .8024 .00036 PL 3900 .8234 .00040 TC 6006 .8150 .00033 Total 14118 .8136 .00022 Total ML 9774 .8124 .00025 PL 9050 .8316 .00030 TC 14118 .8136 .00022 Total 32942 .8182 .00015 Total ML CD 2700 .8138 .00037 DM 1728 .8055 .00053 DS 1242 .7954 .00062 GC 1080 .8123 .00057 LBL 2538 .8056 .00048 ML 2862 .8181 .00043 NAT 1134 .8173 .00057 PDT 2322 .8062 .00049 PIG 2376 .7946 .00058 PL 2700 .8219 .00041 PP 2646 .7935 .00057 TC 4212 .8024 .00036 TR 2052 .8194 .00045 Total 29592 .8079 .00015 PL CD 2500 .8377 .00043 DM 1600 .8273 .00056 DS 1150 .8167 .00072 GC 1000 .8336 .00061 LBL 2350 .8313 .00055 ML 2700 .8219 .00041 NAT 1050 .8385 .00063 PDT 2150 .8282 .00056 PIG 2200 .8178 .00061 PL 2450 .8556 .00051 PP 2450 .8184 .00063 TC 3900 .8234 .00040 TR 1900 .8465 .00051 Total 27400 .8301 .00017

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean West Totai TC cd 3900 .8162 .00037 DM 2496 .8085 .00048 DS 1794 .7977 .00059 GC 1560 .8154 .00053 LBL 3666 .8102 .00045 ML 4212 .8024 .00036 NAT 1638 .8196 .00056 PDT 3354 .8053 .00047 PIG 3432 .7936 .00051 PL 3900 .8234 .00040 PP 3822 .7971 .00049 TC 6006 .8150 .00033 TR 2964 .8213 .00044 Total 42744 .8097 .00013 Total CD 9100 .8214 .00025 DM 5824 .8128 .00032 DS 4186 .8022 .00040 GC 3640 .8195 .00036 LBL 8554 .8146 .00030 ML 9774 .8124 .00025 NAT 3822 .8241 .00037 PDT 7826 .8119 .00031 PIG 8008 .8006 .00035 PL 9050 .8316 .00030 PP 8918 .8019 .00034 TC 14118 .8136 .00022 TR 6916 .8276 .00030 Total 99736 .8147 .00009 Total Center CD CD 2450 .8410 .00043 GC 1000 .8271 .00056 LBL 2350 .8217 .00050 Total 5800 .8308 .00031 DM CD 1600 .8218 .00050 GC 640 .8184 .00077 LBL 1504 .8127 .00066 Total 3744 .8176 .00037 DS CD 1150 .8081 .00067 GC 460 .8052 .00093 LBL 1081 .8011 .00079 Total 2691 .8048 .00046 GC CD 1000 .8271 .00056 GC 380 .8440 .00119 LBL 940 .8195 .00074 Total 2320 .8268 .00047 LB CD 2350 .8217 .00050 GC 940 .8195 .00074 LBL 2209 .8301 .00079 Total 5499 .8247 .00041

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Total Center '"ML Cb 2700 .8138 .00037 GC 1080 .8123 .00057 LBL 2538 .8056 .00048 Total 6318 .8102 .00027 NA CD 1050 .8329 .00059 GC 420 .8314 .00087 LBL 987 .8238 .00076 Total 2457 .8290 .00043 PD CD 2150 .8235 .00053 GC 860 .8193 .00075 LBL 2021 .8118 .00064 Total 5031 .8181 .00037 PI CD 2200 .8097 .00058 GC 880 .8046 .00086 LBL 2068 .7998 .00070 Total 5148 .8048 .00041 PL CD 2500 .8377 .00043 GC 1000 .8336 .00061 LBL 2350 .8313 .00055 Total 5850 .8344 .00031 PP CD 2450 .8107 .00060 GC 980 .8087 .00088 LBL 2303 .8029 .00069 Total 5733 .8072 .00041 TC CD 3900 .8162 .00037 GC 1560 .8154 .00053 LBL 3666 .8102 .00045 Total 9126 .8136 .00026 TR CD 1900 .8376 .00045 GC 760 .8303 .00063 LBL 1786 .8254 .00061 Total 4446 .8315 .00034 Total CD 27400 .8227 .00015 GC 10960 .8194 .00023 LBL 25803 .8147 .00019 Total 64163 .8189 .00011 North CD DM 1600 .8218 .00050 DS 1150 .8081 .00067 PIG 2200 .8097 .00058 PP 2450 .8107 .00060 Total 7400 .8124 .00031 DM DM 992 .8233 .00079 DS 736 .8011 .00087 PIG 1408 .8017 .00072 PP 1568 .8022 .00075 Total 4704 .8063 .00041

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean total Worth DS DM 736 .8011 .00087 DS 606 .8135 .00122 PIG 1012 .7930 .00091 PP 1127 .7942 .00089 Total 3381 .7982 .00049 GC DM 640 .8184 .00077 DS 460 .8052 .00093 PIG 880 .8046 .00086 PP 980 .8087 .00088 Total 2960 .8090 .00046 LB DM 1504 .8127 .00066 DS 1081 .8011 .00079 PIG 2068 .7998 .00070 PP 2303 .8029 .00069 Total 6956 .8038 .00037 ML DM 1728 .8055 .00053 DS 1242 .7954 .00062 PIG 2376 .7946 .00058 PP 2646 .7935 .00057 Total 7992 .7967 .00030 NA DM 672 .8221 .00084 DS 483 .8139 .00094 PIG 924 .8084 .00092 PP 1029 .8135 .00090 Total 3108 .8139 .00048 PD DM 1376 .8114 .00070 DS 989 .7996 .00081 PIG 1892 .8001 .00071 PP 2107 .8008 .00070 Total 6364 .8027 .00037 PI DM 1408 .8017 .00072 DS 1012 .7930 .00091 PIG 1936 .8092 .00098 PP 2156 .7894 .00076 Total 6512 .7985 .00045 PL DM 1600 .8273 .00056 DS 1150 .8167 .00072 PIG 2200 .8178 .00061 PP 2450 .8184 .00063 Total 7400 .8199 .00033 PP DM 1568 .8022 .00075 DS 1127 .7942 .00089 PIG 2156 .7894 .00076 PP 2352 .8039 .00079 Total 7203 .7977 .00041 TC DM 2496 .8085 .00048 DS 1794 .7977 .00059 PIG 3432 .7936 .00051 PP 3822 .7971 .00049 Total 11544 .7986 .00027

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Total North ..DM' ' 1216 .8254 .00059 DS 874 .8129 .00080 PIG 1672 .8154 .00069 PP 1862 .8153 .00071 Total 5624 .8171 .00036 Total DM 17536 .8132 .00019 DS 12604 .8027 .00023 PIG 24156 .8022 .00021 PP 26852 .8032 .00020 Total 81148 .8050 .00011 South CD NAT 1050 .8329 .00059 PDT 2150 .8235 .00053 TR 1900 .8376 .00045 Total 5100 .8307 .00032 DM NAT 672 .8221 .00084 PDT 1376 .8114 .00070 TR 1216 .8254 .00059 Total 3264 .8188 .00042 DS NAT 483 .8139 .00094 PDT 989 .7996 .00081 TR 874 .8129 .00080 Total 2346 .8075 .00051 GC NAT 420 .8314 .00087 PDT 860 .8193 .00075 TR 760 .8303 .00063 Total 2040 .8259 .00045 LB NAT 987 .8238 .00076 PDT 2021 .8118 .00064 TR 1786 .8254 .00061 Total 4794 .8194 .00040 ML NAT 1134 .8173 .00057 PDT 2322 .8062 .00049 TR 2052 .8194 .00045 Total 5508 .8134 .00030 NA NAT 441 .8538 .00187 PDT 903 .8252 .00080 TR 798 .8364 .00070 Total 2142 .8353 .00062 PD NAT 903 .8252 .00080 PDT 1849 .8246 .00086 TR 1634 .8270 .00062 Total 4386 .8256 .00046 PI NAT 924 .8084 .00092 PDT 1892 .8001 .00071 TR 1672 .8154 .00069 Total 4488 .8075 .00045 PL NAT 1050 .8385 .00063 PDT 2150 .8282 .00056 TR 1900 .8465 .00051 Total 5100 .8371 .00035

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Total South '"PP ...... NAT 1029 .8135 .00090 PDT 2107 .8008 .00070 TR 1862 .8153 .00071 Total 4998 .8088 .00045 TC NAT 1638 .8196 .00056 PDT 3354 .8053 .00047 TR 2964 .8213 .00044 Total 7956 .8142 .00029 TR NAT 798 .8364 .00070 PDT 1634 .8270 .00062 TR 1406 .8508 .00054 Total 3838 .8377 .00040 Total NAT 11529 .8245 .00024 PDT 23607 .8133 .00019 TR 20824 .8275 .00018 Total 55960 .8209 .00012 West CD ML 2700 .8138 .00037 PL 2500 .8377 .00043 TC 3900 .8162 .00037 Total 9100 .8214 .00025 DM ML 1728 .8055 .00053 PL 1600 .8273 .00056 TC 2496 .8085 .00048 Total 5824 .8128 .00032 DS ML 1242 .7954 .00062 PL 1150 .8167 .00072 TC 1794 .7977 .00059 Total 4186 .8022 .00040 GC ML 1080 .8123 .00057 PL 1000 .8336 .00061 TC 1560 .8154 .00053 Total 3640 .8195 .00036 LB ML 2538 .8056 .00048 PL 2350 .8313 .00055 TC 3666 .8102 .00045 Total 8554 .8146 .00030 ML ML 2862 .8181 .00043 PL 2700 .8219 .00041 TC 4212 .8024 .00036 Total 9774 .8124 .00025 NA ML 1134 .8173 .00057 PL 1050 .8385 .00063 TC 1638 .8196 .00056 Total 3822 .8241 .00037 PD ML 2322 .8062 .00049 PL 2150 .8282 .00056 TC 3354 .8053 .00047 Total 7826 .8119 .00031

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Total West PI ML 2376 .7946 .00058 PL 2200 .8178 .00061 TC 3432 .7936 .00051 Total 8008 .8006 .00035 PL ML 2700 .8219 .00041 PL 2450 .8556 .00051 TC 3900 .8234 .00040 Total 9050 .8316 .00030 PP ML 2646 .7935 .00057 PL 2450 .8184 .00063 TC 3822 .7971 .00049 Total 8918 .8019 .00034 TC ML 4212 .8024 .00036 PL 3900 .8234 .60040 TC 6006 .8150 .00033 Total 14118 .8136 .00022 TR ML 2052 .8194 .00045 PL 1900 .8465 .00051 TC 2964 .8213 .00044 Total 6916 .8276 .00030 Total ML 29592 .8079 .00015 PL 27400 .8301 .00017 TC 42744 .8097 .00013 Total 99736 .8147 .00009 Total CD CD 2450 .8410 .00043 DM 1600 .8218 .00050 DS 1150 .8081 .00067 GC 1000 .8271 .00056 LBL 2350 .8217 .00050 ML 2700 .8138 .00037 NAT 1050 .8329 .00059 PDT 2150 .8235 .00053 PIG 2200 .8097 .00058 PL 2500 .8377 .00043 PP 2450 .8107 .00060 TC 3900 .8162 .00037 TR 1900 .8376 .00045 Total 27400 .8227 .00015

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Total Total DM CD 1600 .8218 .00050 DM 992 .8233 .00079 DS 736 .8011 .00087 GC 640 .8184 .00077 LBL 1504 .8127 .00066 ML 1728 .8055 .00053 NAT 672 .8221 .00084 PDT 1376 .8114 .00070 PIG 1408 .8017 .00072 PL 1600 .8273 .00056 PP 1568 .8022 .00075 TC 2496 .8085 .00048 TR 1216 .8254 .00059 Total 17536 .8132 .00019 DS CD 1150 .8081 .00067 DM 736 .8011 .00087 DS 506 .8135 .00122 GC 460 .8052 .00093 LBL 1081 .8011 .00079 ML 1242 .7954 .00062 NAT 483 .8139 .00094 PDT 989 .7996 .00081 PIG 1012 .7930 .00091 PL 1150 .8167 .00072 PP 1127 .7942 .00089 TC 1794 .7977 .00059 TR 874 .8129 .00080 Total 12604 .8027 .00023 GC CD 1000 .8271 .00056 DM 640 .8184 .00077 DS 460 .8052 .00093 GC 380 .8440 .00119 LBL 940 .8195 .00074 ML 1080 .8123 .00057 NAT 420 .8314 .00087 PDT 860 .8193 .00075 PIG 880 .8046 .00086 PL 1000 .8336 .00061 PP 980 .8087 .00088 TC 1560 .8154 .00053 TR 760 .8303 .00063 Total 10960 .8194 .00023

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean Total total LB cb 2350 .8217 .00050 DM 1504 .8127 .00066 DS 1081 .8011 .00079 GC 940 .8195 .00074 LBL 2209 .8301 .00079 ML 2538 .8056 .00048 NAT 987 .8238 .00076 PDT 2021 .8118 .00064 PIG 2068 .7998 .00070 PL 2350 .8313 .00055 PP 2303 .8029 .00069 TC 3666 .8102 .00045 TR 1786 .8254 .00061 Total 25803 .8147 .00019 ML CD 2700 .8138 .00037 DM 1728 .8055 .00053 DS 1242 .7954 .00062 GC 1080 .8123 .00057 LBL 2538 .8056 .00048 ML 2862 .8181 .00043 NAT 1134 .8173 .00057 PDT 2322 .8062 .00049 PIG 2376 .7946 .00058 PL 2700 .8219 .00041 PP 2646 .7935 .00057 TC 4212 .8024 .00036 TR 2052 .8194 .00045 Total 29592 .8079 .00015 NA CD 1050 .8329 .00059 DM 672 .8221 .00084 DS 483 .8139 .00094 GC 420 .8314 .00087 LBL 987 .8238 .00076 ML 1134 .8173 .00057 NAT 441 .8538 .00187 PDT 903 .8252 .00080 PIG 924 .8064 .00092 PL 1050 .8385 .00063 PP 1029 .8135 .00090 TC 1638 .8196 .00056 TR 798 .8364 .00070 Total 11529 .8245 .00024

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error realonfrom reqionto sitefrom siteto N Mean of Mean Total iotal PD CD 2150 .8235 .00053 DM 1376 .8114 .00070 DS 989 .7996 .00081 GC 860 .8193 .00075 LBL 2021 .8118 .00064 ML 2322 .8062 .00049 NAT 903 .8252 .00080 PDT 1849 .8246 .00086 PIG 1892 .8001 .00071 PL 2150 .8282 .00056 PP 2107 .8008 .00070 TC 3354 .8053 .00047 TR 1634 .8270 .00062 Total 23607 .8133 .00019 PI CD 2200 .8097 .00058 DM 1408 .8017 .00072 DS 1012 .7930 .00091 GC 880 .8046 .00086 LBL 2068 .7998 .00070 ML 2376 .7946 .00058 NAT 924 .8084 .00092 PDT 1892 .8001 .00071 PIG 1936 .8092 .00098 PL 2200 .8178 .00061 PP 2156 .7894 .00076 TC 3432 .7936 .00051 TR 1672 .8154 .00069 Total 24156 .8022 .00021 PL CD 2500 .8377 .00043 DM 1600 .8273 .00056 DS 1150 .8167 .00072 GC 1000 .8336 .00061 LBL 2350 .8313 .00055 ML 2700 .8219 .00041 NAT 1050 .8385 .00063 PDT 2150 .8282 .00056 PIG 2200 .8178 .00061 PL 2450 .8556 .00051 PP 2450 .8184 .00063 TC 3900 .8234 .00040 TR 1900 .8465 .00051 Total 27400 .8301 .00017

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean total total cb 2450 .8107 .00060 DM 1568 .8022 .00075 DS 1127 .7942 .00089 GC 980 .8087 .00088 LBL 2303 .8029 .00069 ML 2646 .7935 .00057 NAT 1029 .8135 .00090 PDT 2107 .8008 .00070 PIG 2156 .7894 .00076 PL 2450 .8184 .00063 PP 2352 .8039 .00079 TC 3822 .7971 .00049 TR 1862 .8153 .00071 Total 26852 .8032 .00020 TC CD 3900 .8162 .00037 DM 2496 .8085 .00048 DS 1794 .7977 .00059 GC 1560 .8154 .00053 LBL 3666 .8102 .00045 ML 4212 .8024 .00036 NAT 1638 .8196 .00056 PDT 3354 .8053 .00047 PIG 3432 .7936 .00051 PL 3900 .8234 .00040 PP 3822 .7971 .00049 TC 6006 .8150 .00033 TR 2964 .8213 .00044 Total 42744 .8097 .00013 TR CD 1900 .8376 .00045 DM 1216 .8254 .00059 DS 874 .8129 .00080 GC 760 .8303 .00063 LBL 1786 .8254 .00061 ML 2052 .8194 .00045 NAT 798 .8364 .00070 PDT 1634 .8270 .00062 PIG 1672 .8154 .00069 PL 1900 .8465 .00051 PP 1862 .8153 .00071 TC 2964 .8213 .00044 TR 1406 .8508 .00054 Total 20824 .8275 .00018

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Case Summaries similarity Std. Error regionfrom regionto sitefrom siteto N Mean of Mean total Total Total CD 27400 .8227 .00015 DM 17536 .8132 .00019 DS 12604 .8027 .00023 GC 10960 .8194 .00023 LBL 25803 .8147 .00019 ML 29592 .8079 .00015 NAT 11529 .8245 .00024 PDT 23607 .8133 .00019 PIG 24156 .8022 .00021 PL 27400 .8301 .00017 PP 26852 .8032 .00020 TC 42744 .8097 .00013 TR 20824 .8275 .00018 Total 301007 .8141 .00005

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 7 - Image of run parameters in Phylip

— C:\Documents and Settings\Jeremy\Desktop\Miiabella\phylip\exe\restdist.exe

V' »Mu> >‘n „ f-»K, ■■S ! t ‘ . 1' ;?,!>. ■ i -J !/'■ i ' m-tTfi

J>*>. i.I y m . i t ! ; , s j y i 1 5“ v*[ i j < U T n S "H-tJirt- *1 tjt> !=>>; <•*.;‘•t'mOmj 1 fio''it‘-«5>V|,' nV.tifjdi.iPO AMt *Mr SlSlifiHHl 'W 'y .i Tt'.s',!, .;.u !»• sulii'K'*jr3<0 >1*’

n i M'iR- j;-;- sYl^.Vi -ivO ni T;!i« .K-: •• -n '*yW« <)«•»“....>iE-- r- ' n,y,, ifcjttf 5*y ,(,r .m t . if\ : =.> i \i ,■ , , ) ! ! ( '

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 8 - Tree generated from Phylip showing the similarities between 549 individuals of Gleditsia triacanthos

C CD t

CCD 1} C C D H CC D1J : c d io C CD 107 3 PDT2I0 c c d n o

S PDT 230 CD) 15 CCD 117 CCD 106

V ML 580

C LBL *77

W TCJW WTC2- W TC2J0 WTC’WW TC237 [ML4IB WTC235 W TC'W l C LBL 383 WTC.2fi STRMS BPDTI31 0 T >M

S PDT 378 S PDT 377 C PDT 240

W PL 101 W PL 540 HP? 277W PL 148 N P $ M NPP207 S TR 181 S T R 170

STR 171 STR WO CTR358 STR 330 W PL 138

W PL 47

3 HAT 307 ■3TR3S4 STR 323

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. T ^ p L ,

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. r--— whk m z :

« W.TCSI7

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ■jW PL 3Z IwTCiSI

■H PIG M l

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. •N HO 341

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. STR 160

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CI.Bi.40

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Statistics used to evaluate genetic diversity locus; P, proportionpolymorphic of loci; Ho, Diversityparameters (A, meanno. ofalleles per observedheterozygosity; He, expected heterozygosity),Nei’s genetic distances among ANOVAtest to see ifgenetic variabilitywere populations within taxausing BIOSYS-1, one-way different among taxa, indirect estimate ofgene flow: Fst values amongpopulations; AMOVA, to testthe (Ost) between subpopulationpairs. presence ofgenetic structure on subpopulation and regional level, ARLEQUIN used to perform AMOVA analysis andto estimate genetic distances Fstfor eachregion using AMOVA from ARLEQIUN; Nei’s standard genetic distance between all pairs ofsites within regions; IBD programto estimate the slope ofrelationship between genetic and geographical distances. TFPGA software to testfor population structure Nm=( 1 -Gst)/(4Gst). Nm=(1 among all populations, GENEPOP version 3.4 to calculate Ho & He, HWE, Fst Nei’s& standard genetic distances; a genetic distance matrix between all pairs ofpopulations was calculated usingthe program POPULATIONS, version 1.2.28.

,Silene Parnassius 198 tatarica varywith landscape connectivity Invasion genetics ofthe assessed using allozymes in ametapopulation ofan Euroasian spinywaterflea: alpine butterfly, Title ofthe research paper evidence forbottlenecks and related taxaof Antirrhinum L. Patterns ofgenetic diversity in flowamong populations ofthe smintheus, gene flowusing microsatellites endangeredplant species Genetic structure and gene flow Genetic differentiation and gene 2003 Year 2003 2005 2005 published D.D. Writer Tuomi, J. Siikamaki, P., J. & Strobeck, C. Tero, N., Aspi, J., Jakalaniemi, A. & H.A.M, Burgi, H., Mateu-Andres, I. & Segarra-Moragues, J. G. Viljanen, M., Ketelaars, Colautti, R., Manca, M., Maclsaac, H.J. & Heath, 1. 2. 3. Keyghobadi, N., Roland, 4. No. Appendix 9 - Table ofcomparison ofdifferent statistics used to assess genetic diversity in varietya ofspecies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Genetic diversitymeasured as the % ofpolymorphic loci; AMOVA conducted A using & 1.1 DCF WINAMOVA to1.55 calculate variationamong and (52xy) used inAMOVA: pairwise(52xy) = X(xi-yi)2; 82xy level ofgenetic differentiation estimatedby F- statistics. Calculated Fst, Gst, Nem & Ostwhich is obtained and geographic distances. Dataanalyzed using GENEPOP3.3; HWEtested; geographical distance and genetic distance based on withinpopulations; Euclidean squared distances genetic distances (Ost) obtained fromAMOVA and usedto construct aUPGMA tree; Mantel testused to fromAMOVA tables from % variationwithin and testthere if is correlation between genetic distances among subpopulations; Nem= l-Fst/4*Fst. Using RAPDFst software calculated 0st (analogues ofFst-fixation index); relationship found between Jaccard index. Genetic diversity estimatedwithin andbetween subpopulations bycalculating Fst.

Haloxylon 199 (Amaranthaceae) in China (Bromeliaceae) Aechmea tuitensis indicum How species evolve Sarraceniapurpurea amongpopulations ofa the Indian queenless ant effect inthe pitcherplant onlyknown population of from inbreeding to invasion collectively: implications of Genetic variationwithin and introduced into Switzerland: High genetic diversity inthe spread ofadvantageous alleles gene flowand selection forthe dominant deserttree Genetic variabilityand founder (Sarraceniaceae) populationsin ammodendron 2004 Very low genetic variability in 2004 2005 2005 2000 D. Galland, N. Rieseberg, L.H Morjan, C.L. & Pei, K. & Ma, K. Brazier, L. & Doums, C. 5. Viginier, B., Peeters, C., 7. 6. Sheng, Y., Zheng, W., 8. Parisod, C., Trippi, C. & 9. Izquierdo, L.Y & Pinero,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (%& P). analyses. AMOVAused to calculate geneticvariation between plants fromthe two regions, amongpopulations withinregions and within populations Analysis ofallozyme variationwithin populations: calculated P-percentage ofpolymorphic loci, A- number ofalleles per locus, He & Ho; Analysis of allozyme variation amongpopulations: calculated Wright’s F statistics using FSTAT program; Cluster analysis and genetic divergence among populations: calculatedNei’s genetic distance; dendrograms constructedusing UPGMA; Mantel test compared Estimated differentiationbetween geographical regions, among populations and amongpopulations withinregions (calculated Osc & P) using AMOVA Percentage ofpolymorphic loci, allele frequencies, differentiation, and Shannon’s index ofphenotypic the relationship between distances among populations and levels ofgenetic differentiation. diversitywere computed withPOPGENE 1.20. Also aMantel test conducted forthe correlation between Nei’s genetic diversity, measures populationf the matrix ofgenetic distance and spatial distance within a site.

Hydrophila 2 0 0 Botrychium Begonia dregei & based on RAPDs (Ophioglossaceae) fingerprints (Begoniaceae) Ranunculus reptans repeats (ISSR) (Ranunculaceae) Begoniahomonyma within small and large diversityof plant pumicola populations theof rare clonal Population differentiation and pogonocalyx phylogeography of based on inter-simple sequence Genetic diversityand gene flow inthe morphologicallyvariable, Population structure and genetic rare endemics 2000 RAPD variation among and 2000 2001 2001 A. Schmid, B. Chiang, T.Y. McLellan, T. Balkwill, K. & vanKleunen, M. & Huang, J.C., Wang, W.K., Hong, K.H. & Fischer, M., Husi, R., Prati, D., Peintinger, M., 11. Matolweni, L.O., 10. 13. Camacho, F. & Liston, 12.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Genetic diversitywithin populations quantified in Shannon index ofphenotypic diversityHs= - three ways: the 1. % ofwithin-population individuals and pi- the allelic frequencies; 3. polymorphic loci out ofall thepolymorphic loci; 2. 2n/(2n-1),Epi2)x where n- the numberof Lpilog2pi, pi denotes allele or band frequencies at a given locus; F-statistics computed byTools for Population Genetic Analysis TFPGA; AMOVA carried out withARLEQUIN; Mantel testperformed To measure patterns ofdiversity: total numberof alleles(TA), proportion ofpolymorphic loci(P), - 0p the proportion ofgenetic differentiation among Nei’s unbiased expectedheterozygosity He= (1- using TFPGA. Genetic diversityparameters estimated using numberof alleles perpolymorphic locus (Ap), He & Ho calculatedusing Genetic DataAnalysis (GDA); genetic distance computed for all pairwise POPGENE: % ofpolymorphic loci P, meannumbers ofalleles per locus A andper polymorphic locus AP, effective numberof alleles per locus Ae, He & Ho; interpop. genetic structure: Nei’s genetic diversity statistic (Gst) showthe proportion ofgenetic populations; -0s the proportion oftotal genetic variationpartitioned among sites; Nei’s unbiased combinations ofpopulations; Mantel test; Mantel test Fst/(1-Fst) and log geographic distance for eachpopulation pair; estimated number of variation amongpopulations atpolymorphic loci; migrants per generationNm= (l-Gst)/4Gst.

Panax L. L. 201 L. (Araliaceae) Eriogonum ovalifolium Eryngium alpinum Genetic diversityin an polymorphism markers Conservation ofgenetic endangered alpine plant, (Apiaceae), inferred from amplified fragment length diversity inthe endangered var. var. vineum (Polygonaceae) andprotected populations of plant quinquefolius Genetic diversity in harvested wild American ginseng, 2000 2003 2004 N.C. Hamrick, J.L. & Till-Bottraud, I. Neel, M.N. & Ellstrand, Gaudeul, M., Taberlet, P. 14. 15. 16. Cruse-Sanders, J.M. &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Jacard distances among pairs calculated using FreeTree program; the mean diversity index (H) for each group using POPGENE. Weaver information statistics: Ho= -Epilog2pi, among populations ofthe species. RAPDFST, RAPDPLOT, RAPDLD, RAPDBIOS, genetic relationship betweenthe populations were Shannon’sphenotypic diversity index calculated for RAPD locus diversity calculatedwith the Shannon- whichestimates the genetic diversitywithin and BIOSYS-1) used forpopulation genetic analyses. Fst = l/(4Nem + to estimate1) the number of migrants/generation among subpopulations; the estimated theby REML (restricted maximum likelihood) method implemented inthe module CONTML ofthe PHYLIP 3.75c package. eachprimer: Ho=- Epilog2pi, where Pi is the frequencytheof ith RAPD band. The among- and within-population diversity components were calculated as (Hsp- Hpop)/Hsp andHpop/Hsp, statistics. F-statistics (Fis, Fit, Fst) calculated for Hsp-total diversitydetected in all populations, Hpop-meanwithin-population diversity. AMOVA into among andwithin populations and Ost allozymes; Nei’s gene diversity (Hs, Ht, Gst) for Ost. used to estimate components ofvariance partitioning RAPDs. The number ofmigrants per generation calculated: Nm=l/4 (1/Y-l), where Y is Fst, Gst or

L.) from 2 0 2 Changium (Gastropoda: (Apiaceae), an (Piper betle Guangxi, China endangeredplant Betula alnoides diversity in ofadioecious floodplain forests ofthe of betelvine Genetic diversity amongst RAPD analysis ofgenetic RAPD analysis forgenetic smyrnioides Clausiliidae) in fragmented Elster/Saale riparian system Balea biplicata vegetativelypropagated plant, genetic population structure of polymorphic DNA) analysis of An RAPD (Random Amplified variation in natural populations 2004 2003 2003 2003 H. M. Ranade, A. & Zheng, H. Hille, A., Liebal, K., Pellmann, H. & Schlegel, 18. Fu, C., Qiu, Y. & Kong, 17. Verma, A., Kumar, N. & 19. 20. Zeng, J., Zou, Y., Bai, J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Expectedheterozygosity calculated for each population (Hs)and species (Ht) for each locus: GeneticH=l-(p2+q2). relationships withinand among populations estimated using similarity coefficients andUPGMA cluster analysis withthe estimatedto find outthe distributionof genetic variationwithin and among populations: Ho=- Shannon’s index calculated for eachpopulation Zpilog2pi. AMOVA used to estimate variance components andto testthe significance of populations. Pair-wise comparisons ofall individuals were used D=l/(2Nxy/Nx+Ny), where Nx andNy are the (y), Nxy-theand number offragments shared by carried outusing SPSS software. The genetic distances within andbetween populations were NTSYS-pc computerprogram. Shannon’s index partitioning ofRAPD variation within and among to estimate the genetic distance ofNei & Li, numberof fragments present in individuals (x) and both individuals. Calculations ofthe genetic distance calculated as the average ofthe genetic distances between individuals. H = - Epilog2pi. Pairwise Euclidean distances RAPDistance Package. AMOVA usedto calculate between all individuals calculatedusing variance components within and between populations.

Populus Colubrina Alphitonia 203 Campanula and populations in (Campanulaceae) Rhamnaceae) from usingrandom amplified byRAPD DNA analysis euphratica populations theof insular endemic plant polymorphic DNA markers oppositifolia microdonta Population genetic structure of ponderosa, Hawaiian dryand mesic forests DNA (RAPD) variation among northwestern China determined two rare tree species ( Random amplifiedpolymorphic 2002 2002 Genetic diversityof 2001 C.W. Maki, M. Tanimoto, T., Yin, L., Saito, Y., Shiraishi, S., Oiki, S., Kawahara, T., Watanabe, S. & Ide, Y. Inoue, K., Ohara, M. & 21. Kwon, J.A. & Morden, 22. 23.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Shannon’s index ofphenotypic diversity calculated: distances between individuals obtained using an Ostcalculated, too. among individuals withinpopulations, among Ho= -Lpilog2pi; apairwise matrix ofthe genetic Components ofvariance partitioned into withinand Euclidean distance measure calculated from Distance matrices comparedwith the Euclidean metric using DIPLOMO, this distance was further chosen forAMOVA analyses. F-statistics analogue AMOVAtechnique usedto apportionthe variation among regions. presence/absence datausing RAPD instance. betweenpopulations estimated from this matrix using AMOVAversion 1.8. RAPD locus diversity calculatedwith Shannon- Weaver statistic: Ho= -£pilog2pi, where Pi isthe frequency ofthe I band, Ho isthe diversity. Cluster analysis UPGMA ofthe similarity indices similarities among samples; pairwise distance matrix populations, amongpopulations withinregions, and carried out usingYS NT-Ssoftware to determine computed based onNei’s coefficient ofsimilarity;

and

(Nutt) Posedonia Limonium 204 Changium (Apiaceae), an engelml (Plumbaginaceae) (L.) Delile in relation endangeredplant to local factors and diversity in biogeographic patterns outcrossing buffalograss and endangered Chamecyparis taiwanensis dufourii RAPD analysis for genetic RAPD variation within and [.Buchloe dactyloides [.Buchloe smyrnioides population differentiation of among natural populations of RAPD variation inrelation to structure andvariability using Analysis populationof genetic RAPD markers inthe endemic oceanica Chamaecyparis formosensisChamaecyparis Genetic variability of 1993 1997 2001 2003 2005 H. C.N. Candelas, F. Smouse, P.E. Kuo, Y.S. & Lin, T.P. Peirano, A., Caye, G., Fu, C, Qiu, Y. & Kong, Meinesz, A. & Bianchi, Hwang, S.Y., Lin, H.W., Micheli, C., Paganin, P., Palacios, C. & Gonzales- Huff, D.R., Peakall, R. & 24. 25. 26. 27. 28.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SSRs was measured also He & Ho. These Shannon’s indices calculated Ho= -Zpilog2pi; locus (Na), andthe % ofpolymorphic loci (P); for Forboth RAPDs and SSRs was measuredthe genetic diversityby the meannumber ofalleles per assess the overall distribution ofgenetic diversityFst and SSRs. AMOVA calculated by WinAmova Both simple matching and Jaccard’s similarity coefficients used to assess relatedness ofindividuals number ofpolymorphic loci; global analysis of AMOVA. parameters computed using POPgene program. To values were calculated by POPgene forboth RAPDs program. within and among species usingNTSYS.

Betula 205 RAPD markers maximowicziana Genetic diversity and RAPD ad SSRmarkers and introgression in lava- RAPD analysis ofgenetic populationdifferentiation of Assessment ofhybridization natural populations of (Asteraceae: Madiinae) using colonizing Hawaiian Dubautia liaoning weedyrice detectedby variation within and among four 2005 2001 2004 Y Morden, C.W. Dong, C. & Ge, S. Yu, G., Bao, Y., Shi, C„ Tsuda, Y. Goto, S. & Ide, 29. 31. Caraway, V., Carr, G.& 30.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. P

0.06 0.04 0.17 0.00 0.11 0.00 0.04 0.02 0.02 0.17 0.04 - 4744 0.00 44 0.06 45 43 0.09 39 47 0.00 41 0.13 42 0.11 47 46 42 4447 0.06 44 0.06 3839 0.19 4141 0.13 45 0.13 42 0.11 36 0.23 37 0.21 45 42 0.11 41 0.13 44 0.06 1 3 3 3 1 46 0 0 0 2 0 5 3 4 6 2 5 9 8 5 3 6 2 6 + 10 11 . LBL LBL (n=47) q 1.00 8 1.00 0.95 0.90 5 0.95 0.95 0.95 6 P 0.15 0.85 0.400.05 0.60 0.95 0.05 0.95 0.000.05 1.00 0.00 0.95 1.00 0.050.00 0.95 0.10 0.90 0.00 1.00 0.05 0.05 0.15 0.85 0.10 0.00 0.05 0.05 0.10 0.90 0.05 0.95 0.000.25 1.00 0.75 0.25 0.75 0.20 0.80 0.050.35 0.95 0.65 0.200.00 0.80 1.00 - 17 17 16 20 20 20 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1 19 3 0 20 8 12 2 18 0 05 20 15 0 20 2 18 2 18 7 13 + 4 4 16 GC (n=20) GC q 1.00 0 20 1.00 1.00 0.91 0 0.91 0.87 5 15 0.70 0 0.78 0.960.96 3 0.91 0.87 0.91 0.87 0.87 P 0.39 0.61 0.30 0.22 0.09 0.09 0.09 0.04 0.96 0.09 0.13 0.00 0.13 0.00 - 14 18 22 0.04 21 23 20 1 22 0.04 0.96 1 22 0.04 0.96 1 1 22 0.04 1 22 0.04 0.96 1 22 0.04 0.96 11 22 22 0.04 0.96 0 23 0.00 35 20 18 0.22 0.78 9 35 20 18 0.13 0.22 0.78 2 21 0.09 0.91 7 16 5 2 21 0 0 23 0.0003 1.00 23 20 0.13 2 21 + 3 2 2 21 4 19 0.17 0.83 4 19 0.17 0.83 206 DS (n=23) DS q 1.00 1.00 1.00 0.97 0.91 0.75 0.97 0.91 0.88 0.94 0.88 0.94 0.91 0.94 0.78 0.94 0.91 0.84 0.91 0.72 0.84 0.94 0.88 0.81 0.97 P 0.03 0.09 0.13 0.13 0.220.25 0.78 0.03 0.09 0.09 0.06 0.03 - 32 0.00 32 0.00 30 0.06 30 0.06 25 26 0.19 0.81 29 0.09 28 28 30 0.06 25 0.22 30 0.06 29 27 0.16 30 2729 0.16 0.09 23 0.28 28 0.13 26 0.19 1 31 1 31 0 + 7 6 0 4 3 29 7 9 5 4 2 2 2 2 4 6 1.00 0.94 2 0.84 0.90 8 24 0.74 1 31 0.70 3 0.68 0.72 3 0.62 5 0.52 3 P q 0.02 0.98 0.14 0.86 0 32 0.00 0.16 0.26 0.14 0.86 0.32 . - 50 0.00 1.00 35 0.30 50 0.00 49 49 0.02 0.98 3 29 35 0.30 0.70 37 38 0.24 0.76 36 0.28 31 0.38 39 0.22 0.78 46 0.0849 0.92 0.02 0.98 0 32 0.00 1.00 45 0.10 48 0.04 0.96 43 43 26 0.48 44 0.12 0.88 49 0.02 0.98 46 0.08 0.92 44 0.12 0.88 1 1 1 7 7 8 42 + 4 6 4 6 13 12 14 19 11 CD (n=50) (n=32) DM Band Band Id p277_790p277_940 3 0 47 0.06 p277_430 p277_460p277_490 0 p277_520 15 p277_580 p277_640p277_670 1 p277_550p277_610 5 2 p277_700p277_730 15 p277_760 p266_280 p266_310 p266 370 p266_400 p266_430 16 34 p266_460 p266_490 p266 520p266_550 24 p266_580 p266_610 12 38 0.24 0.76 p266_640 p266_670 11 39 0.22 0.78 p266_700 5 45 0.10 0.90 Appendix 10 - Allele frequencies for each of the sites. The frequency p was derived as the number of present bands (+) divided by bands (+) divided Appendixof present derived as was the number frequency p Theforfrequencies each Allele the sites. 10 -of the total 1-p. was frequency q number each The in ofcategory. individuals

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. OOO'tONCNMC0')-

c- r~- r^- m N (D(Qt0 '- 1 0 (D0 l i n 0 )OrtinnU)S'fCM 0 )NN •m- "M- ■m- "M-

CM in o in O O O CM O T- T- (DM’-IO^OOn J CM ° M co smM-nninnM'nN

o o m oinomooooininmininoinininoininooin ommomoomo o O 05 OOlOClOOOOinMOlOSOOOlfflOllONIOOOSO) 0050505000500005

^ t o rdrdr^rrddddddddddddddd r d d d d d ^ d d ooinoinoinooooininininmoinininoininooinoininoinooino OOOOOOOOppO'M-CMT-^rcMCMpOO'M;CMCOCMCOOOC)OT-;T-T-OT-;T-

dddddddddddddddddddddddoddddddddddd

00050050050000 in!D050505(Minc0

ooT-or-OT-ooooo5incoo5in-M- r- T- 00 in N M- CO Ot-1-CMCOCMOCOCM ooocDocointN'-'-oncoN'-otcocoMooinsnMoooi-si-ooi- ONO)00)(ONCOO)0)OOONOOO)NNO)0)IDfflMI)OOfflCOOOOffl(0(DppO) ^ddT-dddddd^ddddddddddddddd^T-Vddd^r^d

OMMOM-m0nO)O)ONCMC)O5O

CO 00 CM CO CM in NOi- t-COO)COOt-(DN CM CM O 05 CO m o 050)(0C0C0t-OM-C0C0t- CM -r- CM CM CM t-CMCMCMCMt- t-CMCMt- T— CM CM CM T- T—T- CMt- t-CMCMCMCMCMt-CMCMCM

r- O o in COCOCOMCMOM-mcOCMSCO COtNCOCOt^OOOCMCOOlOOCM CM NT-o-oo-cocnTfTfNOMnT-co T-TfOSOTf'f^rCOO-T-irOT-T-T-NrT- 05050000500000005050051^001^ 05050050000505001^-0005050050505050005 OOO t-OOOOOO t- odd 000^0^00000000^000000

CO 05 CO ocococococDcoocoinosoocnco OnOCOCOCOfflCNCOfflCOOfflfflOCOfflO) o o ■*- OO t- t- t-OOOOCM i-CMOO OOO t-OO t-CMt-OOOOOOO t-O ooooooooooooooooo dddddddddddddddodd

T-0)SCMOOOflOSOT-CMr->fCDOO)OCMT-CMNOO(OinNO)OCMO)050)T-(OOI COCMCMCOCOCMCMCMCOCOtOCOCMCMCMCMCOCOCOCOCMCOCOCMCMCMCMCOCOCMCMCMCOCMCM

omocMififinci 00 CO 05 CO CM O OOCMCMCOMOCOCMOCOCOCO CD CO

^(OOCNCOCON^OOOCOCOO^CMCMOCMOOCO^OOOCM'tOO'C^itCMCNCM^ SK(10NNCOO)0005050501000505000505050505a505050505000050505050)0) OOOOOOOOOOOO...... t- dddddddddddddoT-'ddddddd

COCMOCOCM^tOOCOOCMCMCMOCOCncOOCOOO'M-COOCMCnCDOO CO CO CO CO CO CO CO CMCMCMCMCM'i- 0 t-'»-0000000CM0t- i-0 0 t-0 0 0 t-0 T- O o o o o o dddddddddddddddddddddddddddo o d d d d d d

S 05 O0O5COlONinO)O5O)ON(D(OO (Dinin00Sin05CDNinO(MNN(0©(0N co co coco^-^-^-^-^-^-^-in'^-Tj-^-'^-

O -M- CO co in inincMcomr-M-co mo co co co ^ ■m- co

o o o oooooooo22Pooooooooooooooooooooo O CO 05 C001(Min00^-^NSStNOC0(00)CMin00T-MNOC0C005CMin00^^S o o o S N 00 00 CO 05 05 0) ° ™ CO. IO. “5. «. COj co CO S S N N 00 CO 00 O) 05 Or- t- r- I I I ffl(O(O0 (O(O0 co J J Jm mininioinininininininininininininininin in in in COCOtOCDCDCOCOCOSSmNtvfv^^^^^^l^fvf'^^r^SSNSNS r-« h> h- CMCMCMCMCMCMCMCMXsSjXjCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCNCM aaaaaaaQ .^'^'^Q .aaaaaaao.o.aQ .o.aaao.acL ~rt ~o CN CM CM “■ Q. Q. Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. T— T- in a > COo>CO03COCOT~o 03 Is-03 CO03 r-. o CO o COT— CO03COin V03in T“o o o CMT—CMCOo o o Vo o o t—T—o o o T-o o o o o o T— o d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

o CO CO 00CO Is-COCOinm 03CO■M"COCM03in Is-^rCMr- in■M-CMm COT"o CM00 o xr "M* COCOCOCO xr ^r CO Tf ■M-^r CO xT ■M-Xf ■M" TTxr CO

o 03- 00 CO inCOCMo COLOo CMCOin CMCO CO in03Is- CO^r 00 COX“ CMCM

o o COo o ininoo mo in o in o o o o in o inininmo o o o o o mmo ino o 03o>q COCO03o 03 CO00000300o Is—0300000003030303o q r- 00q o 03h-o 03CO T- d d o d d ’r_’ d d o ddd dddddddd d d d d d d d

o o LO o o in in o o in o LOo LO o o o o m o in in LOin o o o o o o in m o m o o T“ o o COo o CO CMT—T—T— o CO T— CMV- CMo o o o o o CO CMo o o CMo o 'M- odddddddddddddddo d o dddddddoddoodood

O CO O) O CM co o> (D(*)ffiSe0NOTfC0(0N(00)0)0)0)OO^ CD CD O CJ) ID CD CT) CN (Mrr(Mr r r T-T-T“T-T-T“CMT-T-T-T-T-T-T-r"r-CNr'lT* CM CM t- CM t- t-

CM 0 0 Is- CMIs- COCMCO CM CO CO T*~ 0 0 o T“ O o ■M" o CO ■M- T“ T_o o ^r Oo m o

o o COIs- o 0 0 Is- OCOo COCO COT- T—o COr- o COV* CMCOin LOCO■M-o COCO03Is- Is- Is- 030 0 o Is-030 0 q 03Is- 030303030303q COCOq CO03in Is- COCO03Is- q s 0 0 03Om d d d d ddd dddddddd dd ddddddd d r- d d d d d

o o ^r COo CM03co o -M-o ■M--M- 03xr 0303o Is- COo r- 03co CMin m Tj* COO 03r- xj* CO COCOo o CMo o o COo O o o O O o T*“ o T—o ’M-CMCOCOo CMO CO O03^r ddddddddddd d d d d d d d d d d d d d ddddddddddd

COCOCMo CO0 0 COCMCO CM CMT- CO03 CO03 CMco LOm CMIs- CO 03CM CO CM T“ CMCMCM CM 20 CMCM 22 CMCMCMCMCMCM 20 CM CMr- T~ CM CM CM T— CO o h~ h~ CO O ID CM CO O CM CMCMOM-DO^CM inootor-tooffiTf CM CM

00 Is- COo xr Is- Is- ^r o ^r o o Is- o o o o T—■M- o r- o o o o o o Is- 00 00COin CM 00 0303co q 03030303q 03q q 03o o o q 03 03 q 03q o q q q q 03 000000COIs- Is- d d d d d d d d d d T“d d d T”d d d d d d d

CO03COCOo COCOCOCOo COo o COo o o o 03 COo COo o o o o o COco COCOco in 00 o o o o o o o o o o o o o o o o Oo o o o o o o o o o CMCM d d d d d d d d o d d d d d o d d d d d d d d d d d d d d d d d d d d

CO O) T- OOCMOt— t— OCMOCMCMt-CMCMCMNOIOCMt- CM CM CM CM CM CM r- (O S 00 CO Tf CO CMCMCOCMCOCOCOCOCOCOCOCOCOOOCOCOCOCOCMCOCOCOCOCOCOCOCOCOCOCMCMCMCMCMCM

'f(OrcfO(M'-T-(\|0(MOO O O O O CO CM o OOOOOOT--M-LOTJ-TJ-COCT)

o o COCOCMO t Cf xr o 00 ^r o COCO CO CMCO CO XJ- o CMo o 00 o CO o 00 00 00 0303030303030 0) 0) 0300 00 0303030303030303030300 0303q o 03o 030303030303 d d d d d d t-: ci d ddooodddddddd d d d T— d ▼“* d d d o d d

o o COKT^r 00O CD CO CO o CMCO o tT CO ’M' 00 CO ^r CO o 00 o o CMo o CMCMCMCO ▼- o o o o CD O CD o“ CMT"o T—o o o Oo o o o T—o o o Oo o ▼—o o o o d d d d d d CO CD CDd d d d d d o o o o d d d d o d d o d d d d d d o o

inin 0000CO NSOM-NIDOOCONCOCOCONCOC'JIOCDo o c n o CO ID O) O) O) S xrxr ^r •M-M’ ID ID Tf LO^ ^ ^ It ^ M1

inin COCMCM■M* O CO CO CO COCOlDCMCMCOCM^fCMCOCMCOlD'srOO O CM ID CO

o o o o o o o o oooooooooooooo o OOO OO CMin 00T—■M-Is- o co o o o o o o o O CO CD CT) CM ID TJ- ,Is- OCO 03 CMCMCM M-NODOCMlDCOT-tSOM-S CO CM t— t— t— t— CMCMCOCO co, ■i ■1 1 1 W| xfr mmmmmin •M- •M- 0000 000000 Is- r- Is-1^r- 00 CMCMCMCMCMCM CMCMCMCMCMCM Q.D.Q.CLQ.Q.CLQ.Q.Q.CLQ.D.Q.Q.Q.Q.D.Q.Q.Q. Q.Q.Q. Q. Q. Q. Q. Q.Q.CLQ. CL Q . Q .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CO o> CD XT CD CMCO a>o CMM* CMo o> Is- XT CD CMCO t—o> CMCO O o O o O O ID o O O O o o o o o r* O O o o O o o O o o o T“* o o o d O O ci O O ci ci ci OO O ci ci ci ci O o ci O ci d d ci ci d d d d d d d d d CO CD a> O) 44 43 46 46 44 44 46 47 47 45 42 44 44 42 43 42 45 45 43 2 2 47 46 47 45 44 46 45 CO 43 44 45 44 CO xr CO

LO T“ x— 0 0 COxT co CM co CMCDo CM o CM■M- CO in CMCMin co T_ co m CO oo o o co CM

o o o o o ID in o m o O o LT5 O o in o in O o o o o o in in o o O in o o o in O CO Is- o CO o 05 o o CD CO O o 05 o o 05 o 05 q o o o CD o CD 05 CD q q oo o o q 05 o T" 1— x—o o d d X—o o v- d d o d d o o T“ O T-’ d d T-' T"’ T“ o o o o o LO LO o LO o o o to o o LO o tn o o o o o o in m o o O m o o o in O xT CO o CMo O 05 o o xT o o O o o o o o o o o o o o o o O o o o o o d d o d d d d o o d d o d d d d d d ddooddddddoo d d d ci d

CMxT o CO o 05 o a> CM 05 05 o 05 o co o CD V05 oo i— 05 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 CM CMT—- CMT“ 2 0 2 0 T“ 2 0 CM CM CM X— T—

05 CO CO o XT o - T“- o - 0 0 o o - o o T—o - o o o o CMo T— CMo o COo o o o

xT 1^ h- CD CO X—Is- CO xr CD CO CO in o xr CO CO xT O XT o in o CO t- o CO Is- s CO 0 0 CO s 05 s 0 0 CD LO 0 0 05 0 0 0 0 CD q CD r- r- CDCD CD O r- r-- CO o CD £ 0 0 Is- 0 0 d d o o o o o o d o o d o O o d d o o o o o o o T“ o d o xr- o o d d d

CD 05 CO COO) 05 xT CD Is- CD CO Is- CO xT Is- Is- in o CD CO CMxr CD CD CD o CO o m O M" CO CO o Is- CMCO X— CO CO o co o r- CMO T“ CO o o CMCMo O o CMo CM CO CO o o CM co T““ d d d d o d d o d o d d d d d d d o o d d d d o o d d d d d d d d d d

Is- xT xr CMxr 05 CO 05 i— CM05 05 m co f'- oo h- CO i— CO in co CMt—o CD 05 2 2 2 0 V“ 2 0 T- T—CM T*“ CM CM r* CMCM CMCMX—CMx— CMCM CM

CT) o O CD 05 co co CT)05 - O) CM M- CO T—xT xr 0 0 o CMCO in T“* CMCMCD o CD h- oo o X—CO co Is- xr CM

CO CO h- CO 0 0 M- CM 0 0 CD XT Is- XT o 0 0 0 0 r-- r- CO xT xr T“ CD CD CD h- 0 0 i- o CO o ■M- ■m- Is- CO o> r-'- 0 0 h~ 0 0 0 0 CD CO 05 CD p CO CO 05 CD CO CO 0 0 05 CO m co 05 0 0 i— CD o CO o oo 5 05 d d o o d d d d d o d d o d d d o o o o d d d o d d d o x—o o o d CMCOCO CMCMCD co co 05 X—CD CO CO o COCO CO CO xr COCO 05 T*“ T—CO CO CD CMco O co o CO CO CD CM o CMCM CMX—T“ co o o o o o co O co X—O T“ CMo o o o O d d o o d d d d d o d d o d d d d d o o o d d o d d d d o o o o o o d

CO CO r* CM 0 0 CO CD CO m X— 25 25 27 28 26 2 2 30 27 25 27 27 29 2 2 28 32 32 CMCO CM CO 0 0 CMCM CO CM 0 0 CMCMco 28 27 30 30

h- xT X— i- ID cd xr CO o LO T— o xr T“ m in CO xT D- xr CM xr -- 1 0 13 - CO o o m CMCM

co CMCO ■M- co xT CM 0 0 CM0 0 CM 0 0 CMo CD CMco CO xr o o CO CO O CD CO CO M- CMCD 0 0 CMCO ■M- CT) 05 CT) CT) co 0 0 oo CO 0 0 CD 05 05 0 0 05 o CD CD h~ 1- 0 0 q q CD CD 0 0 05 oo 0 0 CD CD 0 0 0 0 CD CD CD o ddoodoooddddd dddod T“ X— d d d d d o d O ci o o o o

•xT CO xr CD CMCD 0 0 CMoo CM 0 0 CO CM 0 0 o xr co CMCMCD o o CM o Xt M- ■M- CO oo xr CMoo CO o o o O x—T“ X—CO X—o o o o o CO o CMCMr* o o o 0 0 CMo o o o 3 o d d d o d d d o d d ddddddddodoo o d d d d d d d ci d d o d

xT CO 50 50 39 39 50 33 46 48 47 44 42 49 46 42 48 46 47 44 46 49 40 48 43 46 43 43 47 44 46 co CO 48 47

CMM-CMniOCOQ^CnT-M-nCDM-O^M-JIJIcOOO I- o CMI— ls^COxrt'~CO,crCMCO

o o o O O o o o o o o o O vutr\ o o o o o o o o o o o— OOOOOOOOOO 0 0 M" 1— o CO CO CD CMoo xr™xr o CO CO CDCMm 0 0 xr o COnmoxMinT-ST-Noo) in■ x . x . x . x , in■ ■"lSNNCOCOO)0)<*)(OM’M' ®l °°l “ l ®i “ *1 “ *1 ®i xrxrxr,xrxrxrxrxrxrxrTrxrxr,rtJinininininLninininininioioininioior'-i''-r'-i^-xr M- Tf O’ M"If ■xr M" xr XT xr m m in in in in m in m m m oooooocooocooocooooooocoooScooooocooooooooooocococooooooocoooooooooooZ' CMCMCMCMCMCMCMCMCMCMCMCMCMSjCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM aaaaaaaaaaaao.^Q .o.aaaaaaaaQ .aaaaaaaaaa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0)0>NCM^fO^, (M(D(,)< 0 3 O ( 0 S 3 5 T-OCMCNO'<-OC\jOT-OOOOOOOOO'r-T-;OOOOOCSJ-<-OOC0 OO. OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

0 0 ^,in'JlOCM^NU)(M^,lfl(D(O(D(O(OinNlO(DIO'i-^,in

OiCO£iJ2cMincO°CMincOCM Tf CD 00 CM O CM

o)oia)O)oo)O)O)OOQO)ONS0S0(co)O)O)ooo)(DO)O)O)O)eqsqoqo)qinominooinooininoooinooooooinoinoinoinoooooino 0000-1-000 OO^OOOOOOOOOOOOOOOOOO

inoininoomooininoooinooooooinotnoinoinoooooino O t-OOO t-O t-O t-OOCOCOCOCO^I-'^-t- t- t- t- t-COt-O t-OC vIOOOOOOO 00000000000000000000000000000000000 oxooiroooooioooNoiO't^n^cMCMWcowsoonoorooooKDTfoooroo rm -(\|rrT-(\|T-T-N rrrT-T-i-rm -rrT-rrrrr(M C '((M r(\|

1- CM 1- O CM NOrtr-OIOCONCDCOCOCMCMCMncMSCM CM CD O O O

(OT-(OIOSCOT-NT-NT-(Oin coooi^T-omi-r-oeoco t- nsooocococdcdcd NO)N(OW00O)00O)0OO)NCO fflOOCOOlOCDCDfflOSOO OlCOOONNCOSOlOlO) ooooooooociooo 0 ^ ^ 0 0 - ^ 0 0 0 - ^ 0 0 0 0 0 0 0 0 0 0 0 0

cMoiNincosffinffincncMio -coonoiomofflOM N OlCOCOONNM-tf-^'t CMOCMCOrrOrOrOCMW OOO-I-OOCOCOOOCM-J- O t- t-COCMt-CMOOO OOOOOOOOOOOOO 000000000000 0000000000

OOt-COIOOO t-O t-O t-OOIO c m c o c o o t - c o i o -m- t- cocooj t-OOCOOOCDCOCMCMCM ■»— CMt- t-CM^- CMCMCMCMCMt— t—CMCMCMCMCMCMt- t-CMCMi- t- CMCMCMt- t- t- t-CMCMCM

o lOCMlOCOCO^tCMCOCMCOCMlOCOt— OOCOCMOCOCDCMOCO-cf cM nnM ntm ’-r-T- ttOOT-CCS'-CO'-NT-caONrSTfN M-COOM--cfONSNT-COi-T--crcOT-CO OOfflOOlNfflOlOOfflOlCOOOOfflOlOlfflO) 03SO0)C0O0)0)0)0)C00)C0C0N0)C0 OOv-OOOOOOOOO'f-OOOOO dd-^dd-r^ddddddddddo

COCOOO)CMCOOJCOaiCOO>COOCOO>COCOCO (DCMOCDCDOCOCOCOO)COO)0)CDCMO)CO t— t— O O C M O O t— O O t — -r- OOOOOO t-CMOO t-OOOOO t-O t- t-CMO t- 000000000000000000 ddddddddddddddddo

S03CM0)IDT-0)C0®T-(DC0CMi-0)r-OT- NinCMOSCMT-i-i-0)000>(DSlO(5)CD CMCMCOCMCMCOCMCMCMCOCMCMCOCOCMCOCOCOCMCMCOCOCMCOCOCOCOCMCMCMCMCMCMCMCM

in'fonNT-n'jnT-io^OT-OT-cMi- insocMinoT-i-T-n'fcocDifisnt

OTf^-OOTfOO-^CDCMOTfCDOOOOOCDO-^ TfCMCMOOOCOOOCOCDCDOOOCOCM^rM-O 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 00) 0) 0) 00) ooooooooooooooooo dddodddodddd-t^ood-r-'o dddd-r-dddddd-r^dddd-^

OCOCOCMCDCMCD^roOOCO-crOCSICM^rOCD COCOOOCMOCMCMCM-g-TrCMOCMOOCDCOO 1 - O O O O O O O O t-OOOOOOOO ooooooooooooooooo dddddddddddddddddo ddddddddddddddddo

insso)so)scofflioscooo)(j)coos t'-'-COCOOOOOO CO CO O O O CD h- Is- o

ID CO CO t- CO CO CM M- in CO CM O NOCOCO^-'t'-OfT-T-CMCM ■m- co co o

0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 ° ° CM CM m 000 0 T- ^NOCOCDOlCMini-^'OOllMin'r^-NOCODOlinOOr-o co co o) cm m •M- O CT) CM in s o 00 in im o CO cm in co cd o> m M- h~ ^ CM CO O) m m w co co co 00 co co co >cj- -^r in m co co cd n- c- 00 co o CT> CT)- T~ T— T— sssNNNNSNSNMomininioinmininininininininin m m i , , 1 m1 in* in* in* COOOCOOOOOCOCOCOOOCOCOOOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO CO CO £ CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM..-,CM CM co co co co CM CM CM CM aaaaaaao.aaaaaaaaaaaaQLaaaaaaaao. a a a a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. uo!SS!LUJ0d jnoLjijM pajiqiLiojd uoqonpojdaj Jeqpnj j 0umo jqBuAdoo 0L|j ]o uo!ss|UJj 0d ifljM p 0onpcud 0y 2520 4 01 08 0 2 .0 .0 2 00 10 0 0 .0 .0 4 0.11 42 0.04 45 5 1.00 2 0.00 1.00 20 0.00 20 0 1.00 0 0.00 0.96 23 0.04 22 0 1.00 1 0.00 0.81 32 0.19 26 0 6 0.84 0.16 0.94 0.06 42 47 8 3 p245_280 p245_250 ■c3"a_a _0' 0 ‘a'C3"0_a"CJ‘0'0 0.09 43 4 1.00 0.00 20 T 0 3 1.00 '0 0.00 '0 23 '0 0 'a 0.97 'a 0.03 'a 31 " 1 0 'a 1.00 '0 0.00 'a 50 0 p245_220 I I j"1 j011 |'-n j01 j01 j01 or or cji or (cn (cn (ot cn or tn (cn (or (or (oror oior .orcn ,cn (cn .Or (or ,Or (or or<•" or <■" or <■« Or rn uWMWIO-iOOOO i o i o i o i o o o o (D¥l®mcotooocoaiNiNi moo(x,'l>J>l^ , . _. ® (J)®(,l0,t,,^_. w. w. w. ,- ^ *,_ “V 'co 'co 'co OM^->ai(00)uo N^-iQoonocoaiwo-Ni o o o o o o o o o ooooooooooo oooooooooooo

or or co co CDN) Ji ro (D M Or CO NT CO CO CO CO -». CO

^4i.^».^.4i.Ji.Ji.4a>4i.COCO-t>.COCOCOCOCO->.COCOCO-ti.4i.-t^-ti.COCO^.^^.ik-N AWW0rJkN)^0)-iSN-i00ai^-‘ 034^01-^00W0)O-^S(D-‘ -i's|(0M

oopppooooooooooooooooooooooooooo io^O)OMO)N>c»coa)0)a)jicoiv)o)^Moo)A^oooioo)N)a)(»o)ioo)^■^j-i-k^^b^Niki^M wcoiow'-iuioM ^bM ^ioio^^bb^

popppppppppopopppoppppooppppooop arboboaabriaobocobo^^bo^-vibraj'oiDo-vj'O'Nibocobobo^'oboioococobo oiai^ocsjiOoioiojiikiooMcoioorcDO^cncnioooo^ooioM^ai^

or m co -i CO NJ OrMOOO^j3IOO)j3oCO

NCOMCOCOIOOCOCOIOIONIO^MMIOIOCOCOCOrOCOCOIOMIOCOIOIOION) 0)O(0-ia(0-iJO000)UfflNl(J)(0fflO-‘ O-‘ S O W ^ -‘ OO0)OMIS 00000000000000000000000000000000 ^ o o o o o o o o ^ ^ K j ^ ^ ^ K i ’-».K->ooo-kooiococ«>o^-».o>c*>o (oai(ouci)couoo)ucooouscoo(ooooo)uo)o)oaijr>coo)coco ^ 0 pppppoopoppoooooooooooo-r-ooopoooo bbbbb(ob(obbbsboarbo-vibo^cob(ob)I^OO-»MOOC»)-‘ N-iM-N|^'J^JiOOrO)W.Ck-*C»)CO-i

NJ U^^^-»M O)CO-‘ .fc(3)UU(3)ON)0)oOtMCOIO-iO^.|iSOjM>IO

M NJ NJ M M -r M M N3 fO MMMMM m NJ N3 O CO CO CO NJ 'JOMCDMOO'IU nIUOO o —^ ro co co CO CD CO IO cn co

oooopooooppoooopooooppooopppooop UN|-v|vJ^(00)UJiSCT)U«0)0<00)COMCOUCDJkO-‘lilililiboM^o^io^^Mbbio^MbjbbbfflJwbAbcob SOO

pppppopppppppp^popppppp^ppo^opp^ 'jwcocoo)-i^>ia)w^M'j^o-i^>ia)-iNi-rO)ocDcoooio-iOObocobobococo-^ibocobo-vjcobo-^joco^cjr-vjcobococoocobo-viobrco’-vjca

fO M NOOOIvlOojiOOICOOlOtCO-ilOIOOOjCOCOO co

iK co-1 (DOOCOOOCOOCOfflOO^COOO or ^ oi Nico oo co o o CO ~-J o

oooooooooooooopoopoooooopooopoop bab^bk)b^bbuubobi^M 4iCoio^b^^bbb.tk^bait cnocjroorocnoooocnooorcnororoorcncnoooocirororoorcn oooopoop^^op^^ppooooopoo^-^ppo-^pp bbiobbbocobbb'vibrbb^uiNUiS'ibobbbbb^aibbAUi oroorocnocnoooootooororororocnororoooocnororooror

W ^Q00C0N^0)jSUl0)0)00^oQQ0)(BC0i(0W COCO O Or CD NO

CO'JO^OW-‘Ji.COCO-C^-U-(i.-fc>.COJi.^J^.^COCOCOCOCOCOCOCOCOCO^.-t».^hOCOj5.-f^COCO-t>- O)OM-k-i(OCO^'Jvl(O0CDO)a)N)O)O)AOOSMSJO-l -i -l >l>l'JC0C0-‘ -*K)-‘ -»bbi-*o-‘ N)N)C0IDO-i-»->JA M-‘b inO) xr CDO) COxt in COo m-o O)in CMh- CO CMCOxT o CM co 1^. m-cn COo> LOCOCO oCO o o O o o O ^p- o o o o O T“ O O O o O o o o o o o O d ci d ci o d d d d d cid d d d d d d d d d d d o d d d o d d d d d d 00 CO 47 46 44 39 43 43 40 44 44 45 39 42 45 40 42 45 47 45 46 44 43 44 40 44 47 43 45 45 44 40 CO xt M- 5

nN'tcM«^focMNnoNT-a)(oinT-

o o in m in m o o o in o LOo o in in o O o O m o O m m O o o o o o O m m o o h*- O) h- o> h- cn o 00 00 o cn cn p 00 cn o cn p O O) p O cn 00 lOq q q q q cn 00 cn o d d d d d d d d d d d d d T“* d d d d T_ d d d o o in in in in o o o LOo in o o in m o o o o m o o in m o o o o o o o inin o o COo CMo CM o CM o o o o o o o o o o o IDo o o o o o o d d d d d d d d d d d d d d d d d d d d d d d d d o d d o o o d d d d

o XTcn in cn inco COr^o cn 00o h- cn o 00 cn cn h- o o o 00 h- o 20 20 20 20 20 20 20 20 CM r* 20 T* CM CMv CM r* CM CM V”T-

o o CO- m - in CMo XTCOo T“ CMo CO- o CMo o - o o - 00 X*“ o o o o o CMCO- o

o COh- h- o COt^. T“ o o o o o CO▼“ COo o COo O COCOo o CDCOCO T*“ o h- cn 0000 00 cn p cn 00 00 cn o h- o o p cn cn o> o p cn p O cn O) q q O) O) cn cn cn 00 o d d d d d d *r- d d d d d ’T" d d ci -1- d T“ d d d o d d d d o xr co COCOo> o cn h- co cn o o o o o •M’ cn ■sr o o xT o o MT o o xT cn cn co o COo o o o o o COo o o O o o o o O o o 3 o o o o O O o o o d d d d d d d d d d d d d d d d d d ci d d d d d d d d d d d d d d d d

CO CO cn COCO CO CM CM COCMCO CM CM CM 20 20 23 23 2 2 20 20 23 23 23 2 2 2 2 20 CMCMCMr * CM CMCM CMCMCM CMCM CM CM CM 23 CMCMCM 23 CM t^T-COCOCOCMOCMM-COCMOr^OOOT-CMx-OOx-OOx-T-OOT-x-x-CMCMCOO CM

CO'M’ T ~ M1CMXT 00 00 o 00 o 'M- T— r * CO COin xr 00 T— o o o oo h- M1 h- h- 00 0000 00 cn h- cn cn h- h-

COCOcn cn COoo COcn CMCMcn o cnCOo COcn cn h»CO00 m cn COCOcn o o o co

00 CO CMCO00 CM h- COCMCM oo h- T“ 30 30 30 26 26 30 2 0 29 27 28 27 29 25 29 29 29 32 29 CM CM 2 5 COCMCMCO CM COCO CM COCMCOCO

x r in CM cn T“ T~ xTinCOCOCM cn CMCOIs*- N- COO CO o CMCO co T“ CM 00 CO in T—O O o ■sr CO in r *

CMo ■M- 00 xT O CO 00 O CMO CO o CO O T CO CO CO CMO CO CO oo OO CO CM•M- o CO xr CO CO cn 00 oo O) 00 00 O) 00 CO O) cn O cn cn cn o O) O) cn 00 cn O cn cn oo 00 oo 00 cn O) o cn cn cn o d d ci ci o d o d d ci d T- d d d T“ ci ci d d d d d o d d d d ci X* d d d d

CO 00 o CO CMCO o CMO 00 o xT o xr o CO xr xT 00 o xr xr CMCOCM 00 CO O xT CO 'ST xT o V CMo X— T—x—o o o o o o o o T“ o o o o r * o o O o o O O d d o ci o d O d d ci d d d d d ci o ci d d d d d d ci d d d d O ci d d d d

h** 00 00 00 50 50 50 44 42 45 45 48 48 44 46 50 47 44 46 47 48 43 44 40 43 45 48 42 47 48 43 46 47 xT M* 48

CO O) (0(0

o o o O o o O o O O o O o O o o o o o o o o o O o o o O o o o CO cn CM in 00 'M- o CO CM CO cn CO T—xr o CM CO x- CO CO xt xt xTm m m COCOh- cn cn 00 o CO O) CMm 00 h- CO COcn § ° 1 1 T- T“ in 1 i i 1 1 i ■ i 1 1 I i I^1i*1 1 ^11 *11 "'•‘I 1 “>l1i 1 1 1 *°li ®l i ^11 1 1 i °°l °°l 051 T- T" T— T*“ r * T- T-‘ T-1 I I in in in in in in in in in m m m in LO in xr xr xr xt x r xr xr xr in m in In In in in in In In In In in LO LO LO £ |P In In CM CM CM CMCMCMCMCMCMCMCMCMCM CMCMCMCMCM CM CM CM CM CM CM CM CM CM CM CM CM CM Q. Q_ l CL CL CL Q.Q. Q. Q. Q. Q. Q. Q. Q. Q. Q_ Q. Q. Q. Cl Q. Q.Q. Q. C Q. CL CL Q. Q. Q_2.<2. <2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CN o o o o CO o Oi CO CD o> CMV* £ T“ in X— 05 in CN CO CO 05 05 05 m CN CMCN o O o CO CO CO o o CMT—CO V T— X—o o o o o o o x —o o o o O o o O ci d d d d d d d d d d d o d d d d d o d d d o d d d d o d d d CO CO CO oo CM oo CO 43 40 42 45 42 44 46 46 47 43 43 35 42 40 46 44 42 42 42 40 42 27 43 42 47 46 43 CO CO CO CO CO co

o CM m X— T“ <*"* CMo KT

o o o O in m o O in m o o o o o o o in m o o m o o o o o in in m m in in in o a> o p O h- CO o O) O) 0 0 N- o> a o O) 0 0 o> 05 q o 05 o p o q q 05 05 05 05 o> 0 0 0 0 h- T~ T— T“ ci d d d d d d d o d o o d d o T_: T“ T_ d d d o d o d o o o o o in in o o m in o o o o o o o in in o o m o o o o o m m in m m m m o o o o CMt- o o T-* oo o T“ o o o o o o o o o o o o o o o co ci o ocidddddoddoo o o o d d o d d o o d d o d o o o d d o d

tooooinsotoo) MfCOOJOOOIDiaOlOlOOOlOOOOOOilJKJlOlfflNSt T-(MCMNT-T-Ni-r- rri-T-NrT-T-i-r(MNr(M(M(MNfi|ri-rrrrrT-

NOOOlOnOCMr-niONOION'tNT-T-OO o o o o o co co to

y — T— x — x — CO X— o COo CO o o O CO r- o x —o to xt o CO 00 CO t^ CO x— fx. o CO CO CN X—in 05 05 05 o 05 o 05 05 q o o 05 oo 05 q 05 q 05 r^ q 05 05 05 00 05 05 00 q 05 00 CN 05 CO oo o o d T-’ o T"“ o o T—* x - ‘ T—d o d 1 —: o t —; d o o o o o o d o o X“ o o o o o o

05xt 05o xt o 05 xt o o o xt co 05o 05o xt COo xt 05CN■O'coxt 05co o Xtr>~oo 05m co o o o o o o o o o o o o x — o o o o o CNo o o CNo X— o o X— o Ox—r~-o co X— o o d o d d d d d d d d d d d d o d d d d o d d d d o d d d o o o d o

T-CNT-OOCNCOT-CNCOCOCOCNOx-COx-OOCNh~COCNx-COCNOCNx-OCOCN05 t- in o CNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNx-CNCNCNx- cNCNCNCNCNCNCNt- lOCN T- CM

CO

CNCN O v- O CN OOOx-COCNOCNOx-COOr-CNW CO (ncoot - n-^ cnooco CN

00 xt h- T” 00 oo T-* h- xt o t - x — fx- o m o o h~ o o xt fx- o Xt 00 xt 05 CO 05 05 Oi o> 00 05 00 Oi 05 05 o a> O) 05 CO 05 05 05 o h- q o 05 o q 05 05 05 o 05 00 rx- 05 o o d Od d d o o d o o d d o o o o o X—d o X—o o d x“ o o d d

COCOCOco o>o>co 05 co O)to COo o>COCO05 CO05co Om o o co o OCOCO05 OCOCOCNCO o o o o o x—O o o o o o o o o o o o OCNo o o o o o o o o o CNo o o o d d d d o d d d d d d d d d d d d d o d d d d d o d d d d ci d d

x—CO X— 00 o CNO i 05 CN CNCN CNCNo 05 CN 30 30 29 29 29 28 29 30

co co 29 24 30 CM CN co co co CM co CNCOco co co co co co co co CNco 27 25 30

CN co COCO CN COCN co CN x— x— (X- - - co - o - co o oo o o - o o CN co o CNm CN

xt COX t o o o oo COCOM- o oo oo o oo o xt 00 CO00 oo o COo o CN00 CNXt CO00 o co 00 05 G) 05 05 o o 05 05 05 Oi o 05 05 p 05 o 05 05 05 05 05 o 05 q o 05 05 05 05 05 00 s 05 05 05 X— T“ d x—X— o d o o T~ d o o d d o o T_ o o d o T_ o d o o Oo d d o d o

COM- COo o o CNxt COOCNCNo CNo COCNX t CNCNo Xt OOoo CNoo COX t CNCOo CNCN o Oo o o o o o o o o o o Oo o Oo Oo o o o Oo o o o o T~ o XT- o O o o d d o o o o o d o d o d d d d d d d d o o d o d d d d d d o d d d

oo o o o oo 50 50 50 50 50 48 47 45 49 48 47 49 49 49 49 48 49 49 48 46 49

47 LO 47 47 44 47 xt in m 46 xt 45 49 49

COCNCOinOOx-CNCNCOOx-T-Ox-OCO CN OCNOOxtx-xtCOCNCOCOlO

o o o O O O o O o OO O o o o o o o "S’ CO ooooooooooooooooo [X- O Xt h - CO CN 00 x— x t |x- IOCOt-M-COCOOCNOI^OCOCOOCNOOO CN xt r* T“ * | ° ° | °°l M l1 1® l1 ® ,1 1 1 1 1® l1" l1 " l " l ” 1 " l ®l ^ ^ rol * 1 °°l 1^1T— T“ r * I I I I I Icococococooooooocooooocococooooooo in in CO CO CO CO CO CO CO s s CO CO CD COCOGOOOCOOOOOOOCOCOCOCOOOOOOOCOCO CN CN CN CN CN CN CN CN CN CN CNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCN CN CN CL CL CL Q. a. CL CL CL CL CN CN CL o. a . Q. Q. Q. a. CL CLaaaaaaaaaaaaaaaaa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. uo!SS!LUJ0d jnoLjijM pajiqiijojcl uoqonpojdaj jaqpnj j 0umo }i|6LiAdoo 0L|j ]o uo!SS|UJj0d ifljM p0onpojd 0y

O O U “O "D U 0.02 U 46 U 0.00 47 1U O 0 0.95 U 0.05 O 0.75 *D 19 0.25 "D 1 15 U 1.00U 5 0.00 U 1.00 U 23 0.00 "O 0 23O 1.00T3“DT3*0-a-DTD‘DTOT3*OT3 k 0 > 0.00 k 0.97^ 32k 0.031 k\ 0 31 k 0.70 K 1 \ k 0.30 \ 0.92 k> 0.08 35 k \ k\ 46 kk 15 k\ p288_970 4 p288_940 p288_910

.o o o .o o o .0.0.0.0.0.0.0.0.0.0 .0.0,»I00I00J » ,»,®,® I00 i° i° L L L I I I L I . J v|M>l'IO)0)0)OlOiWkkk*UUWN)M-iTOmmAUMMlnnnn (OQUOOvlA-^OOIOOUO 00000000000000000000 000000000000

to W M N> O 0.02 46 1 M 0.85 U 0.15 O 17 OUMIOOO 3 1.00 0.00 23 0 O 1.00 NJ 0.00 32 0 0.88 M 0.12 O M 44 Ji 6

o-i'jaK otocootoroto OOvlOtDOslOOOOOO (0000(0 (0 0 (0000000)

00000000000 p p p p o o p p o p 00000000000 Mjobbbbbbbo 0 0 0 0 0 0 0 0 0 0 bbbbbbbbbbo □ ooat^NN^oioaiM knoM oaikkoo N)O-kN)MON3

0000000-^000 P P r 1, P -*■ 0 P P .-*■ t * O Jppp^pp^O p bobobbbtobotobb btobtobbbtobb bbtotoiobioioobto oNkoiooooGioaiiooo a> ^ O 00 O ^ O) <31 O O 0000)00000000)00)10

MIOCO-kNlfflJUOM0 0 0 0 0 )~ -J (J )-^0 0 - ^ 0

tOUIOUUIOMUIOMWWWIOUIOIOUIOUUIOUUIONJIOWWtiJUW (DOS-‘ 00)0)M!0(»-‘ 00(D->OlO)-‘(OIOOtO(OIOO)OlO-‘IOIO-iM

popppppppppppppoooopppppoooooppp bb^bb^Mobbbbbbbio^bbbbbbb^iojbbbbb (00)0IW(J)UI0OlDW0)0)0)(0UN)(0Ot£)O0)(0OOl0l00)(j)OO0)O

0 0 0 0 0 0 0 -‘'0 0 0 0 0 0 0 0 0 0 0 -‘-00-‘-->-0000-‘--‘-0->' totobotobffl^btobobtDfflbto^btDbbbtobbbo^biiobbbb -i^.kNAa)ooo-ioo>ikJi-»N(B-iNi-‘O k-‘00-va)^'ioo> io

NO o -‘ S -‘ N-‘ ON)N-J'OU.M0|kOOO-*ON^0)l0U^(i)S-‘ OOO

N)IO-*N)N)ION)IOtOMN)N)-^N)-^N)ION)N)N)N)fft-1 N)N)/T.N)-iN)N)IOI'0 WM0)l0-»MU-i-i(0UO(0-‘(0WWUI00)-i®>l-iO01O0)(0UUU

00000000000000000000000000000000 bbubbbbbbbbbbbbobbbbbbiobbkiliwbbbb OJkO^(0-^O(D(D^OW-^(0-^IOOOJ»-O(D-^0){0(0-t».WOJikOOO

-^■00000-»-000-^0000->-->--^pr»-p p p p p p p p p r^rJ-r^ bb^btotobbtobbbbiobobbbtobtoubibboioaisbbbb oa)oa)-j-a)o-^->-CT)0'vi(j)-^oooooa)o-^(CiJ».-j-~Nicn'vioo)ooo

CJ-iO-^O-^-^O-iOOOOONJ-J'-iOCnOOOOO-^OJJ^COOOON)

^ N - i N a ^ N ) j N M IO W (O (S3 10 N) (00(00(0(00(00000000(0(00(J1 O O O O O (O -vl (J) "4 O O O 0 0

00000000000000000000000000000000 bbbbbbbbbbbbbbjbbbk)bbbbbbbb^bbb^ cncnocnocnaiocnoooooocnaiocnooooocncnocnoooo

P P .-*■ P .-*■ P P .-*■ P .-*■ .-i .“ *■ r 1- .“ *■ P P P .“ *• P -*■ -*■ - k .-*■ .-*■ o 0 P P .-*■ .-*■ .-*■ P bbobbbbbbbbbbbbbboN bbbbbbbobooobbbb cncnocnocncnocnoooooocnuiocn ooooocncnocnoooo

cn 0 0 UtO)kU^OOOU10^N)O) OOOUU-MJl^U^I-k

N)(D0)0)N)-iWAW^SN)a)Wa)-^0)0)S0)0)>l'4N|AJiW-iU^OW

0 0 0 0 0 0 0 0 0 0 oooooooooopppppppopppp liliMMJjbbbbb -ibb^bbbbbbbbbbb-^bb-^b -^ -> i(« )0 )-^w(oo>(oa)o (0(n(D CN co 00 CM ■N- 03 o o o 03 CO T—CO o o o o CN CN o CD TT en V“ in 05 CO r - CO LO y~ CN TT CO ^— o CO o o O CM O O o o o o O O o o o o o O o O O T“ CN d d o d d d o d d d o d d d d d d d o o d o o o o d d d o d o d d d d

CN CO CO 37 40 42 45 42 41 47 46 4 6 47 44 44 47 47

42 47 CO 34 43 47 47 47 43

44 46 46 45 CO 44 45 41 40 42 c o

in o CO o o o CO o o o o T“ o CO CN 05 LO r". 05 CO LO CO Is- LO CM CO - CO - CM TT CO LO -

o LO O o O LO LO o LO o LO LO o o LO o o O o o o m o o o LO LO O o LO o o o o LO CO o> GO CT) Is- 00 00 o> o> 03 00 00 o p 03 o p 03 03 p o CT) 03 CO o 03 03 00 o 00 p CT) 05 05 00 •v t— o o d d d d d d d d d d d d d d d d d d T_ d d d d d d

o LO o o o LO LO o LO o LO LO o o LO o o o o o o m o o o LO LO o o LO o o o o LO CM o CM CO o o o o o o T“ o o o N- o O O CN o o T— d d d d d d d d d d d d o d o o d d d d d o d o o d d o d d o d o o d

CO oo h- h- 00 Is- 03 CD CD o V 18 17 19 1 2 19 19 16 17 18 18 17 18 16 14 19 18 T*“ 2 0 2 0 2 0 V T* r* 2 0 2 0 2 0 2 0 t— 2 0 CN

t - o o o o o o o o CO o CO ■M" CN CO CO CO CM - CM CO CO - CM CM - CM c o - - CM CM CM

CO O r- NT 00 CO Is- CO O Is- Is- o 00 Is- CO o O CO o o o o CO o CO CO Is- O Is- Is- Is- 03o o> h~ Is - CO 00 00 03 O 00 00 C3 Is- 00 03 o O 03 03 p o p o 05 p 03 03 03 00 o o O 00 00 00 d d d d d d d d d d d d d T“ d d T“ d T“ d d d d o d d d

m- o o> CO CM O) h* co o CO CO o CM CO o O XT 03 o o o o ■N- o M- 03 CO c o o CO co c o o o o CN CM CO T—T“ o o o CM o o o o o o o o o O o o O O o d d d d d d d o d d d d d d d d d d d d d d d d d d d d d d d d d d d

T“ r" 00 CM CO CO 00 CM CO CO CM CO c o CN CO CM CO

▼—T” 19 2 2 2 0 2 0 2 0 23 23 2 2 2 0 2 0 2 0 2 0 2 0 23 CM 2 0 CM CM CM CM CM CM CM CM CM CN CN CM CM CM CM in T“ O T— T— o CM co LO O) Kf CO o CO CO LO CO - o o CM o o o o o -- CM CO c o o CO CO CO CN

xr x r o •M- M- T“ CO 00 Is- Is- o Is- LO CO CN CN CN m T—T—T~ x r CO CO CO 00 a> 00 o 03 o> 03 00 03 O) 00 03 00 03 03 o 03 CO 03 Is- LO r» c- h- 00 0 0 03 03 o o m LO 00 03 CO d o d d d d d d d d d d d d d d d d d o o d d d d d o d d d d d d

CO CO CO o CO o> CD CO CO 03 c o CO CO CO CO o CO 03 03 LO oo oo oo in 0 3 03 03 CO c o t'- i^. CO 03 c o LO o o o o o r * o o o o O o o o CM CN CN CN CN T~* T- o o "N" V“ o d d d o d d d d d d d d d d d d d d d d d o o o d d d d d d o d o d d

CN o> 0 0 CN 03 CD CO 00 14 17 17 30 30 30 30 30 27 30 29 28 26 23 23 23 26 29 00 CM 27 CM oo 0 7 o o CO CM 24 24 26 CN 27 29 CM

CO M' CM LO o CN CO CN in CN CO CN ^r o CO CO CO 03 03 05 00 CO CO cn CN 'S’ m CO 15 T“ -- - 15

o CD CO oo CN o O CO CO 00 00 o CO CO o o CO CM c o o CM 00 CO xj- o CO CD o o o CN M- CM CO h- 00 CO r - 00 00 o> CT) 00 00 05 0 3 03 05 o o 05 03 05 03 03 03 1^ 0 3 00 Is- CD co 05 0 5 05 03 00

d o d d d d o o d d d d d d d T_ d d d d o d d d d d o o d d d d d d

o n- CN oo o o ■N- ■N- CM CM o M- CO o o N" 0 0 CN o 00 CO CN M- CO o o o o oo CO oo CM CSI CN CM CN O O T“ T“ o o o o o o o o t — o o CN o CO s T— T“ X— CN o d o d o o d o o d d d d d d d o o o d d d d d o d d d o o d d d o d d

CO co CD 35 50 50 39 36 48 46 45 46 47 48 40 43 44 40 40 44 44 45 48 49 42 co 48 48 47 48 CO 43 45 45 45 CO 47

o CN o o r - LO e'­ ■"sf h- CO CM CM CO CO LO CN CO CM o o CN in CO CN 0 0 i"- in m m CO 03 T*“ V 14

O OOO o O ooooooooooooo oooooooooooooooo CM LO 00T—Xj* Is- oniorocMinoo'jono) m co OfO(DO)CN|lOCOT-TfNOCO(DO)CMin oooori-rcM nnn^^ T-T-T-T-CMCMCMCOCOCO^rM-^M’ LnLO °° l ® l °°l 0>," l 0)| O OO o o o o' o' o' o' o' o ' 0 1 o 'o ' o' o' o' o' o' o' o' CM CM CM CM CM CM o'o'o'o'o'o'o'o'o'o'o'o'o 1 CM CM CM CM CM CM CNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCN Q. Q. Q.a. Q_ a. aaaaaaaaaaaaa aaaaaaaaaaaaoaaa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o CMCMo h- CMT”03 T_ o o> COo CD COCD 03 CM03 CMT—CD o> T—OOTfTtTtfOOlT-OOCO o O o o o T—o T“*o o x—o o T—CMo o o o o o o OOOOOIOO^-COCN o d d o d d o d o o d d d o o o d d o d d o d d o d d d d d d d d d o

SIOfDSOlCDNtOCMNCOT-NTfi-mMtOmifiCDCM^nCNNN inmintMPXMO)^ ■^'Tj-N‘N'coN"N"N''N'TfN 'N ‘ ''f'M'M'coN"''!fN''N"N"'N'N"N"',fN'N' M-'*f''fCNM-''fCNCO

CM ID CO ID ID CO XJ- IDCO■M- IDo o CMCMCM M- ID o - - o CO- 'M’ o CDo CD - CM CM 18 T“

o o o o IDo o o IDo o o IDIDIDIDo IDo o o IDo O o IDo O IDO ID IDIDo o o>o> o> o> 03 o> o> 03 0 0 o o> p 0 0 o> O) 03 o o> p p o a>p O p o> p O) O) o> o> 03p o T" d d d d d d d d d d d d d d

o o o o ID o o o ID o o o ID ID ID ID o ID o o o ID o o o ID o o ID o LD LD LD o o X” o o o o o o o o o o o o o o o o o ID X—o o o o o d d d ddddddddodooodd d d d o o d d d o d d o o o d o o

00 00 00 o o 03 03 o o o 03 00 03 o 19 19 18 19 19 19 18 18 17 18 17 19 19 18 18 2 0 2 0 2 0 X"“ CM CM T“ T—CM 2 0 2 0 2 0 CM CM X“ CM

CMCMCMCM- CMCMCMCO o CMo CO --- o - o o o T“ o o o - o CMT*" CM X“ r* r* o o

CO CO CD CO CD o CO CO o Is- CO M- CO r* o T—CD CO 1^- X" CO o o o o o 1^ CO o ID o 0 0 0 0 O) 03 0 0 03 O) p 03 03 p 03 0 0 0 0 r^* O) 03 03 o 03 03 0 0 0 0 03 03 o o p p p 0 0 03 p CD p d d d d d d d d d ^r* d d d d d d d d d d d d d d d d T“

Is- Is- O’ 03 h- M* 03 o ^r Xj- o 03 co h- CD 03 O’ 03 o 03 xr Is- CO 03 M* o o o o o CO o LD o T—X“ o o o o o o o o o X” T“ CMo o o o o o o o o o o o o o o CO o d d d d d ddddddddddddddddddddddd d d d d d d d

03 03 CM X“ CO CN o h - CM CO r * CM CO CO CO CO CM CO in CO 19 19 19 2 2 2 0 2 2 23 2 2 X“ CM CM CM CM CM CM CM r * CM CM CM CM CM CM CM CM CM 23 CM CM 2 0 CM CM T— CM CD M* XJ-- CM M- - CM o -- o CM CO 'M’ CD CM - CM o CM - M- CO CM - o o o o o CO - o CO o cm

CM T“ T" X~ 00 xr x—r- h - LD CM 00 M* o o M- h~ h - o o o o [■- m Is- 03 00 03 00 00 03 0 5 03 03 03 0 3 00 r^ h - 0 3 00 03 03 03 03 o 03 C5 05 05 0 3 0 3 o o o p 05 r^- dddddddddddd d d d d d d d d d d r- d o d d d 'rJ o o

00 03 03 03 03 03 CM CO 05 03 03 CO CO CD LD 00 0 3 co 0 3 03 CD 03 o 03 o COCO CD CO o o o o CO m CM o o CM o o o o o o X“ CM CM o o o o o o o o o o o o o o o o o CM o o d d d d d d d d d o d d o o d d o o o o o o o o o d o o o o d d d

rtfflmfflmminofflfflO)T-T-NTtnajooroffloro(MO!NOT-OT-tMcM(M(MT-^ CNCNCNCNCNCNCNCOCNCMCNCOCOCNCNCNCNCNCNCNCOCNOOCNCOCOCOCOOOCOCOCOCOCOCN

05CO CO CO CO CO CM CO CO CO T_ m 0005 co M" CO co CM CO o co o CM T— CM T_ o o o o 00

0000o ■X o 0000o If CM M" o CM oo M" oo o M" CO 00CO CM o CO 00 CO o 00 CM 00X CM M" 00CO CO 0000000500h- 00 1^ oo 000500 oo 00 0505 05 05050505o 0505 05 05 00 00CO 0505oo 05 d o o o o o o o d o o o d d d d o o o o o o o o o d d d d o o o o o

CM CM o CO o CM CM o CO oo CO o oo CM CO CM o CO CM M- 00o M" CM M- o CM 00 CM CO oo CO CM M" co CM T—T—CN CM CM o o o o o o o o o CM 't—o co o o T—o o d d d o d d d d d o d o d o o o d o d o d o d o o o d d d o o o d d

^ ^ o cm in ^ Nr-(\|ini-^-NO)in NoorocotoocoroooinD M"CM CD "X 00 co m- m- ^ 'a- m- co'O-^TfTi-Ti-Tf'o-Ta- 'O-'O-'O-'O-'O-LnTj-Ti-coTj-Tr •f n m ^

CO o o CO CM 00 T—CO oo in CO X— 03 0 0 LD03 CO ID CO CMCM -M- O CM ID G) CO T}" CO CD CM 0 O CO O O O O O O CO O f—i f—i i~i /—s «-> o o o o o o o o o o o o o o 0( 0(DO)(MOr^SOnS 2S 2°°°°00 oo T—M" C'- o co CD 03 CMID 0 0 f- CO col ®l ^ 1 • ^ 1 1 °°l °°l ° 5, ®l o o o 1 o o o o o o o o o o 1 o 1 0 1 O1 O1 O1 O1 O1 O1 O1 O1 O1 o ' CNJ* cs<1 CM* CM1 CM* CM* CM* CM* CM* CM* T—T“ T* X“ X“ T“ T“ X“ ^— T“ CMCN CMCMCMCMCMCMCMCMCMCMCN CM ° ° ° ° ° “ °°°°°CMCMCMCMCMCM(M(NI(NCM Q.Q. Q.Q. CL CMCMCMCMCMCMCMCMCMCMCM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a> T“*05 CN 03 CMco 03 CO CO in CMo COCN co 05 co T“in o CO O o 'N* CNCN T“* o O r- CM d d d d o d d d o d d d o d d d d d d d o o

CO CN 0 0 CO oo v— 37 35 37 27 46 39 24 23 40 46 46 44 co 42 43 CO CO 'N’ CN 5 CO MT

05 OO in xf in 03 T—CO CO CMo CO e'­ 03 o CD 05 o CD 24 CN - CM- V

o o o o O o in o o o o in o en o o m o in o m O o h- o 03 03 03 h- q 03 o 05 03 o q q oo o I-' o 03 q d d d d d d *T“ d d d d "~ d T—d o o o o o o in o o o o in o o o o in o in o m o o CO CO o T—T—o CO o T—o o T”o o o o CMo o o O d d d d d d o d d d d d o o d o o d o d o

■*r •n-o 0 0 0 0 03 0 0 05 0 0 e'­ o m 03 2 0 2 0 2 0 2 0 2 0 2 0 T* T-CMv“T~ v— V" 2 0 2 0 CM r*

o CO CO o CN CN - CO o CN o - CN o o o en o in o - o

o CO CO M" CO o o o o CD o CD oo o o o CO o o O) 0 0 03 0 0 o o o 03 q 05 h- 05 f'- q 05 q q 03 o 03 o o o O o o o o o o o d T_' o o ^r h- CO 03 N-o o o 03 o ■M-o ■M-CMo CD o o o 03 o o T“CMO T“o o o o o o CO O CMo o o o o o O ci d d d d d d d d d d o d o d d o o o d d d

CO CN O) h- 03 CO CO CO T“ CMCOCMoo CO co co CN CO T“

CN CN T~^—CN T”CN CN CN CN 23 CM CM CN CMCMCMCN CMCN

o CO o o O o h- T“ o o - CN CN in o CM o - CN 217

h- 03 h- in o XT 0 0 0 0 o XJ-M" o ■N- CM■M- o o O 03 0 0 in CD 03 0 0 o 03 CO 0 0 q 03 05 q 03 i'- co q 03 o q O d d o Odd ddd dd ddd d CO CO 05 CO 03 in o CO co co o CO CD o CO oo CD o CO o o o 'N’ o o CN o O T“ T—o o O o o CMT" o o o o ci d d d d d d d d d d o d d d d d o d d o d

V* 03 05 CN o CMo o CMo co CM CMCN 24 27 CO T“ CMCO 26 CO CO 28 28 CO CO co co CO CM 27 COCO co CO

CO T“ lO T“ CO CO co o CN ■N- M" o CNCMo CN CD in o - o o

xr CO xf o CO o CO CN CO CD CO Tf CO CO CO CD o 0 0 Mr- oo o O) 05 03 05 05 05 03 03 CO 05 CD 03 05 0 0 03 05 o 05 05 05 03 ci d d d d d d d d o d d d d o d o t—d d o d

CO CMCO o ^r o CMCO 0 0 M" CMCO CMCMCN o CMCO CMo o o o CN o o o CO o o o o T“ o o o o o o T— d o d o d o o d o d d o o o o d o o o d o o

0 0 CO o 47 49 47 45 45 49 47 46 CO CO 48 49 47 49 44 49 48 in 49 47 49 45

cOT-ooin^iOT-coTrtrcviT-coT-co-i-cNOT-roT-m

o o o o O O o O O O o O O o O o o o o o o o CMin 00 T™ -cf e- o CO COCMm oo v-* M- r^ o n to s n o o) in O O O CM CO CO CO * 1 I w . "l ^1 "l ®l *1 OT| ®l°*l '"l '"l '"l '"l *~\ '"l ^1 CMCMCMCM CMCMCMCMCMCMCMCMCMCMCMCM CM CM CM CM CM CM CMCMCMCMCM CMCMCMCMCMCMCMCMCMCMCM CM CM CM CM CM CM CMCMCMCMCMCMCMCM CMCMCMCMCMCMCMCM CM CM CM CM CM CM Q. a. a. Q. Ol a. Q. CL CL a. CL CL a. CL CL q. a o. a a a a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. - 39 39 43 46 40 43 48 43 41 42 42 48 48 47 47 45 47 29 44 44 43 45 34 43 33 44 49 47 (n=49) 1 1 9 1 8 6 7 6 2 5 2 4 6 1 0 4 6 1 0 2 + 16 2 0 PP q 1 . 0 0 6 0.98 0 . 8 8 0.98 0.98 3 0.76 0.72 0.70 0.92 0.74 0.80 7 0.90 0 . 8 6 2 0.98 0.90 0.96 0.92 5 0.74 0 . 6 8 0.96 1 . 0 0 0.96 0.94 0.96 5 0.26 15 0 . 8 80.84 0 0.98 P 0 . 1 2 0 . 0 0 0 . 0 2 0 . 0 2 0 . 0 2 0.24 0.30 0.08 0.26 0 . 2 0 0 . 1 0 0.14 0.04 0 . 0 2 0 . 1 0 0.04 0.08 0.06 0.04 0.04 0.16 0.74 0 . 1 2 0 . 0 2 0 . 0 0 - 50 38 35 49 37 36 0.28 44 49 49 43 46 40 37 0.26 45 48 13 34 0.32 49 46 45 48 50 48 47 48 44 42 49 (n=50) 1 1 1 1 0 7 6 5 5 1 4 2 3 2 4 2 2 8 0 6 + 13 1 2 1 0 14 15 13 16 37 PL q 0 . 8 6 0.73 0.64 0.98 0.64 0.98 0.82 0.80 0.93 0.91 0.98 0.98 0.89 0.98 P 0.27 0.25 0.750.18 0.82 0.52 0.48 0.23 0.77 0 . 0 00 . 0 2 1 . 0 0 0.14 0.05 0.95 0.36 0.18 0 . 2 0 0.250.36 0.75 0 . 0 0 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 1 . 00.07 0 0.090.09 0.91 0 . 0 2 0 . 0 2 0 . 0 2 0.09 0.91 0 . 0 2 0 . 1 1 - 33 36 34 38 36 32 33 2 1 28 44 44 43 42 44 44 40 43 39 42 0.05 0.95 43 43 40 43 44 40 1 1 1 1 1 8 0 3 41 9 35 2 0 5 0 6 2 + 4 4 4 1 1 16 1 2 16 28 1 1 1 0 PIG (n=44) q 1 . 0 0 1 . 0 0 0.98 0.98 0 . 8 6 0 . 8 6 0.79 0 . 8 6 0 0.79 0.93 0.93 0.93 0 . 8 8 8 0.47 0.67 23 0 . 8 6 0.91 P 0.14 0.14 0 . 0 0 0 . 0 2 0 . 0 2 0 . 0 0 1 . 0 0 0 0.07 0.07 0 . 1 20 . 2 1 0 . 8 8 0 . 0 0 0.090.05 0.91 0.95 0.07 0 . 0 0 1 . 0 0 0.190.16 0.81 0.84 0 . 1 2 0 . 2 1 2 1 8 0.53 0 . 1 2 0 . 8 8 0.19 0.81 0 . 1 2 0 . 8 8 0.14 0.09 - 37 37 37 0.14 35 34 42 42 38 34 39 36 38 38 43 35 38 43 40 40 43 41 40 43 29 0.33 37 39 -43) 2 0 41 0.05 0.95 1 1 6 6 3 9 0 0 + 0 6 2 5 8 5 4 2 23 1 . 0 0 0 . 8 6 0.90 0.76 0.71 0.90 5 0.90 4 0 . 8 6 6 P q 0.33 0.670.05 0.95 0.14 0.05 0.95 3 0.19 0.810.19 0.81 0.05 0.95 0.05 0.95 7 0.05 0.95 9 0.05 0.95 0 . 1 0 0.19 0.81 0 . 0 0 1 . 0 0 0 0.05 0.95 5 0.48 0.520.19 0.810.24 0.29 14 0 . 1 0 0 . 1 0 - 14 15 0.29 0.71 19 17 16 0.24 0.76 3 1 1 17 15 19 19 2 0 2 0 2 1 2 1 0 . 0 0 18 0.14 21 0.00 1.00 8 2 1 0 . 0 0 1 . 0 0 2 0 1 1 2 0 1 2 0 1 1 1 2 0 3 18 7 0 0 0 0 6 5 + 4 17 2 4 3 0 21 0.00 1.00 6 2 4 2 1 0 q 1 . 0 0 0.93 0.98 0.98 0.98 0.98 0.96 0.89 0.87 0.98 0.98 0.57 0.87 0 .98 5 16 0 .98 0.98 0.98 0.98 P 0.07 0 . 0 2 0 . 0 2 0 . 0 0 0.06 0.94 4 17 0 . 0 2 0.04 0.96 0.19 0.81 0 . 0 2 0.04 0.060.09 0.94 0 0.91 . 1 1 0.13 0.00 1.00 1 20 0 . 0 2 0.00 1.00 0 21 0.00 1.00 0 . 0 2 0 . 0 2 0 . 0 2 0.43 0.13 0 . 0 2 0 . 0 2 0 . 0 2 - 52 0.04 0.96 53 53 52 53 53 54 52 51 44 54 53 54 53 53 53 48 53 53 53 46 0.15 0.85 1 1 1 1 1 1 1 0 3 7 47 1 1 1 2 5 49 0.09 0.91 4 50 0 2 2 6 0 + 8 1 0 23 31 ML (n=54) ML (n=21) NAT q 1 . 0 0 1 . 0 0 1 . 0 0 1 1 . 0 0 0.77 0.94 0.94 0.83 0.96 0.79 0.89 0.81 0.89 0.890.87 30.87 51 0.960.89 50.83 49 0.87 0.94 0.87 7 47 0.98 0.98 0.91 0.94 0.96 0.94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 39 38 38 28 30 35 31 38 42 42 45 45 49 45 40 43 41 87 41 7 5 44 4 4 45 8 4 6 11 11 38 10 11 14 11 21 1.00 5 44 0.92 6 43 0.84 0.86 13 36 0.74 0.700.94 13 8 36 41 0.86 0.94 17 32 0.92 18 31 0.94 0.98 0.74 6 43 0.98 0.90 0.90 130.78 36 19 1.00 0.84 14 35 1.00 8 41 0.70 10 39 0.72 0.82 18 0.78 0.96 0.840.92 4 0.96 0 0.90 0.940.98 50.94 44 80.92 41 0.98 9 0.96 0.08 0.10 0.14 0.22 0.14 0.06 0.16 0.30 0.28 0.22 0.10 0.02 0.02 0.04 0.16 0.08 0.04 0.00 0.04 37 0.26 37 0.26 35 0.30 50 0.00 47 42 45 47 0.06 47 0.06 42 0.16 50 0.00 41 0.18 49 0.02 50 47 0.06 42 48 45 0.10 48 47 0.06 1 49 0.02 5 7 43 8 4 46 8 8 5 9 3 0 2 13 13 1.00 0.75 0.77 11 39 0.82 0.770.68 7 3 43 0.77 4 46 0.08 0.750.95 3 0.82 15 35 0.80 0.61 14 36 0.70 0.77 11 39 0.800.77 1 5 45 0.930.89 3 0.52 1 49 0.82 40.95 46 2 0.08 48 0.93 0 0.77 0.09 0.91 0.23 0.25 0.75 0.05 0.00 0.18 0.20 0.34 0.66 0.18 0.23 0.25 0.05 0.950.07 0.93 0 0.05 0.95 2 0.11 0.48 0.23 0.18 0.05 3330 0.25 34 0.32 0.68 0.23 34 34 30 0.32 33 36 39 35 3134 0.30 0.23 36 35 0.20 0.80 3 23 44 34 36 38 0.14 0.86 1 49 3632 0.18 0.82 0.27 0.73 4 46 42 0.05 0.95 15 42 42 41 0.07 42 41 0.07 42 41 0 9 9 35 0.20 8 3 2 2 14 17 27 0.39 10 10 34 0.23 14 11 33 0.84 4 40 0.84 11 0.98 0.93 0.77 15 29 0.86 0.95 0.86 0.95 0.98 0.93 3 0.91 0.81 0.84 3 0.84 12 0.02 219 0.16 0.84 8 0.16 0.07 0.93 21 0.19 0.81 5 0.05 0.95 2 0.14 0.05 0.09 0.91 10 0.14 0.16 0.16 0.12 0.88 0.21 0.790.07 10 0.28 0.72 0.33 0.67 2 0.09 0.19 0.09 0.910.14 10 0.86 8 0.23 0.00 1.000.16 8 0.28 0.72 13 0.05 0.05 0.95 2 0.12 0.880.07 0.93 9 10 0.21 0.79 11 0.02 0.07 36 36 34 31 35 36 36 35 37 37 0.14 0.86 6 33 34 0.21 0.79 37 36 31 39 37 34 0.21 0.79 38 38 34 40 39 42 40 39 41 41 41 41 40 29 40 43 42 1 1 5 7 9 9 3 7 7 7 4 4 4 12 14 1.00 7 1.00 6 1.00 2 1.00 3 0.95 0.86 8 0.95 2 0.90 8 0.24 0.76 0.24 0.76 0.05 0.95 0.14 0.05 0.14 0.86 2 0.14 0.86 12 0.00 0.14 0.86 2 0.00 18 16 0.24 0.76 0 16 18 0.14 0.86 9 18 0.14 0.86 21 0.00 1.00 21 0.00 1.00 20 21 0.00 1.00 10 21 21 21 0.00 1.00 11 20 0.05 0.95 6 1 20 0.05 0.95 3 5 5 16 0 03 21 0.00 1.00 3 18 0 3 2 193 0.103 0.90 18 0 0 03 21 18 0.00 0 2 19 0.10 5 0 42 17 19 0.19 0.81 0.10 0.90 9 1.00 0.89 0.94 0.94 1 20 0.05 0.95 0.94 0.94 0.37 0.87 0.94 0.78 0.96 0.44 0.87 0.85 0.91 2 19 0.100.93 0.90 1 20 0.05 0.95 0.87 0.09 0.91 1 20 0.02 0.98 10.02 20 0.98 0.05 0.950.02 1 0.98 6 20 1 0.05 0.95 20 0.05 0.41 0.59 0.06 0.63 0.13 0.87 0.06 0.02 0.98 0.04 0.09 0.91 0.06 0.52 0.48 0.33 0.67 0.02 0.98 0.09 0.07 53 53 32 51 53 0.02 0.9853 1 20 0.05 0.9553 3 0.02 0.98 0 21 0.00 53 20 36 53 50 26 49 47 0.13 47 42 0.22 49 49 47 0.13 46 0.15 1 1 1 1 1 53 0.02 0.98 1 1 3 5 3 51 3 51 7 7 7 4 22 34 1.00 1.00 1.00 1.00 5 0.89 0.83 6 48 0.11 0.850.70 3 51 0.06 0.960.79 00.94 540.68 3 0.00 510.79 0.06 0.68 0.85 0.94 18 0.94 0.940.89 0 2 540.91 52 0.00 1.00 0.04 0.96 1 20 0.05 0.95 5 0.74 12 0.96 2 52 0.980.98 50.87 490.96 5 0.09 0.910.89 70.740.83 0 14 28 54 0.33 0.67 0.00 6 1.00 0.91 30 24 0.56 0.91 0.94 8 0.96 1 0.98 0.98 7 47 0.13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0 2 2

62 02 880 Zk‘0 PP 9 00 1. 000 PP 0 WO 600 68 P WO 620 91. 9 080 020 £P 11 980 se P\■ 960 w o 9P 2 860 200 qp i WO 600 68 P 060 010 61. 2 880 ZkO QP 6 WO 9* 8 WO 900 LP 8 960 900 ZP 2 880 Zl’O 88 9 980 n o 81. 8 WO 600 OP 9 680 Z£ Zk WO 91.0 ZP 8 960 900 ZP 2 980 Pl’O ze 9 WO 61. 0 Zl. P 9Z0 WO IP 8k 980 68 01 860 200 OP 00 1 000 pp 0 860 Ofr 8 060 01.0 61. 2 WO 900 IQ 8 Z80 Z1P 2 960 WO QP 2 960 900 ZP 2 WO 600 68 P 980 n o 81. 8 WO 900 k9 8 WO 8fr k 060 01.0 QP 9 860 200 QP I wo 600 68 P 980 n o 81. 8 860 ZOO 09 P w o 68 Of 960 w o QP 2 860 ZOO IP £ 001. 000 £P 0 960 900 02 k 980 9k0 9P 8 960 92 82 860 200 OP k OZO 080 l£ £1 960 900 IP 2 960 900 02 k WO 900 k9 8 680 88 kk 860 200 OP k 860 ZOO IP £ 860 200 ZP I 060 01- 0 61- 2 960 WO 29 2 WO Z8 Zk 960 WO QP 2 860 200 £P I 00 I. 000 £P 0 060 01. 0 61. 2 WO 900 k9 8 960 9P 8 260 800 9P P 680 WO 68 9 960 900 IP 2 001 000 1.2 0 WO 900 k9 8 00 k Ofr 6 00 I- 000 09 0 9Z0 920 88 11 001. 000 £P 0 001 000 1.2 0 OO'k 000 PQ 0 680 LP 2 960 WO QP 2 WO 600 OP P 2Z0 820 l£ 21. oow 000 1-2 0 960 WO 29 2 WO 9P 8 060 01.0 QP 9 OZO 080 l£ 81- WO 61-0 98 8 oow 000 1.2 0 960 WO 29 2 00 k QP k 00 1- 000 09 0 960 900 ZP 2 2Z0 820 1.8 21. 060 Ol-O 61- 2 680 kkO QP 9 960 QP I 880 21.0 PP 9 WO 91. 0 ze Z WO 920 28 11 960 900 02 k WO 6k0 PP Ok 880 9P 8 060 OkO QP 9 OZO 080 1.8 81. WO 91 0 98 L 00 1. 000 1.2 0 w o 600 OP 9 680 IP 2 WO 900 LP 8 280 81. 0 98 8 960 900 IP Z 960 900 02 k 880 ZkO QP 6 WO QP k w o 900 LP 8 WO 91.'0 ze Z ZZO 820 88 Of WO 61. 0 Zl- P Z80 8k0 LP Z w o QP I 260 800 9P P 9Z0 920 88 11 WO 9k 0 98 Z 960 900 02 I 680 kkO QP 9 w o IP 2 260 800 9P P 680 WO 68 9 880 2t'0 88 9 980 n o 81. £ 860 200 89 k 880 IP 2 260 800 9P P 860 ZOO IP 8 WO 600 68 P 960 900 02 I 860 200 89 k 960 9P 8 960 WO QP 2 860 200 £P k ZZO 820 88 01 060 010 6 k 2 WO 900 k9 8 960 9P 8 960 WO QP 2 OZO 080 l£ 81. 890 Z8 0 Z2 91 001. 000 k2 0 860 ZOO 09 P WO 9P 8 960 WO QP 2 890 280 08 PI 860 200 ZP I oow 000 k2 0 8Z0 220 ZP Zl OZO IP 2 WO 900 LP 8 680 WO 68 9 860 ZOO OP £ 00’ I 000 k2 0 980 990 01 98 6Z0 9P P 860 200 6P k 860 200 £P I 960 900 IP 2 00 1. 000 k2 0 860 200 89 k Z80 9P I 060 010 QP 9 860 ZOO IP £ WO 600 68 P w o 6 f'O Zk p 690 WO 28 22 ZZO PP g 260 800 9P P WO 91. 0 ze L WO 600 68 P 060 01. 0 6k 2 k80 6k0 PP Ok WO 9P 8 260 800 9P P 980 n o 88 9 960 900 IP 2 060 01. 0 6k 2 960 WO 29 2 w o 9P p WO 900 LP 8 960 900 ZP 2 960 900 IP 2 001 000 k2 0 2Z0 820 68 9k w o PP g 9Z0 WO 88 Zl 280 8k0 98 8 880 Zl'O 88 9 960 900 02 k 00’k 000 PS 0 LQ'O 88 kk 280 81.0 IP 6 WO 91. 0 ze Z WO 61-0 98 8 9Z0 w o 9k 9 WO 680 88 k2 100 Ofr 6 260 800 9P P ZZO 820 w 01. 00 1. 000 £P 0 00 1. 000 kZ 0 Z80 8k0 LP Z 980 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 36 39 32 47 47 45 43 42 44 37 39 40 45 46 44 35 45 43 43 2 9 7 4 45 4 7 42 35 46 4 6 2 47 4 13 11 38 12 37 1.00 0.96 0.96 2 0.88 0.920.94 6 6 43 0.880.78 5 0.84 10 0.84 17 0.86 0.90 0.74 12 0.94 10 0.900.98 3 0.94 0.94 0.94 12 37 0.90 0.94 8 41 0.940.94 9 9 40 40 0.98 14 0.72 6 0.82 8 41 0.90 13 36 0.96 15 34 0.04 0.04 0.12 0.08 0.06 0.12 0.22 0.14 0.16 0.34 0.66 0.04 0.96 0.10 0.06 0.10 0.02 0.06 0.10 0.90 0.02 0.04 0.960.04 13 0.96 0.10 0.06 36 0.04 0.96 16 33 0.28 0.14 0.86 0.04 0.18 0.10 50 0.00 39 33 44 42 0.16 48 37 0.26 48 44 47 47 43 42 48 45 4747 0.06 4747 0.06 45 0.06 48 48 47 47 0.06 48 45 48 41 45 1 49 0 1 49 8 3 7 8 2 2 6 6 5 4 46 53 45 3 2 7 43 5 2 11 17 13 14 36 0.77 0.95 0.89 0.86 0.80 0.89 3 0.57 0.820.91 2 5 0.75 3 0.70 2 0.93 0.84 9 0.07 0.93 0.09 0.91 0.11 0.14 0.11 0.89 0.20 0.11 0.43 0.11 0.89 0.07 0.93 0.09 0.91 0.16 39 34 0.23 39 38 39 35 39 36 0.18 39 0.11 0.89 25 38 0.14 0.86 41 40 42 0.05 42 0.05 0.95 40 0.09 41 40 0.09 0.91 40 37 41 0.07 35 0.20 0.80 42 0.05 0.95 3 41 0.07 0.9341 3 0.07 0.93 3 44 0.00 1.00 1 43 0.02 0.98 5 1 43 0.02 0.98 3 3 4 2 6 11 33 0.25 13 31 0.30 1.00 0.98 3 0.93 0.93 4 0.95 5 0.95 19 0.93 0.81 0.72 4 40 0.09 0.91 0.91 0.79 0.98 9 0.72 1 43 0.02 0.98 221 0.09 0.91 0.02 0.98 5 0.07 0.93 2 0.07 0.93 4 0.12 0.88 10 0.07 0.30 0.70 5 0.02 0.980.07 0.93 5 0.00 1.00 6 0.07 0.930.02 0.98 4 9 0.07 0.19 0.09 0.07 0.93 9 35 0.20 0.80 0.02 0.09 0.91 7 0.14 0.86 0 0.28 39 38 37 0.14 0.8630 3 35 31 0.28 39 34 0.21 42 0.02 0.98 43 42 0.02 0.98 13 31 0.30 0.70 42 0.02 43 0.00 42 42 41 0.05 0.95 2 40 4140 0.05 0.95 8 40 4042 0.07 40 41 0.05 40 42 4141 0.05 0.05 0.95 5 37 31 39 40 41 0.05 0.95 4 40 0.09 0.91 2 40 41 0.05 0.95 3 1 8 2 2 2 2 4 4 12 1.00 1 1.00 0.86 3 0.76 3 0.86 5 0.81 1 0.95 0.62 3 0.05 0.95 0 0.00 1.000.05 0.95 1 0.05 0.95 2 0.00 1.000.10 0.90 4 1 0.14 0.19 0.81 0 0.14 0.86 3 0.14 0.860.14 3 0.38 0.14 0.86 6 17 0.19 0.81 3 13 18 20 20 0.05 0.95 9 20 0.05 0.95 1 20 0.05 0.95 6 21 20 20 0.05 0.95 12 20 0.05 0.95 1 20 0.05 0.95 1 0 3 18 4 17 0.19 0.81 2 19 0.10 0.90 13 0 21 0.00 1.00 1 6 15 0.29 0.71 4 17 0.19 0.81 0 21 0.00 1.00 0.94 1 0.94 1 0.96 3 18 0.74 0.80 50.94 16 0.24 0.83 1 20 0.05 0.93 0 21 0.00 0.94 0.93 7 14 0.33 0.67 2 0.74 0.02 0.98 0 21 0.06 0.07 0.93 1 20 0.02 0.98 0.04 0.19 0.81 1 0.04 0.96 4 17 0.19 0.07 0.06 0.94 4 0.02 0.98 3 18 0.31 0.69 1 0.39 0.61 8 54 0.00 1.00 3 18 53 50 44 40 0.26 45 0.17 40 0.26 1 53 0.02 0.98 1 3 51 0.06 0 54 0.00 1.00 2 52 0.04 0.96 2 19 2 52 0.04 0.96 2 52 0.04 0.96 2 19 0.10 0.90 3 9 2 52 0.04 0.96 0 21 0.00 1.00 2 4 50 0.07 4 14 17 37 14 1.001.00 2 52 1.00 10 1.00 7 47 0.13 0.87 4 17 0.98 3 51 0.89 0.83 1 53 0.940.94 10.98 53 0.96 0.98 0.94 10.91 53 0 0.02 0.98 0 21 0.00 0.89 30.96 51 0.89 30.94 51 3 0.06 0.94 51 0.06 4 17 0.19 0.81 3 0.910.96 4 50 0.94 2 52 0.98 130.96 41 0.24 0.76 0.98 110.96 43 0.20 3 51 0.06 0.96 0.94 0.98 0.81 4 50 0.07 0.93 0.91 0.83 11 43 0.20 0.80 1 0.47 21 33 0.94 9 45 0.17 0.83 1 0.91 0.94 19 35 0.35 0.65 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced o o> CM > a ci o oo doddoodooodo d o o o d o o d d o Od 03 CO 5 d d d d o o o Od d d o o d o d o o o o o o d d o cid o o o o o d d d o o d o d d d d d d d d d d d d o o o o o o d o O ioddododdd d d o d o d d o ci o o o d o o o o o d o d d o o o o CO o oo o o> in CO CM T“ d o m CM CO (■'- O O 47 41 46 40 odo d Oo o d d d 00 00 d CM 03 00 CO■M- CM CO o in in d d o d o d d d d 0o> 00 CM m O) ■M" o> o> 00 - 00 o d d d d d in o m - 46 20 42 44 45 05CD CM ooo o Oo d o d o o d d o oo o o o> h- m CM in ■M"CO in o 49 46 39 o o CM o CO r- CM - CO CM o CD 00 - - o CO o CM ■M- > o CD in 00 CO COCO 53 37 43 47 42 05 CMCM CO o in 05 CO o CO CO CD M" M' CM 1^ v 00 CO CO CO 03 in CO CO CO 00 ’M’ h- 52 20 47 CO o 05 CO 05 CM M- o o 05 CO o O O CM T“ CO CO o d d d d d d d d d o d cid d o o o CO M" CM CM o O 05 m CO co M- in M" 52 46 45 o 05 05 M- co m CO co •M- 05M"00in o o CD ^— o o 00 CM x— CO o o 1-'- h- o 0500 co CO co CO 49 40 42 40 - f 05 05 00 CM o - o oo o o CM in 05 - M- co ioooododd d o d o o o o ci d d 5m 05 m h- m 00 05 43 20 35 25 49 45 05 CO in o CO 05 M- o o CO CD d d CM r* co oo m M" o oo 05 m 0500 in M-M-CMh- 00 CO CD 20 47 41 00 05 d o o o d o d cid 00CD CO - o CM 00 o 05 TJ- O) CO 0505 00 CD co 00 CO CO ’M’ 53 40 43 44 05 oh- co t in O o o o d d o d o d d CO o o d o d o M- coCO 05 o CO in o CD o o T o> o O o> o •M- CM o — — 39 40 47 44 co 05 M" CO CO o CO 05 T“ o in 00 - h d CO 03 o> 03 - CMCM o CO CD o in in in CM in Mr 47 47 46 o 05 00 CD CO - M" o CM O O 05 oo r* M" CM o m o CM 05 in q o 05 00 o - CM CM M" 53 42 48 45 05 00 o i d d o o d cio d o o d d o CM o O o o T“ o o 05 oo o q V o in o d o o 05 q o - o o CM o in 54 43 44 49 49 05 CO CO oo - o M- CM o CM Oo d 05 CO CD oo - - - o r'- o 5 o O 05 oo T— q o 05 m o CMCMCO co CM in 53 48 00 CM CM CD CMM- M" oo o CO 05 00 O h~ o o o CM o 05 o o 05 00 o 05 in o co CM in O M- 53 47 oo CO o M-■sf o o d o o o d d d 05 00 O CM o o CM 05 00 CD oo oo CO - - in o 05 in CM o co r-'- 53 43 43 39 05 CO f— o o o d T— T— q O 05 00 CO 00 d o d d o CD o o 00 05 ■i- q o 05 o o CM ■M- co 05 44 48 48 d o> CM 00 o 00 M' CD i odddd d d d Oo d d cio CO CM h- d h- )00 O) 00 o CO CM CO CM CD in in 00 in d d CMCM o> in 00 - CMCM o m m CO CO 41 o d o o d o 05 00 in o o CM - CM o oo o o o o CM CO T— d d d d oo 00 05N- T~ -M- c~- T“ o o o CO 00 40 35 49 44 o> CD 00 T“ ■M- CM T” CD 00 ■M" d 03 m CM -M- t co 00 Is- d d d o in 00 CO N- CD CM m — 47 16 37 48 CM CO oo \r 00 o O) m LD T— O) CO CM o d d o d d o in d o CD O) o h- 03 00 03 - CO CO o m •M* in 20 42 42 47 CO T" CM CD o M" oo CM O' CM 05 oo O - o 03 o in T— d o d d o d " T 03 in CMCO 03 03 CD CD CO CO in oo 49 43 37 05 oo 0000 o CM - CD o in in 05 co CM o d d o o d o d d d o o CM o CD CD p o o o o in CM 49 40 42 49 46 T— CO OO M" 00 o o o o CD CO o o o o f'- CO x— o o 00 CO 05 CO O CD CM 45 40 44 42 46 O T— o d o 05 M"h-CDCO d m■O' 05 T" O CD o o r-- 05 CO o m CO o 05 CO r-- 05 oo m T“ co M" 20 40 40 45 45 05 CM d o oo o CD m in 0503 CO CM o m o CO CD M" d d o o 05 m - co CO in m 20 40 42 46 42 o o o d d 05 CM o o o o o o d d Oo 00 CD ^r d 00 CD CO oo Kf d T o CD o d d o 03 d o o o o d d CO CO M- 03 •M* o 00 h- 00 COin M- — 18 39 46 40 CO 0505 oo CM M" T— CO 00 M" d o o d CM d ^— oo co o d o d o CM 03 05 oo d d o o d 03 h- M" CO - 45 16 42 37 46 CMr- o CO CO T“ o o o oo 05 co d d d o 5o 05 d d d o CM o 00 o o r- 03 CD 05 O CO t T“ in COCO M- — 43 40 39 47 47 05 00 o CM - CO o o 05 CO CM co r~- o M" 05 CO o r- O o o 05 d o o o o o o o M" CM 52 40 49 42 05 M" COo o o CO 00 o CM oo co 00 05 00 q o - o m o o o o - r o o CD m - - h o 47 20 43 43 47 45 o o 00 o o o o o o T— o CD o o o o O O o CM CO T“ 05 oo 05 o CM - CM M" 54 19 44 50 41 q o CM o o o d 03 CO o h- o d o o o 3 o 05 CO T— o 03 CO o d p o i— xr r“ CO o o o O o CM 50 43 50 47 03 00 T“ CO CM d CO CD - o 05 00 o CM 05 CO 05 CM T— M- CO T— o 05 CO o in in o o 05 o CM CM CD 52 49 47 46 41 43 44 48 43 44 44 40 43 47 40 44 44 41 43 43 44 46 27 42 32 47 43 46 43 48 1 8 2 6 5 6 2 8 6 6 6 3 2 6 6 3 46 7 42 2 2 0.98 0.98 0.92 0.92 0.98 3 46 0.960.96 5 5 0.90 5 0.98 0.98 9 0.94 0.98 0 . 8 8 0.94 0.90 7 1 . 0 0 1 0.98 0.98 17 32 0.92 3 46 1 . 0 0 0.92 0.08 0 . 0 2 0.08 0.04 0.96 5 0.040 0.96 . 0 2 0.04 9 0.04 0.960.04 0.96 3 0 0.96 . 0 2 0.04 0.04 0 . 0 2 0 . 0 2 0 . 1 0 0 . 1 20 . 0 2 0 . 8 8 0.04 0.960.04 0.96 15 34 0 . 1 2 0.06 0 . 1 0 0.08 0.92 0 . 0 2 0 . 0 2 0.04 0.96 5 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 49 48 48 48 48 48 49 48 48 49 49 44 49 49 47 0.06 48 48 47 46 0.08 50 47 0.06 0.94 3 49 49 48 44 46 0.08 50 50 46 48 0.04 0.96 3 46 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 3 2 2 3 2 6 4 4 0 4 0 0 2 0.840.89 4 46 0.91 40 46 . 8 6 0 . 8 6 0 . 6 60.80 6 0.80 0.98 0.98 0.98 0.98 0 . 6 8 0.93 0.84 0.98 0 . 8 6 0.95 0.98 0.98 0.16 0 . 1 1 0.09 0.14 0.32 0.14 0.34 0 . 2 0 0 . 2 0 0 . 0 2 0.070 0.93 . 0 2 0 . 0 2 0 . 0 00.09 1 0.91 . 0 0 2 0 . 0 0 1 . 0 0 0 . 0 2 0 . 0 2 0.360.14 0.64 0.05 0 . 0 0 1 . 0 0 0.09 0.91 0.09 0.91 0 . 0 2 0 . 0 2 0.05 0.95 39 38 34 0.23 0.77 5 45 37 33 0.25 0.75 5 45 38 38 29 37 0.16 0.84 24 0.45 0.55 41 0.07 40 43 43 44 40 43 41 43 44 43 41 0.07 0.93 3 47 0.06 0.94 17 42 44 43 42 42 0.05 0.95 43 1 1 1 1 1 9 35 1 1 3 0 4 40 6 2 4 2 2 15 1 0 1 1 2 0 0.77 5 0 . 8 6 6 0.79 0.84 9 35 0.93 0.70 7 0 . 8 8 6 0.84 3 0.91 0.91 0.95 16 28 0 . 8 6 0 0.77 0.84 4 0.72 0.98 0.79 0.98 0.98 0.14 0.37 0.63 0 . 2 1 0.16 0.23 0.07 0.30 0 . 1 2 0.30 0.70 223 0.09 0.16 0.84 0 . 0 2 0.09 0.56 0.44 0.42 0.58 14 30 0.07 0.93 0.23 0.77 4 40 0.14 0.35 0.650.09 3 0.91 7 0.23 0.050.07 0.95 0.16 0.93 0.28 0.16 0.09 0.91 0 . 1 2 0 . 8 8 0 0 . 2 1 0 . 0 2 0 . 0 2 19 39 36 39 33 37 34 36 33 30 0.30 0.70 30 38 30 38 25 0.42 0.58 7 37 0.16 25 27 37 28 39 40 33 36 31 36 39 34 42 41 0.05 0.95 41 0.05 40 42 42 41 40 1 1 1 5 7 9 6 4 2 6 2 18 13 1 2 1 0 1 0 24 1 . 0 0 1 . 0 0 1 . 0 0 2 0.950 . 3 8 6 0.76 0 . 1 0 0.14 0.95 4 0.950.90 3 0.950.76 15 13 0.90 0.90 4 0.76 0 . 8 6 0.95 0.90 0 . 0 00 . 0 1 0 . 0 0 1 . 0 0 1 0 0.05 0.95 13 0.05 0.14 0.24 0.05 0.950.14 0.05 7 0.95 0.90 0 . 8 6 0.05 0.05 0 . 1 0 0.05 0.24 0 . 1 0 0 . 1 0 0.05 0.950.43 0.570.24 0.05 18 0.950.48 0.52 9 16 0.05 0.95 4 0.05 0 . 1 0 0.05 0.95 3 0.05 0.95 2 13 0.38 0.62 7 1 1 15 0.29 0.71 5 16 15 0.29 0.71 7 19 19 19 1 2 19 2 0 2 0 2 0 1 2 0 1 2 0 1 2 0 1 21 0 1 2 0 1 21 0 1 2 0 1 2 0 1 00 2 1 2 1 1 2 0 1 2 0 8 00 2 1 2 1 0 . 0 0 0 .0 0 0 2 1 0 . 0 0 9 6 5 2 2 2 2 0 21 0.00 1.00 6 1 0 0.93 3 18 0.69 0.85 0.69 0.93 0.98 0.89 0.85 5 16 0.83 180.70 3 0.78 0.74 0.91 0.78 5 16 0.87 0.87 0.94 0.89 0.89 0.74 0.80 0.17 0.83 0.07 0.13 0.19 0.81 0.390.31 0.61 19 0 . 0 2 0 . 1 1 0.26 0.74 0 . 2 2 0.26 0 . 2 2 0 . 2 0 0 . 1 1 0.17 0.83 0 . 1 1 0.26 33 5053 0.07 46 0.15 39 0.28 0.72 42 44 44 0.19 0.81 48 46 0.15 48 42 43 48 1 8 8 9 45 0.17 6 6 4 50 0.07 0.93 6 17 37 0.31 1 0 1 0 15 1 2 1 2 14 40 1 1 2 1 1 . 0 0 0.89 9 45 0.77 3 51 0.06 0.94 0.85 0.79 17 37 0.51 4 0.77 0.83 0.870.87 4 9 50 45 0.17 0.83 0.83 0.830.83 30.79 14 510.79 40 0.060.79 90.70 0.94 45 5 0.17 49 0.83 0.09 0.87 7 47 0.81 0.910.85 50.94 5 490.83 7 49 0.09 47 0.090.91 0.91 0.13 0.91 3 51 3 0.06 18 0.960.83 9 45 0.89 140.81 40 0.98 0.980.89 16 38 0.30 0.79 0.91 0.96 0.89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced d d o> CO m O CM O d O O 1X5 o O CD 1X5 - d O) CO CM CM d d o CM o O CM o d o o o CD o o 05 in CD m o o i— - m 05 f ■ 49 42 49 44 "T" CO 05 (D d O o CM 05 oo CM 05 0 0 - 8 d o CM T in 05 1 C * CD 0 0 ^ CD CO in o ^ — — — 5

44 42 43 48 d CO CM 05 0 0 o o d d o o o o d d T— * r d CO 05 - CO CO CO in d d d d d d O d d d d d d 0 0 d CO CD d d d d d o CM t m d co d CD d co r- 05 oo t — 53 37 39 49 46 o O O t o o Is- d O) CO o 05 o d d d d d o 05 CM d d d d d d o CM o o o oo o T- o o O T Mj- o o o 05 CO - — 43 39 41 50 48 d d 05 en e'­ O o d O) co CM C'- o in 05 m o MCO CM o CM d 505 05 o 05 in m 05 T“ 0 0 - M- 53 2 0 41 41 48 42 o o CO o o o o o o o CO o o 0 0 o M- o CO O d 05 in CO LO r* 05 ~ T in 2 0 37 44 50 43 o 0 0 05 CM CO o d d d d d o o o o 5 M- 05 50 05 05 05 V“ 0 0 o o o d 05 o 05 o 05 o CM 05 M" m 49 35 44 46 46 o d CO XJ* o 05 o d d d d d co o d o Is- 05 co co 05 CO o Is- d d o co d o 05 05 in o o 05 CM CO 05 49 — 40 41 47 45 CM 05 oo CO o 05 - o 1X5 1X5 * r CM CMCO 05 1X5 O 1X5 M- d d d d d o CO d 0 0 CO CM T— 0 0 o 0 0 CO CO in m 49 43 o CD - o 05 505 05 CO CM o d o Is- 05 T*“ d O O) 05 CO O d O 05 05 d 0 0 T" o 05 CM CD M- 52 17 41 48 48 CO o t o o T" o o 05 M CMCM CMo o o in 05 m o o d d d d d d d d d d o CO MC CM CM CM 05 o T— T t o O O o o CM T“ o -: — 44 — 41 40 50 d co O 05 CD M" d d o d O 05 05 05 in ■sr o in o Is- d d d d d CO 05 d in T— CM o CO CO 05 05 50 41 40 48 46 T- o o o o d d o o d d O CM 05 oo V 05 in o in d d 0 0 d d d d 5 05 T“ o o CO T— 05 Is-

■ 48 41 43 50 48 d d o d d O 05 CD -M- 0 0 o o o o 0 0 o CM 0 0 CO 0 0 o CM o o 05 05 o 05 m d o CD CM 05 CO - in co 44 45 oo co O Mf 05 CD o in d 05 in CM o in d d 05 in o CM p o d o CO o o CD o o CM o CD " T CO m 1 — 41 42 48 46 o CD 05 -f o o 05 o o co o o 0 0 CO o TT CD CM o o CD o o CM d 0 0 o o CD m T— ~ T 53 37 44 47 49 CO CM O Mf CD o 05 O CM d d o d d 05 0 0 O h- d d d d o CO in 05 in d d o CM d d 05 0 0 - MCM CM o o o o 05 0 0 53 40 40 48 47 o 0 0 CM o 05 T“ O 05 d d d d o 05 in 05 o 05 o o p o o CM 05 0 0 o CD co - 53 39 40 45 41 d O d 05 0 0 in d d o d o CM - 0 0 0 0 o CO CO 0 0 CO o d d d d d Is- Oin CO d o CD 05 o 05 CD o o o o ■M- CD CM I1'- CM 52 30 49 44 CO CD 1X5 O CD oo co d o d o o CM CO in - CO in CM 0 0 o T— O o o o m 05 o o 05 in CM o d O d CD 05 h- co - f i 50 43 47 44 CM 0 0 CD CM T“ o ■M- 05 0 0 05 CM 0 0 - m CO 05 0 0 CO CM d d d 'M- CO o CD CD f- T“ CD CD CD o i'- co CO m "M- M" 50 37 05 CM CM m o d o oo 05 T— O CD MT 0 0 ■M- CO CO o d d O 05 O CD O CD -CO N- d d r- co CM 0 0 Is- 50 4 0 46 44 0 0 CO o d 05 m N- o in 5oo 05 CO CM o h- o d 05 m d 05 CM o O 05 in T“ t— o 05 CO m 49 40 42 43 47 d O CD 05 M- CM o d 05 0 0 CO o d d d d d d d d o d d d o CM - CO d d d CO CO d d o p o i^- o o CD d 05 MC CM CM CM d o o o In T-' o o CO 43 47 47 d o d d o CD CD M" oo o co o d d o d d CM o 05 CO d d d d Is- Is- CM CO CO o p o o o t d CD d h- co d CD CO 05 — 35 47 15 34 CO

45 CM CM 0 0 CO d o d o o d d d d d CM 0 0 in CO CMCD CM in CO CO T*“ O 05 05 d d CO 05 o o o o p o M OCO CO •M- d o o CD in o o o m CO 05 DC OCO CO CO CD 46 44 05 CD oo o oo 05 oo o CM 0 0 CO - co CO o o 05 o0 oo 05 oo o o o CD o CO 05 in M" 37 43 41 - - 0 0 0 0 T“ CM 05 in o in CO CM d 0 0 d o 50 05 05 05 CD o o Is- CO 0 0 CO CM o in 37 42 44 48 o d O o 0 0 05 CM 05 0 0 MT o CM d 05 - d CM Is- d d d CD 05 d d o CD o d 50 oo 05 05 co T CO in oco co — 34 4 3 46 48 co ■M- 05 CD 't— CM o 05 0 0 CO d d d d d d d o CD o o o o o o oo CD oo CO o m 37 4 0 48 45 o o 05 05 CO o 0 0 o o O CM 05 CM o T” o o p T"’ o O o O r- o o CO o O CM 05 CM T* d oo co O - m m 43 43 48 40 CM MT o oo 05 o in 50 05 05 05 m ■M- o Is- 05 CO d d d d CM d co d d o CO o 505 05 o o o oo CD 05 t 0 0 OC 05 CO CO ■M- - 40 42 46 45 o o d o CO 05 Is- CO d d d o 05 0 0 d d CO Xf CO CO o CO Din CD d CD T— oo T“ r-- r-- m in 40 47 42 0 0 05 CM co o xf O 05 05 0 0 o CM o Is- o oo oo CD 05 T“ oo co TT co 45 42 40 46 4 6 o CM 05 co Mf 05 CO - o Is- o o 05 CO CO d d Is- d 05 in 05 CO d o Is- d 05 o CO j t - CM ■M-

* 50 40 41 49 45 45 46 48 49 47 45 44 49 49 47 49 48 49 44 49 49 45 48 46 47 46 40 39 46 49 49 38 47 49 48 49 43 1 1 1 3 0 0 0 0 2 5 0 0 0 4 3 7 42 2 3 3 0 4 0 0 0 2 17 32 1 0 1 1 0 . 8 8 0.96 0.96 0.92 0.94 0.76 5 0.94 0.96 0.82 0.82 0.94 0.92 0.90 1 . 0 0 0.96 0.92 0 . 8 6 2 0.98 4 0 . 8 8 0.94 0.84 0.92 0.98 1 . 0 0 6 1 . 0 0 1 0.92 0.80 0.90 0.92 4 45 0.70 9 0.84 0.90 0 . 8 6 0.94 0.98 0.04 0.04 0.08 0 . 1 2 0.14 0.06 0.04 0.18 0.18 0.06 0.08 0 . 1 0 0.04 0.08 0.06 0.24 0 . 0 2 0 . 1 2 0.30 0.08 0 . 0 2 0.08 0 . 2 0 0 . 1 0 0.08 0 . 1 0 0 . 0 0 0.14 0 . 0 2 0 . 0 0 0 . 0 0 44 38 48 48 47 47 48 41 47 0.06 46 49 45 48 49 50 44 46 40 46 42 0.16 50 50 4245 0.16 49 1 1 3 47 5 2 6 3 7 43 9 9 41 1 3 5 45 4 46 8 5 2 2 4 46 4 46 2 6 7 43 4 0 3 47 0.06 0 4 4 15 35 1 2 1 0 1 . 0 0 1 . 0 0 8 1 . 0 0 0 0.98 0.89 0.89 0.80 0.89 0.91 0 . 8 6 0.75 0.98 0.98 0.98 0 . 8 6 0.80 0.98 0.89 0.95 3 0.77 0.98 0.98 0 . 8 6 0 . 2 0 0 . 1 1 0 . 0 2 0.05 0.95 0 . 0 2 0.50 0.500 . 1 1 0 . 1 1 0 . 0 2 0.05 0.14 0 . 0 2 0 . 0 00 . 0 2 1 . 0 0 0 . 0 00.05 10.05 . 0.95 0 0 0.95 0 . 0 0 0 . 0 0 0 . 0 0 0.09 0.91 0 . 2 0 0 . 1 1 0.23 0 . 0 2 0 . 0 00 . 0 2 1 . 0 0 0 . 0 0 1 . 0 0 32 0.27 0.73 39 35 39 38 33 0.25 38 0.14 34 43 43 42 43 44 42 38 0.14 42 0.05 0.95 40 43 42 43 44 42 44 43 44 44 44 44 43 1 1 1 1 1 1 1 9 5 39 0 0 9 35 5 39 0 2 0 2 2 4 40 0.09 6 4 40 0.09 0.91 2 0 0 2 6 0 4 1 2 1 1 1 0 2 2 2 2 0.980.98 5 0.77 0.93 0 . 8 6 0 . 8 6 0.93 0 . 8 8 0.98 5 0.98 0.98 0.98 0.91 0 . 8 8 0.91 0.98 0 . 8 8 0 . 8 8 0 . 8 8 6 0 . 8 8 0.93 225 0.05 0.95 0.28 0.72 0.14 0 . 0 0 1 . 0 0 0 . 1 2 0 . 0 2 0 . 0 2 0 . 0 2 0.05 0.95 0.09 0 . 1 2 0.09 0.16 0.84 0.070.07 0.93 0.07 0 . 1 2 0 . 1 2 0 . 1 2 0 . 0 0 1 . 0 0 0 . 0 2 0 . 1 2 0.05 0.95 0.07 0 . 0 00 . 0 2 1 . 0 0 0 . 0 2 0 . 0 2 31 37 3938 0.09 0.91 38 39 38 39 3336 0.23 37 0.14 43 38 38 42 42 41 3938 0.09 0.91 39 0.09 0.91 40 40 40 43 42 41 40 42 42 42 41 41 0.05 0.95 43 42 41 0.05 0.95 1 1 1 1 1 1 5 5 7 3 5 5 3 3 5 3 4 2 2 4 5 6 0 6 4 1 0 1 . 0 0 1 . 0 0 1 . 0 0 0.90 0.90 0.81 0.95 0.95 0.95 0 . 8 6 1 2 0.90 4 0 . 8 60.90 2 0.05 0.950 . 1 0 0.05 0.950 . 1 0 0.14 0 . 0 0 0.19 0.05 0.95 0.05 0.05 0.95 0 . 0 0 0.05 0.05 0 . 0 0 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 00 . 0 0 1 . 0 0 1 . 0 0 0 . 1 0 0.14 0.05 0.950 . 1 0 0.05 0.95 19 19 17 0.19 0.81 4 18 19 19 2 1 21 0.00 1.00 0 21 0.002 0 1.00 0 2 0 2 1 0 . 0 0 2 1 2 0 2 0 2 1 2 0 2 1 0 . 0 0 1 . 0 0 2 1 2 1 2 1 0 . 0 0 1 . 0 0 2 1 1 1 2 0 1 1 1 1 1 2 0 1 2 0 0 0 0 0 21 0.000 0 1.00 212 0.00 1.00 2 0 0 0 210 0.00 1.00 1 0 0 21 0.00 1.00 2 0 21 0.00 1.00 0 21 0.00 1.00 0 2 4 0 21 0.00 1.00 2 2 4 17 1 . 0 0 1 2 0 1 . 0 0 0 1 . 0 0 0 0.98 0.81 0.50 0.91 0.89 0.91 0.98 0.98 0.76 0.96 0.96 0.96 0.96 0.94 0.96 3 0.96 0.85 0.89 0.93 0.96 0.76 0.91 0.94 0.87 0.89 0.61 30.89 18 0.65 0.98 0.06 0.94 0.24 0.04 0.04 0.04 0.15 0 . 0 2 0 . 1 1 0.09 0.07 0 . 0 2 0 . 0 2 0.04 0.04 0 . 0 0 1 . 0 0 0.24 0.06 0.09 0 . 0 0 0 . 0 0 0.35 0.04 0 . 1 1 0.13 0 . 0 2 0 . 0 0 0 . 1 1 0.39 0 . 1 1 52 53 53 53 52 52 51 0.06 0.94 54 52 51 0.06 54 54 52 52 2749 0.50 0.09 48 41 52 0.04 53 54 33 46 44 0.19 48 41 48 48 1 1 1 1 5 2 3 0 8 6 2 2 3 0 2 0 2 2 6 0 1 0 13 13 2 1 1 . 0 0 6 1 . 0 0 6 0.94 0.89 0.89 5 49 0.94 0.98 19 35 0.85 0.89 0 .89 3 51 0.96 27 0.91 0.91 5 49 0.98 0.89 0.85 0.91 0 .85 3 51 0.98 7 47 0.89 0.98 0 . 6 8 2 0.81 0.89 4 50 0.70 0.57 0.91 0.87 0.74 0.89 0.70 0.81 0.98 0.70 0.91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 38 47 43 41 41 47 42 45 41 45 46 41 47 48 48 41 49 48 49 43 47 45 45 48 46 47 47 41 47 48 6 8 58 44 8 7 1 8 2 1 0 1 0 2 1 6 16 33 3 46 2 2 8 4 1 1 2 1 . 0 0 2 0.98 1 . 0 01 . 0 0 8 2 0.90 0.92 0.94 0.92 0.84 1 . 0 0 1 0.96 3 0.90 0.900.94 4 0.92 13 36 0.94 4 1 . 0 0 0.96 0.98 0.92 0.94 0 . 8 6 0.90 4 0.94 0 . 8 8 0.90 0.90 0.84 0.94 0.94 0 . 0 2 0 . 1 20.04 0 . 0.960.06 8 8 0 . 0 0 0.04 0 . 1 0 0 . 1 0 0 . 1 0 0.06 0.08 0.04 0 . 0 0 0 . 0 2 0 . 0 0 0 . 0 0 0.14 0 . 1 0 0.08 0 . 1 0 0.04 0.96 9 40 0 . 0 0 0.04 0.960.06 0 . 1 2 0 . 1 0 0.04 0.96 3 0.16 50 49 50 50 48 45 45 47 44 48 47 42 0.16 50 50 48 49 47 0.06 47 0.06 43 45 44 48 45 42 48 4748 0.06 47 0.06 1 1 5 3 3 0 8 6 2 4 46 0.08 0 0 3 2 4 46 4 46 0.08 0 0 2 7 3 5 45 5 8 2 4 46 2 3 47 6 2 0.80 0.89 0 . 8 6 0 . 8 6 0.98 1 . 0 0 1 . 0 0 0.98 0.84 5 0.89 0.91 0.98 0.98 0 . 8 6 0.91 0.82 0.91 3 0.77 5 0.84 0.89 3 0.98 0.84 0 . 0 2 0 . 1 1 0.05 0.95 0 . 2 0 0.050 0.95 . 1 1 0.14 0.05 0.95 0 . 0 2 0.16 0.14 0 . 0 2 0.050.09 0.95 0 . 0 2 0.14 0 . 0 0 0 . 0 2 0 . 0 0 0.52 0.48 0.09 0.05 0.95 0 . 1 1 39 38 38 38 42 41 0.07 0.93 42 36 0.18 37 0.16 34 0.23 43 4243 0.05 0.95 5 45 41 0.07 0.93 42 43 43 39 43 2 1 42 42 41 0.07 0.93 41 0.0741 0.93 0.07 0.93 44 44 41 0.07 0.93 1 1 1 1 5 5 39 3 9 35 3 1 7 37 2 2 6 2 8 4 40 6 5 3 0 0 3 4 40 3 23 1 . 0 0 2 1 . 0 0 1 . 0 01 . 0 01 2 . 0 0 1 0 1 . 0 0 0.95 0 . 8 6 0.84 40.98 40 0.09 0.81 0 . 8 6 0.84 0 . 8 8 0 . 8 8 0 . 8 6 2 0.79 1 . 0 0 1 . 0 0 0.98 0.93 0.95 0.98 7 0 . 8 8 0.93 3 0.98 0.95 0.98 0.98 7 37 0.16 226 0 . 0 2 0 . 1 2 0 . 8 8 0.19 0.05 0.95 0.16 0 . 1 2 0 . 8 8 6 0 . 1 2 0 . 1 2 0.14 0 . 2 1 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 0 1 . 0 0 0.07 0.05 0.16 0.14 0 . 0 0 0 . 1 2 0.07 0 . 0 0 0 . 0 2 0 . 0 2 0 . 0 0 0 . 0 2 0 . 0 2 0 . 0 0 0 . 0 0 0 . 0 0 38 36 38 38 34 37 0.14 36 42 37 35 39 0.09 0.91 38 37 38 42 43 40 41 40 0.07 0.93 43 43 41 43 40 43 41 0.05 42 43 42 41 0.05 43 42 43 43 42 1 1 1 1 1 5 7 3 2 8 7 9 5 0 0 4 0 6 6 0 3 0 0 2 5 2 1 . 0 0 1 . 0 0 1 . 0 0 0.81 0.900.90 5 0 . 8 6 0 . 8 6 0.95 0 . 8 6 6 0.90 0.95 0.90 3 0 . 8 6 0 . 8 6 0.90 0.90 0 . 8 6 0 . 8 6 0.14 0 . 0 00 . 0 0 1 . 0 00.05 1 0.950.14 5 0.05 0.14 0 . 1 0 0 . 1 0 0 . 0 0 0 . 1 0 0 . 0 00.05 1 0.95 . 0 0 0.05 0 . 1 0 0 . 0 00.14 1 . 0 0 2 0 . 0 0 0.05 0.95 0.05 0.95 0.05 0.950.38 0.62 0.14 0 . 1 0 0 . 1 0 0 . 0 0 1 . 0 0 0 0.05 0.950 . 0 0 1 . 0 0 0 0.14 0.14 0 . 0 00.05 1 . 0.95 0 0 15 0.29 0.71 19 19 18 19 19 19 19 18 13 2 0 21 0.00 1.00 0 2 0 1 2 0 1 2 0 1 1 2 0 1 2 0 1 21 0 2 0 1 2 0 1 3 18 00 2 1 2 1 3 3 18 2 2 0 2 1 02 2 1 0 2 1 2 0 2 1 4 17 0.19 8 3 18 6 2 0 2 1 3 0 0 20 1 2 1 2 0.83 0.78 0.98 0.72 0.80 0.96 0.91 0.96 0.94 0.89 0.98 3 18 0.81 0.89 0.98 0.960.98 30.93 0.78 18 0.89 0.67 0.72 0 . 2 0 0.04 0.17 0.83 0.13 0.87 0.150.19 0.85 0.81 0 . 2 2 0 . 0 2 0.35 0.65 0.04 0 . 1 1 0 . 0 2 0.30 0.70 0 . 1 1 0.06 0.94 0 . 2 2 0.17 0.83 0 . 1 1 0 . 0 00 . 0 2 0.04 1 . 0 0 0 . 0 2 0.07 52 53 50 0.07 0.93 52 53 38 46 42 51 43 45 53 52 53 36 0.33 49 0.09 44 45 0.17 46 0.15 0.85 48 54 50 42 47 44 0.19 48 45 48 46 0.15 0.85 1 1 1 1 8 7 9 45 0.17 0.83 3 2 8 9 8 4 2 6 6 6 2 4 1 2 1 1 19 35 1 0 1 0 1 2 16 18 36 0.33 0.67 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 0 0.89 0.89 0.77 0.94 0.87 0.810.89 15 39 0.28 0.91 0.94 9 0.83 5 0.77 9 0.91 0.98 0.91 0.980.87 30.96 51 0.06 0.98 0.98 0.98 0.98 0.91 0.85 0.94 0.91 0.87 0.91 0.940.94 18 15 39 0.28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced o o CD oo d d o o o o o CM d o d d - d 5 CO d o> d d d O) CM d d T— CO OO CD lO d O) ■M"o d o o o d o d Is*-CO O CD o 0 0 CO CM CO 37 49 42 cd CO CMo oo o CM CD 0 0 CM d d d d 0 0 - oo CO - d o o o T CO CM d d in CD o d h- d o h- CO CD oo CO LO CO 48 — 40 43 47 o d d d d o o o o oo oo CM CO M" CO oo oo CO CO oo > o CM 0 0 d d Is- CM f 05 d d d d o CO CM lO o CO in co CO — v i- 39 2 0 44 49 0 0 CO CO CO CM CO 0 0 T— h- CO oo o r- CD o CO CO 0 0 0 0 TT CO 0 0 d d d d d o d CO 0 0 ^T CO CM 0 0 LO 50 30 43 46 0 0 CM T“ 0 0 M- d d o d d d d o d O d CO O) d d d CO x— >LO o> d d d d d d d s co Is- > o d CO d d d d d o d d d d o CD d d o CM CD T oo CO CD co CM £ co T— ■M- d d d d d d o LO 49 — 27 45 CD O CM d T— o CM LO CO CO Is- LO o> x— d d o d d d CO 0 0 0 0 O) o CD CO CD d d d d d o cd r ^ h- Xtf- X“ 47 45 47 d d h- 0 0 CO CD CM CM CO LO CO o CD o CO x^* CO cd 0 0 CO oo co CM o CM Is- O) 0 0 T— CO h- ^ 1 —' T ■M- 47 46 oo r* OO CM - CD CD LO r* 0 0 cd 0 0 ~ T o CD CO o d o o T“ CM f o CO oo OO o Is- CM CD LO 44 39 44 44 O) CO nCM in o s CD CM CD LO CM CM CM CM CO CMCM CD Is- r*- CM xr h- Is- 0 0 Is- CO CO LO CD X“ o 42 39 48 44 O) CM 0 0 o d o CD CM Is- 0 0 CM O o O CM X— CM CM X"“ - T O 0 0 o> ▼*" 47 48 o o o o d o d d d o d CD o O o CD o CM ID co d d d d d o d d d d d d d d 0 0 CD T— d CD o CD LO o o o o o d d d d CD ■O' o CM CO CD o o d o> 0 0 CM - CO 42 39 49 46 O CD O — T o - T- 0 0 CD LO CD CO 0 0 LO d o o d d d d d d d o o d d d d o co CD o CD CD d d d d d d d o d d d CD - CMCM o CO "M" 0 0 LO d d d d LO M- o> 45 44 CD CO o CM o X— CM T— 0 0 CD T“ p o o CD 0 0 - co o CO CD o o CMCD o o 0 0 0 0 0 0 LO r^- CO 0 0 53 49 49 CD CO o O o d d o d d o ■M- o ■'t CD X” o d o d d d o d o o CM r- CD CD CM o O CD CD - - LO ID r* 0 0 co — T oo CO CO 49 43 49 CO CD - d d O o 05 T CD CM CD - T CD CD — T O ■M- CD O CO CD CM X— CD CD — 49 37 43 43 48 CD oo t— O CM 0 0 o r- 0 0 Is- CM T— CD 0 0 “ T 0 0 LO 0 0 LO CD LO -CD CM r- CO 53 2 0 39 49 O CM CD CD d d 0 0 CD o CD CO CO CM o o to CD ■M- 05 CM T— LO O LO d CM CD LO CD LO CO Is- 2 0 42 49 47 CD CD o CD o CD d o •M- t- o o d CM 1 CD h- CO CM CM LO o LO d o LO CD LO CD CO CM LO M- ^ 2 0 48 49 CD d d d d d d o o o CO co CM ■o- r^ co CO CD co CM CD ■O' CO CD o o T— CM ID o o o CM o o 05 0 0 - ■M" CO o CMCM CM ■M- 46 T— CD CD CD p o o co ■M" CM CM CO I— Is- h- o T— o Is- co o o o Is- o CD CO CO M- 47 40 43 47 — T o o ■'t CD CD - o o p o o o CO CM CM CMr~- CD CD co CD o CM d O LO CD LO

* 54 30 43 48 o o o d o d d d d d o d d o CMCO q o CD CO o o o d d d d d q o o d d d o d d ■M" d d d d o o d d CM r- CD T— CM CO CM h- CO o o LO d d d d d d d o d o o o LO q o 54 2 0 43 48 47 CD CM d d CD OO o o co Is- X*“T— CD CO 0 0 CO 0 0 CD co LO ^r — T 0 0 O CD CD T“ 'M' CO CD 50 39 46 43

47 2 0 35 47 39 0 0 in O CD o d o o ID CD io "Cl­ CM O CD o o ■X" CD CO CMCO CM CD O - 49 2 0 39 35 48 48 o o 00 T Is- 0 0 CO O o o CD ID ID CM o to CD CM 0 0 co CD CD ID CD CM 0 0 0 0 — T_

45 2 0 44 0 0 Is- o CM M- CD CD o CM o o o o CO T“ co CO ■X o M" o CD CO CD CD ID O' T— CD CD o 52 29 48 CO CD o d h- CD - d d CM o d 0 0 o CO o d 0 0 — T xr d 0 0 CO CM d o m d CD CM o o o o d CD in co o CO CO CD •O’ o o CD 43 35 47 0 0 o>

CO 40 o oo 05 CO T CO •o- d CD CO o CD d CM co CD o CD CM ID o o ■O' CD to CM O- -X- CO ■o- CD CO CM — 48 47 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced O CD ■M- o o O CO d d - d d CO CO o> o d d d d d d d d d d d d d d o d d d o o d d d o d d o o> o d ci o CM X” o> CO lO p o CO x— CM o d d o in d d d d d d d d d o o d d d o d d o> in o> - 49 42 39 47 42 CO o d d d 05 co o CM CO CM CD - X“ 00 T* CO o T“ o O) o CO CO <73 CO CO in T" o> o d d d d d o d <33 o <33 MCM CM CO ■M* 05 CO 50 49 43 00 00 d d d d d d d MCO CM d d d d d d o d d d d d d d X— d d d CO CO X co CO co oo 05 d X— o o ■M- CM o 05 o 05 CO 05 05 oo CM CO CM — 44 45 05 CM o M" Oin CO T“ d o> d d d d d CM o 00 CO o o> d d CO x—' 00 0 0 r**- OCO CO CO d d d CO o o r- 0 0 m 0 0 0 0 47 35 47 47 o 05 o h- 00 CO CO 00 T” o CO CM d a> 00 00 00 CO CO CO 0 0 CO LO KT 00 CO in 45 42 d d o d d d h*. oo CO CM CM d d d d d d d d d d d d d d d d d d o d d d CM m in - o o o o r*- o 05 CO O) CO h» 05 CO ■cr CM - 05 05 o co 50 40 33 39 46 o o> o o d oo CO CD CO CD CO lO CM d d o CO o CM o o CD r- 05 oo O05 CO 05 o co CM o o x 47 — 45 45 CO O) nCO in m o d d CO 00 ^r o CM CO o 0 0 05 h- CO - CO r- MCM CM o m 05 in T* o 48 37 47 44 05 CM o co 005 00 CO m d CO d CO d d d M- CO 1 00 05 CO CO CO d d d o o M" O O M- CO o T“ ■M- 29 25 29 ^ 46 44 CO oo d o o 05 r- CM CO O CM T- 03 00 T“ 03 T“ o O) o h- xr o o CM T“ xr 40 42 40 43 46 CO - - 05 o o o X" d O h- 03 CO MCM CM CM CM CM CM CM CO CM d CO 00 CO r— CM MCM CM o o p o OCO CO 05 o in 42 38 48 48 05 CO M- CO O O M" o o O CM CD 00 CM O s CD - CM CD d d d d d d d d d d d d d d d d d o o O m x o o ■M" h~ o t"- CO CO 26 — 43 48 CM M- o d d co o 05 o o 05 05 M" d in 00 o nC CO CO in d d T-' 03 0 0 m o o - 0 0 CO m in 46 2 0 25 40 46 49 d d 03 CD O O ’M ’ MCM CM 00 d 00 03 d OO 00 m o o 0 0 1 CO h- T“ 0 0 CO 0 0 0 0 CD 05 in in m ^

47 - 39 45 CD 05 CD o 0m 00 CM o oo CO CD 00 d d d d o03 oo 00 CO CO o in d d oo (73 OCD CO CM o 03 in CD r-~ 48 48 43 CD co CM o 05 d o o d d o 03 - in CM O 03 CO 03 o m d d d o 03 m 0 0 03 h- •M' Xj- 0 0 CM o xf 42 49 36 X“* d d d 03 O T— o - 005 00 03 m CM 00 00 LO o CO d CD h- T” T— 0 0 CO CO o CO 0 0 in d 03 in 03 in CM 39 45 48 CO M" CD o o M" CM o O CD xr 00 CD o h- d d 03 0 0 CO 503 05 CD CD CD in m CD 45 2 0 37 40 48 45 03 00 CO CM d d d d d d o - d d d d d d o r^- d d d d d d d d d d d 03 CO d d d d d d d d d CO CD CO d 0 0 03 o in d d d 03 in CD M- 0 0 CM o 37 49 46 00 CD X-" ■M- o d o d 03 o xr CM O h- 03 CO 00 CO OCO CO CM CO 0 0 o CM o d d d d d 03 o 0 0 o CD CD CM in - 03 43 48 p O CM o o CO o o h- 03 03 in o in CO 03 0 0 0 0 CD CO 03 CO CM CM CO CO 0 0 0 0 CM 50 47 CD CD co CM o - o in 03 m 03 MCM CM o m in 03 o d d 03 CD CM CD 05 ■ h- m

52 - 42 49 46 00 r* CD ■M- 00 o LO 03 in CO 00 M- o o co d d d O o o CD CD 305 03 O CO CM x ^r 48 — 37 42 42 45 CD co 05 o CM - - 03 o m in CM 03 CO CM o h- o o •*" d d d p o 03 oxr co CM in O CM CM 32 40 49 46 CO d d 05 CD o CM o o o m 03 in x— CM d O 03 03 CM CM r- oo - CM o o in d 03 m CD 05 CM 42 39 42 49 43 CM o 05 CM d o d d d O CD M- d o o p o idddd d d d ci d d d d d T— CM oo oo o o o p o m o o x 05 CD CM o CM CM M" p o m — 38 44 46 29 O O MCM CM o o o o d o d o d d O CM 05 CD 05 CD - O CM o o d d d 03 o 03 CO - CM 03 T“ p o 50 42 43 50 37 x p O CM o O o o o o o o CM idddd d d d ci o o d CD CD 0 0 CD o O CM o o 05 CD m O CM x d d d d d d o o d o o o o o d o 05 CD X— — 53 — 4 4 50 27 p o LO o o o o o o o CO CO o O x O O CD O ■M- O 05 CO 05 CD O CM CM x — 52 — 37 4 4 50 34 05 CD CO d o M" CM M- CD o o o o o o 05 05 CO 05 d d d o d o o O O CM x d d o o 05 CD ■sr o CM 05 CO T“ 53 — 4 4 43 CD 05 O O CM M" x- CM CO CO o o O O o <73 CO o M- O 0 0 CD <73 CO co 0 0 o h- N- CO M" 50 40 44 40 X— CO CD CO 1 ■Lf o d d CM x co o o O O o CM X— r-- 05 ^ o o p o CO CM d d d CO 05 05 XT— m o 54 34 44 — 37 O CM O o o o o 05 o d m in <73 CO CM o 05 o CO o d d o o 05 CD CM 05 M" CO 05 CM 52 40 42 50 37 05 CD CM O CO CO o o co x— CO x— 05 d o CD CM 0 0 0 0 m CO 0 0 CM <73 CD 0 0 T*“ in CD CO CM ■M-m x— o 44 39 4 0 co h- o CM CM 03 CO T“ o 03 CO CM d d o d d d d d CM d O LO co CO O 05 0 0 CO CO CM CM o d d O CM d Is— CO - 50 32 49 43 o 03 CO M" 05 CO CM d d r- 1 CO M" o h- 03 CO 0 0 CO v- d CO d d d d d o CM d d d o> 0 0 0 0 - 50 40 43 42 46 CO CM CM CM h- oo CO h- 03 0 0 0 0 0 0 0 0 30 LO 03 03 d o CM d 0 0 CO LO CM h- r- 42 35 34 24 26 45 CO - 05 - CM 05 CO o CO CM d f- CO LO LO o d 0 0 05 0 0 Oo LO d o CM O 05 05 - 53 35 40 49 34 o o o CT)t CO 0 0 d d d T“ CO CM CO d d d d CM 5 d d d o d d d 03 LO v— d d — d d d d d io ci d d o CM d d d 0 0 0 0 05 d CM oo CO 47 43 44 39 CO CO o CM 05 5 0 oo CM O O r* p o co 03 o o r- o> CO T“ o CM 0 0 o o CO LO d d CM Is— r- o 53 34 40 44 CO CO o LO O CO CO CO d CO CM o LO o> lO 3CO 03 d CM 03 0 0 0 0 r* CM o oo o o 35 -

d d 05 0 0 49 d d d d o r- o d o 05 co CMCM o o d d d o LO d o d 03 LO CO d d o 03 d d 03 - T O d d o 03 0 0 CM o CM r- O) d CO r* 50 49 47 5 0 o M" o o o o o o o o o 0 0 CO LO 03 OO T~ CO CO 0 0 03 0 0 CO o CM xr 0 0 d d CO - 54 46

T~ 49 d f- in T* o CM 5 0 oo o 03 LO LO - CM d o CM T T d 03 CD 0 0 O d 0 0 •v— CO CO CO CO * “ T oo co 0 0 CM 53 2 0 36 42 o CO T“ o LO CO 03 CO 0 0 0 0 CO CO d o 0 0 CO 03 CO CO CO CO d CM o ■cr CO o o 0 0 37 35 32 36 05 LO X— o o d o CO o CO o o s Is- d 03 o CD T*“ o o o o t o o T— M- d 00 00 co o o co CM d CM d d d CO CO oo 43 — 30 44 46 0 0 1 o o d r* 03 d 00 - r d o d 05 03 d CO OM" CO 03 d d d d O 03 d 03 T*“ - Is- d 00 CD T— OM- CO o o 00 T“ M" 44 37 43 4 8 oo LO CM LO LO CM o d o d 05 CO M" 1 M" o 00 MCM CM o LO o 05 m CO CO oo 00 5 d CM oo ^- CM oo d T 00 05 CO — 05 0 0 o OCO CO d d CO 05 M" CM V CO LO d 1 CO M- o CM d d 03 00 co 03 Xf M- d d d d 00 d d o d d o h- d d 03 - - CO 42 49 45 d CD o o CD LO CM 03 TT o T— d o O CM O O O CM 03 M- CO CO r* CO 00 CM o Is— CO 03 CO 44 45 d d d O LO c— CM LO CM d o o M- d O 05 CO T— o d d 05 d d o o CM d 05 o d o CM d d 05 00 oo LO CO CO co CO o o o 00 o 00 CM oo M" M" CM CM 42 CM 43 o 05 0 0 CM •Lf 05 CO 05 o o CM o 05 o CM d d d d d o CM 05 CO M" CO CO T— oo co MCO CM oo d d d d d O CM d d 03 CD CO 52 43 44 0 0 h- o o O T“ o o CM CM o o o o o o CM d 05 CM 00 - d 05 o ■sr o o CM 03 O^ co ^r CO 00 54 42 43 47 47 d d 0 0 - oo o CM d d o 05 o O T— q o o CM d d 05 00 in d 03 CM i— o CO d CD d CO 53 42 37 46 44 o d o d d 5h- 05 co 05 LO CO CM M" 05 o CM d 05 o o LO 05 s d M- LO CM § CM o o M- LO o 05 LO 47 4 7 o CM 0 0 r— 05 co LO co CM o 05 o CM o 05 03 CD in d CM o o LO - M" T— LO oo CO d O M" V" o r- d CM 05 CO 48 4 4

229 uo!SS!LUJ0d jnoLjijM pajiqiijojcl uoqonpojdaj ja q p n j j0umo jqBuAdoo 0L|j ] o uo!SS|UJj0d i^ m p0onpcud0y

o o O o o o p o o p o o o o o o p o p o p o p o p o o o NO b Li Li Li NO Li Li b Li Li o b b b b Li o _ i X Li o Li b Li co go o ■ O oo NONO00 o NO Pi NO O) ^ ^ lv} Iv) Pi oo o 4^ o _ i NO oo NO o o -*■ GO Pi O o O o o o o p o o o o o o p o o o o o o o o _ i o o p p oo b 00 CO CO bo bo bo b b b b CD b bn bo b 0 0 b b oo b b • o Pi 00 CO NO o 00 oo oo oo NO o cn o co oo NO oo o o co -vl 03

_A NO NONO NO GO NO o Pi "vl -Nl 00 CO o> + - 00 NO GO Ol ~v| NO o CO o

n ^1 "J ~«l oo ~n| -'J oo Ol Ol Ol Ol Ol ■y\ —I <3> -~4 -~J ^1 oo oo oo oo oo oo oo ■ 00 OO OO 00 -X ^1 o o U (O M O O) oo ^1 -J -^ 1 Ol GO —* oo 00 COCO 00

O O o o o o o o o o o o o o o p p p o o o o o o o o o o b b b b __i b b Li NO O -»■ O -k b Li Li Lx Li Li GO NONONONO Li NO NO b "O Pi GOo OO X co co o GO Cl IV) 03 O Oo ■X 4^ X NONO oo oo -pi NO oo

o o - i p o o o o o o o o o o o o o o o o o o o o o o o p b b o b bo b b b ~v| b bo b b b CD bo bo bo bo b Lj bo ■'J b •& oo "4 o Ol oo -A —i o -V| -pi oo NO o -'I Ol oo oo oo GO oo oo NO -Pi oo oo Pi Pi NO

_i _k NO O) O Ol 00 —^ OO GO J ->J -N Ol M N W Iv) 4^ N Pi Pi Pi II GONOGOGONONO—^NONOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGO GO N3COGJO-vlN)Cn-^J-'J-iPiG)-vlPi-'J-'ja3Piaia3PiPi-'JPiPiPi-vJ-^J 00

p o o o o o o o o p p p o p o o o o O o p O o OOO o o

NO ho NOPi b NOho o o o o o o “J* o o O T 3 00 oo Pi co co NO CO CD 00 CO oo - CO CO cn - cn CO CO GO

p o p o o o o o o o p p p o o o p o o o p O p O O O p O 00 00 bn w 00 00 00 CD b CD CD CD b CD CD 00 00 CD 00 00 00 CD b Pi oo CO oo CO N> CO CO *v| cn CO hO cn CD CD -v| CD CD CD *vj -J NO

GO 125 158 49 61 67 67 62 43 48 75 49 43 40 53 50 77 94 83 76 71 35 36 52 O CO cn GO . O o Pi * CO “vl S' II Ol OlOl Pi Pi X GOX X Pi Pi Pi Ol cn cn cn cn PiPiPiPiCnPiPiPiPiPiCn Ol o o CO NOCOOl O) -si -vl COo -X o o (D n i ^ ioooooooogooo - v -X o 03 o -p NOPi Ol 03 GOoo00 co COo> —* Ol-NOOtOOOONONlNOSOl to

o O o o O o o p p p O o O O o o o p o o o OO p o O p o La La La l_x _A o o o o La ho ho La _A Lx 1a o OO o o o o O k) b - a CD 00 -vl CD * COCD -vj cn A COCD *vi cn *v| 00 CO o CDCD |S0 N) -A cn

p p . o o o o o o o o p o o o O o p o o o o o o o o p o p b(0(D(ooo S -vl 00 . CO _ 00 b b b b b b b oo oo "'O bo b -Q -V NO GO -V OO S —v W Cl Olo> -v| CO 4*. CO NO o OO NO CO 00 00 CO CD Pi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.12 0.88 4 74 0.05 0.95 5 33 0.13 0.87 43 506 0.08 0.92 0.16 0.84 0 78 0.00 1.00 4 34 0.11 0.89 46 503 0.08 0.92 0.10 0.90 5 73 0.06 0.94 10 28 0.26 0.74 53 496 0.10 0.90 0.08 0.92 4 74 0.05 0.95 7 31 0.18 0.82 50 499 0.09 0.91 ) O O C ) O N f T O C O C O C ^ 0 O C O < CM d d o d d d d d o o d d Is- CO COOU)(DO)O)T-OO^IOO0 d M’h-^-COCMCMCMLOZZCM'M'COCM^IcOT-CMCMCOCM C O C M C M C - T O c I ^ M C O C ' M ' M C Z Z O L M C M C M C O C - ^ - h ’M ’ O C O C O C O M C O o o O O C - T O C M C CDlONLOCOCO0COmiDlf)^^-^ir)(DCDCOCOS(D^lO(D(DlON0COlO(D d o d O d d ■M- d d OCO CO 0 0 0 0 0 0 CO d d d d d d d d d d d Mf r-.h.h-h-.r-.h-h-h-h-h-h-r‘-h-h-rs-h*-r'-r--h-o> o> 29 CM CO Is- DCO CD 00 o CD CO 28 CM r-- CO 0 0 CM cd ■ d d T oo d CM o o o CM o CD o o o o 0 0 0 0 m — - CO CO M" LO t o o o o o CD o o CM CO o CO O) co Da 00 CD CM X— nin in o oo T— o CD o o o T— Is- >o O) o> o> 34 CD CM o o d d d d d d d d d o 00 o o x T- oo o CO o co o O) h- o o o — 35 o in CD m o oo o o o o o CD CM o o o o o o o T- o LO o x— o CD o

‘ 36 “ T — T 00 CD oo CO O o o CD COCO M- Is- m OI-in Is- CO 0 0 r- 34 * V 00 00 CM CM CD o CD CO in d d o d d O' CO CO CO o CO CD Is- CM o 00 o o o DC CD CO CO CD T“ O' o> CO in 37 CO CM '- f “ T 00 CD o o in o CD io in Is- CO CO 32 d d CO CO CM o d CO CO o c '- f CM o o c d d o CD o o CD .— MCO CM d CM CM s- I CO 26 d d d d d d d d CM CM CO LO COCO i"- 00 o in CD in O O Is- COLO d d d d d d d d d o in )O O) O) O) CO CO in nIs- in CO o> in o CO CD Is- CO o o 00 o o o O o o CO m x— o ■>t o d o o o CO 37 d “ T 00 CD T— •*t oo CO o co N- LO CO Tf CD m o CD o 34 o 00 CD CM CM h- d OCO CO o co o o d o o o o d d o o o d o o o> d d d d d d d d d O d d d d d M'M’M- M ’ M ' 'M Is- 0 0 CM r* i- CM CO 0 0

35 d CM o o h~ d d x— CO o 00 Is- t"- CO o co DCD CD CO CO 0 0 co CO T* CO CM d d O d d d CO CO d d d co CD o CO CM O O M- CM ■M* Is- DCD CD CO - x - x 26 CM d d d d d 00 x— CO 00 Is- CM - h o CO CO CO CO in in o o o o d o o 0 0 0 0 o c CO CM o CO CD i^ in s CO Is- O m d d d d d o co CD —in i— 37 CO CD d CM CM - h o o o 0 O Xf CO 00 h- x— CM in CD Is- CD 30 CO 00 d d CM CM D

34 o d d co - 1 d CD CO CM r- CD OCD CO 0 0 o - i CO d in 0 0 CM MT in i^ 0 0 CO o 00 d d d o o o CD CM CO j L C L C CO CO LO CO LO Tj- d d d d d d oo o o CO CO in (o o o) o) io o) o) o (o in in M- d o CO > M- )CDCDCDCDO) CM 35 o co o> i- co CD CO CO d d d d o O) o o o d d o — 37 o in cd m d d d d rt co ’M’ CO m - r o o CO co CO c~- MT CM TT CM in 0 0 nCD CO in - - as O) CM CM CD - r 0 0 d o co O CO 34 CO O) o o O O) o o o o o CO in o h- CD ■o- 34 o CD in m CM LO oo o o CO d d CD o co CD h~ 36 CM CO o> CO o CN CO CO CO LO COCO COCO CN CN o CN T— h- CO CO CO CO CO'N’ CO CO t— COoo 'N- r - CO T— CO 0 0 O) O) O) CO 0 0 O) CO 0 0 oo o> O) o> o> 0 0 O) O) o> o> o> o> oo 0 0 o> 0 0 0 0 o o o d d d d d o dddddddddddo d d d d d d d d d d d o o d

o 0 0 CO to ^r h- 0 0 0 0 o CO O) CON. h- h- h- CO o> CO CNCO

o CO LO h- t— 0 0 COCO h- CO x— CO CO CO CO CO o h- o > CN CN CN CO LO CN O cn LO CO Tj- T * T— 0 0 N- cn LO cn o h- h - c o h - T " f o o O) o o o O) T“ o 0 0 COo LO LO LO M- LO LO LO LO LO LO LO LO LO LO LO LO LO LO m LO ^r LO 96 oo 'T“ 0 0 CN CD CD 59 54 76 36 82 75 76 36 53 37 37 37 34 37 42 79 50 34 46 46 43 49 40 65 oo Is - CO r- CO T f CD 48 cn 1 0 2 CN CO CN LO r*- m - N- h - Is- O) h - ID CM LO LO 0 5 CN LO o 0 0 LO ID LO o o o h - o Is - h - Is - LO o CN h- o cn 0 0 Is - 0 5 oo oo cn O) cn p CO O) 0 5 cn o C5 C5 cn C5 0 5 0 5 0 5 O) o cn 0 0 o ddodooddoodddoddd dddd d d o o d d d T—

LO CO CD CO 0 0 oo CO ID oo LO LO CD - 0 0 LO CO o CN LO ID LO o o o CO o co co CO LO o CO CO o o T“ CM o o T“ T* X—o o o o o o o o CO o O o o o o o o o o o O o o o d d d d d d dodddooddddddddodoodd o o o d o d d d

CO oo CO CM CO CO CD CD CD CD CD 33 37 37 33 34 33 36 35 34 36 36 35 36 37 36 37 37 26 37 37 36 33 CO CM CO co CO 0 0 CO CO 0 0 0 0 CO 35 38

o CM CN LO T“ - - ID LO CN CO CN CN CD Tt CO CM - o CM CM CM o o o - o x —T“ - CM o co CD o

LO 0 0 CJ» Is - Ti­ Is - 0 0 r * 0 0 CO CO CN CM CM •N- Is - Is - o Is- 0 5 Is - CD Tj- CD co T i­ CM Is - CD 0 0 CM h - G> 0 0 O) e n e n E Is - 0 0 0 0 0 0 oo O) 5 0 5 O) cn O) cn 0 5 0 5 o 0 5 cn 0 5 0 5 cn Is - Is - e n CD r-- Is - 0 0 CD h- ddoddoddddddd o d o O d d d T—O o o o d d d o O d d d O d

LO CN oo CD o> oo CN O) o> CN cn M" 0 0 0 0 CD CO 0 0 CO o CO T—CO T f CO CM CM CO CD CO CM CD CO o o o o o CM o o o o o O o o o o o o o o o CM CM o CM CM T“ CN o d o o o d oooddoodoodddodoododd o o o d d o O o 09 69 69 c n c o c o T— 09 74 77 76 73 75 75 72 72 72 73 76 76 78 76 77 76 75 73 73 61 64 60 CO Is - CO CO CO CD 65 64

T f 05 T— CM ID Is - CD 05 ID ID 05 c o Is - c o CO CO CO ID CM CM o CM CM CO ID ID Is - Ti- 17 17 14 T— V-* - 18 x — 13 T- 18

CM CO o CM M- o CD CM CO M- M- T f co CO CD CD CO TT CD CO Ti­ CO CM T i­ CO 0 0 CO o 0 0 CO o ID T i­ 05 CD Is 05 05 05 05 05 05 05 05 05 05 05 05 05 05 c n 05 cn 05 en 05 0 0 en Is- Is- ID 0 0 c n 05 0 0 CO en ID oooOooOooooodod o o O d d d o o o o d o o o o o d o o O

CD CM o CD CO o CM CD Tt CO CO CO Tt CM CM T f CO CM CM CO Tf oo CO M" CM Is- o CM o ID CO 05 T— T“ CM T“ O o O o o o o o O o O O o O o O o o o CM CM T f CM o § CM CO o CM Tfr dooOodoooddoood o dddddoododo d o o d d o o o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.27 0.73 13 65 0.17 0.83 1 37 0.03 0.97 8 6 463 0.16 0.84

0.31 0.69 10 6 8 0.13 0.87 1 37 0.03 0.97 82 467 0.15 0.85

0.16 0.84 6 72 0.08 0.92 2 36 0.05 0.95 55 494 0.10 0.90 0.12 0.88 4 74 0.05 0.95 1 37 0.03 0.97 72 477 0.13 0.87 (Dt>-(DT-n(OCM^NCM^O(DTf0OOMtDO(Min(0(D(ONU)(ooo(M(»j(oinffliONntD n O U ) N O ( r O N O ( D ) ( C D Nddddddddddoddddddododdddddoddod N O ( DO ( D ^smsfflffl'fN d O d d O CM CD OO h- V T“ 0 0 t CM - LO OOOO LO —T—T— T— CO 0 Tj- t h- CO ) O S N O ^ O ( N S S D ( N i f l N N O M ( S n i M ( M ( M ( N O O O ) O O 0 0 - 0 0 CM 0 0 0 0 t LO ^ o> o t >o> o> MCM CM o o o o o o -^ t Tj- ' - T“ O O CO 05 O in m o o> ici ci CO O O O O O O v ci o h- t O0OO- -O -« O O 0 -O o o d 0 0 0 0 CO h- d d d d d d d d d T— CO d d d d d d d o d h- 0 0 o> 505 05 5CO 05 o 05 o 05 r ^ t co oo h- 0 0 — 0 0 05 05 05 o CM m o ^3* t O O O O O O O O O O ^ o o o o 05 CO i - T— 05 m t -OOCM 0 0 0 0 CO N- •'d* m t ^3- — d d d d d d d d d d d in tj CO CO T—T—T— - 5O 05 505 05 d d CO NT O 05 t - 0 0 0 0 d d d T- CM 0 0 t OC ^OO '^0O CM -O 50 05 05 05 CM o o o 0 0 LO ^r CO m “ " T CM h- d d d OCO CO o LO h- 505 05 o nto in t O O O ^ 0 0 o CM o 5CO 05 d d - v 0 0 05 05 N- o LO *"* CM t - GO CD CD o CM o CO CO 00 CO o t j - CM CM h - CO CD CO CM o CD CM T“* Is- N. Is- CD o CD o 00 00 oo o> o> o> o> 00 o> O) o> CDO) CDO) CD CD CD 00 00 00 o> O) 05 00 o> O) 00 00 00 00 o> 00 CD CD O o o d o o o o o o o o o d o o d o o o o o o o d d d d o o o o o o o

CM o 00 CD o CM Is- O) Is- Is- o (0 00 CD CD 00 CO Is- Is- oo o 00 O) CO CO CO o CD o r - o o o o o o o o o O o T“ o o T” o o T“ T“ T“ o d d o d d d d d d d o d d d d d d d d d o d o o o o d d d o o o d o o

’M* T— T" LO O CD CO CD CD o CM CD M- CO CM CD Is- 00 CO CD CO CD LO T* LO T— o Is- CD T*" CD h- 00 cd Is- CD OO CD 00 O CD CD OO CD O h- LO 00 T“ o CD CD O o 00 t^» Is- o> CD 00 CD LO LO LO LO LO Tj- i o LO LO lO 'M' LO LO lO IO ’M’ 'M* 'M’ LO 96 09 69 09 T— CM 58 78 54 53 50 39 37 53 35 50 36 54 58 58 55 55 65 6 6 72 70 43 44 48 45 49 40 46 47 42 Is- CO

05 o o CM CD LO LO o CM Is- CM Is- LO Is- CM LO LO o CM LO Is- e'­ 1^ N- o CD Is- cn CM Is- m K o e'­ h - oo o q CD 00 CD CD o CD 00 CD CD CD 00 CD CD CD o O) CD CD en CD 00 o 00 CD CO cn 00 cn cn o en 05 T- r * o *'“ * dddd ddddddddd d d d o d d d d d d d d d o o

LO o o 00 1 0 o 00 co 00 CO LO co 00 LO LO o CO LO CO CO CO co O CO - CO CO IO co o CO co x— o o o o o o o o o o T“ o o o o o o o o o O v — o o o o o o o d d d d d ddddoddddddddddd o ddddddddddddd

00 00 CD 00 CO CD CO LO CO CO 00 CD Is- CO 00 CO (O CO 34 35 34 36 CO CO CO CO 35 CO 35 37 CO CO CO CO CO CO 35 CO 37 37 co CO CO 34 37 34 35 CO co 37 co 37 37

o o CO CM CM o CO LO CO CM LO CO CM CM o CO CM T- LO o CO LO CM o

CD CM LO CM CD CM CD CD CD CD Is- Is- h - h - LO h - o CM CD CM IO T“ o CM 00 LO r* CO CO Is- CM LO Is- 00

00 to 00 00 CO CO CO CO LO CO o 00 oo LO CD o 00 CM LO CD Is- CD Is- CD CO 00 LO CO o o o o o o o o o o CO CM CM CM CO T— O CM CO o o CN CM CM CM CO CO d d d d o o o d o o d d d d d d d d o dddddddddddd o d o o 09 09 09 CMCD CMe- CMIs- e- h- CO CM o CM oo CO xr- o CO co T- Is- LO Is- CO CM 67 76 6 6 64 i'- CO C'- Is- Is- r-~ i— Is- i— CO h- CO M- CO h- f'- to to Is- Is- LO LO LO 63 48 CO to

CM CO CM 0 0 ■M" O CM CM r- CO T” IO CO CM - co co C0 CM 0 0 r- 0 0 ■M- N- X— CM 18 16 X— X— - ---- CM CO CM 25 CMCMCM T— 30 26

CMCM o CO CO CMCMCM o O CM o 0 0 CO o CO •M- o oo CO CD ■M- M- CMCD CM CD CO CM CO 00 0 0 cn oo 0 0 oo CD 0 0 cn 0 0 cn cn cn cn q r- cn 0 0 cn 0 0 cn cn cn !■'- cn CD CD 0 0 0 0 CD CD 0 0 CD 0 0 cn r- o d d d ddoddoodo dddooooddoddddddoddod

oo oo o ■M’ M- 0 0 oo oo CD o o CO oo o CM■M- o CMCO o CM MT ■xf CO CD 0 0 X}* 0 0 CD 0 0 CO■M- Is- o CM o o T~ X— XT" o o o CM o CM o o O CMo O o o o o o CM d d d d d d d o d o o d o d d dddddddddddddddddddd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.14 0.86 3 75 0.04 0.96 1 37 0.03 0.97 40 509 0.07 0.93 0.06 0.94 11 67 0.14 0.86 1 37 0.03 0.97 41 508 0.07 0.93 0.06 0.94 5 73 0.06 0.94 0 38 0.00 1.00 33 516 0.06 0.94 0.02 0.98 13 65 0.17 0.83 1 37 0.03 0.97 51 498 0.09 0.91 Is- d d d d d d d o CO T” o o C\J TT C5 s-I-I OCO CO * Is Is- - Is o d d d d d d d CO 0 d 0 d d d o o o o o o o o d o d o o o d o d d d o o d o d o d d d d o d d ~ T d o d o d oo 05 CO o o co in o o en 70 132 co CO Tf LO d 05 CO - o Is- o 00 CO CM CO h- o CD CO ■cr 52 37 95 CO d LO LO CO o 0 0 CM o CO o o CM o CO d d d d d d d - v CO t 0 0 CM 00 00 d d CMCM d —

M CM CM - i 64 OO - O) CO d d d d CO CM o o o o 05 IO IO 0 0 Is- 00 CO CO “ T CO v o 00 CO CO CM CO Is- CM CO 5 0 CO O) IO LO o LO CO 05 CM CO CO o o CO d d o in m ■ in m

- 54 Is- o> ^r~ CO CM CO CO 05 Is- o CO CO - - - co h- oo CO 49 37 oo CO O05o 5 0 CO CO CM d 05 ^ 1 o CO cn d d o o CO ■M" O CD CO n ■M- 73 37 6 6 o 05 o ’M* d d ^r o 05 Is- o CO cn cn CO in o CO m 77 37 55 d d d d d d d d d d 05 CM o 00 LO s OLO LO Is- - h o T— o o p o d o d o d 05 CD o I-° Is- T” o o CO 0 0 o 05 o

' 42 CO d COCOin Is- - h o o o T-* o 0 0 CO 0 0 d d o o d d d d d o d - T CO Is- o CO CD M-

6 8 72 0CO 00 h- d M s- Is o o o o in o o 05 IO cd CM co CO o CO CD ■M" m o CO

73 74 1 d CO CO O) Is- d d o 0 0 CO - CO CD ■M" co 67 37 84 00 CO d CMCM CO X— CO CO o o p o 05 o CO 0 0 o 05 00 00 r ( r (O r 1r- ^ Is- CMCOCM CO d d CM h- CM CO CM CO 05 Is- d d d d d d d d d d d d d d d d d d o co - oo 0 0 CM 00 o M- 64 37 CO o o CM o 05 IO O LO in 05 CMCM CO CO d T— o o CO 00 oo 109 CM r* 00 CO 0 0 o O ■M- 05 to o V” o in 0 0 CO d d d d d " M CD o o T— o 67 36 s CO Is- M- CM CO O O 5 0 o o T— o o Ooo CO o o co CO CO o CM 00 o d “ T o o CD 50 38 140 o> d ■M* O CD CM o 0 0 0 0 CM CM Is- o o d d d o d o o o d 00 00 5 CM 35 105 00 CO Is- d d d d d d d d d d d d d 0 0 o “ f o o CO o> o o 0 0 CO 0 0 - T 05 £ M- £ CO CO 00 CM d d d d 00 CO CO d d d CM 0 0 t T— o o o o 05 CO 0 0 o in in CO o CD — 74 6 8 CO LO m CO s- Is 05 0 0 CM CO o Is- o — T d o CD in in 00 00 CM 74 37 00 Is- CO M s-0505 0 5 0 - Is 5 0 d o> CM o 0 0 CO d ” T * “ T CO 0 0 CD o °^^cNcoionooNin o o o

6 8 35 70 1 05 o d CM o o *M* M* d d 05 - h o CO 0 0 CO - d o o o d o d o d CD o d 67 37 57 O) o o o o “ T CM 05 Is- o CO * r 0 0 CM - T oo CD o d d 64 37 57 CO o> 5 0 T— “ T “ T o o o o o co oo CD t-- o CO CM 00 00 76 58 05 CM o 00 to O o 05 Is- o CO - CD CD CD o •M- o d CO CDCD M" o 75 37 45 o> o CM o 05 LO O O o o> in o m CM o o CO o CO 73 36 47 o> CO o h- d 5 0 OTTIO d 05 Is- o CO - CD CO 00 ■M" d o o COCMCM 75 37 40 o 05 o o o o 5 0 5 0 OCM CO o 05 IO o in CO CD CD o CM co o 00 00 o 70 56 O) o ” T M- p o o o co oo o o o CD 00 i-» d CD o 57 05 CO o o Is- LO CM T” p o o o co 0 0 CD •M" o CO CO e'­ co o CD o O " M 37 CM co in Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.10 0.90 8 70 0.10 0.90 1 37 0.03 0.97 41 508 0.07 0.93

0.02 0.98 6 72 0.08 0.92 0 38 0.00 1.00 55 494 0.10 0.90

0.06 0.94 10 6 8 0.13 0.87 2 36 0.05 0.95 59 490 0.11 0.89 d o d o o r—c» CD CO CD - T 0 o r-~ d d d d 1- d d d d S O O O) N S N in inn s Cls ■ d o o o d i- o o o o o co co co r--N- oo cn oo d d d co -O - - - - - O T- CO S CO S N S CO S CO o o o oo o CM m o o o o o o o ) - w 0 co in o) co oo I- oo CO )

d d d d d T“ o o o> O) CM o

34 CO o d d d ^ o> i^. O) to m x— o o 0 CO 0 0 d d d d CD h- o o o O) CM o o o o o o oo

>CD CDo> o o T~ CD 0 0 p p “ T o o o o OCO CO m 0 0 CD CM o CO CM o o o o o o co oo oo T“ 72 CM 0 0 O d o o -h- h- o in CD CO o 0 0 o T~ o O) 00 o CM d 70 CO CO o o o o d o o d o d d d d CD CO IO o o o o CO d d d d d o CD CM - - - d d d o CO O) o oo o CM

72 37 69 cd CO CO CM d -h CO h- h- CD nm in o CO -C CO CO h- d d d d d 0 0 0 0 CM O CD 37 d d d d >o >o> o> o> o> CO CD CO o CO CD in o CM O o in CD oo o o o o 74 37 CO 00 IO CO d h- CO CD CO d CD CM in o 00 o 75 33 0 0 CM o o CO CO nmin m in o 00 o DCD CD CM 0 0 o O h- CO CM CM CD o CO i O) •M" - i - i CM CO - i 00 h~ o

— 35 09 h- CO o> o o in d no in CO CO CM h- Is-. CM co o o o o o CO d d d o d CD nin in o o “ T p O O O C O C O C D C IO D C D C O C CO o 0 0 d d d 0 0 CO o CO d T“ h- CD CO o o 65 d d d d d CMh- 0 0 0 0 0 0 00 N M I N t n i N N S comoooooocnaicooo O O ( 'M' d o d o in co d d d d d d d d d tj C o co ■Cf o 0 0 in o o o o ~ T in t T— CD d d 00 CO CD CM - 13 25 - CO m j t o o w CO d d d d d h- CM f'- o t d o CD

57 19 19 d d d -r- h- o CD OO CO o T— CO CD in 0 0 0 0 - CM o O o o o o o CD o 69 37 CO CD CO T—T— ■M- nCD in t d d d d d d CO CO in CO m m CO in in i". CM t- CM h-it t o CO LO - — - CO o o - i 00 - M i t o o o 0 0 CM CO CO r r O M "t M O r r oo cm cm cd oo d d d d d d d d d o CD o ^ T“ o O) CD d d d o o d d d in 0 0 CO CO CM 0 0 CD CD o ■M- o CO CO in CD tj o m in d d CD CO CD CD s d d d d NCONNSNCOI O C IO O C N S N N O C -N M O C S - 35 -O) 0 0 tj CO Is- CD CM coin CO CD CD CM CO CO CO CO CO CM t - -

in 26 d d d d CM d h- m M- co in t CO CO d in in m o in co co o h- CM - T— d d O d o d d d d CD CD in o CM h- d d d d d CD CD CDN- d d d CO CM CM 0 0 O) ■'t d d d d d o CD d CM CD d o d oo ■cr in CD CD CD oo o CD in in o in ncMi o M o o c in M c in N C CO CO T co in oo CD in CM o o CD — CO o O N- ni in m in in CO o CM oo t o> O) CD oo o o " -C OO “2 O) I"- CO CO N- o o o o o CM — 35 CM-M* CM d d d d 0 0 CD o o CO CO ^r in o o in CO CO O) t CM d o O) o 00 o CD — o o CO CM o 0 0 o oo CM CM CM O) CM CM o 000 00 d 0 0 CD CM - h d 00 d d d CO ■M- CO CM CM oo d d d O) o o CD CM o o o o o o T— o CD o CD CM T“ -00 h- o 00 p m o o 0 0 co 0 0 oo os oo CO Mm CM o d ■sr * T “ T CM 0 0 0 0 o d ’M* 00 d CO co CM co T— CO CD m o o CO o o d 0 0 CD CM o CO m CO d CO CO M- o co CM O) d oo CD CM CO o o oo o CM co co Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.12 0.88 7 71 0.09 0.91 3 35 0.08 0.92 31 518 0.06 0.94 0.22 0.78 7 71 0.09 0.91 4 34 0.11 0.89 40 509 0.07 0.93 0.02 0.98 6 72 0.08 0.92 1 37 0.03 0.97 38 511 0.07 0.93 CO Is- d CM d d d o to o o CO 00 o o o d d d d d T— d o d d d d d OC CO CO CO CO o o d CD d d d 00 in o o O d o d d o

O 37

o 000 00 o> 00 Is- CO CM CM d d d d d d d d d o d d d d CD o 00 OLO CO 0 0 DL nC ID CD in LO CD CM 0 0 00 d CD CN o oo o 35 09 d )CO O) T— 00 o> Is- 00 —T— T— COCO Is- OC I— CO CO o o T o o — 13 33 o O) o o o o Is- LO LO LO o 00 Is- T~ CD o CO Is- 5 0 0 0 t o o o o — 13 37 41 a> o CO d d T— h- Is- CD O o o CO T“ - r co d d d CN o 05 CD 37 32 O) CM o 0 0 O O COIs- CN cn CO d o 00 1''- cn CO co o d d o CD T|- en Ti­ 35 42 o> CM 0 0 d d d o LO CD LO CO o LO CN CO CD oo d ^— CO d d oo o o h- p T o o — 46 d O) CO o Is- CM OL OL LO LO LO LO LO o CD LO CO CD d o o o o o o o o d LO CN -i -h i— h~ h- i- i- CN co cn cn CN o oo 05 CN CD 37 d d d O) CO o O) o o h- p o o o o CO oo CN cn CN cs co oo co co ID co co Ti­ 05 CO 40 O) d o CO V"* LO CM CD o 00 co N" nc nc ncn cn cn cn cn cn Dc —C N1- CN CN 1— cn ID o o d d d d o CD d d d en Ti­ N" 35 34 d d d d o> o •t— d o o> CD CD CD LO o LO CN - r ooo co CO CN 36 50 d o CO LO LO Is- 00 CD - CO o o o d d d d d o o d d d "ID N" o NC co CD CN 05 CN 34 34 CM >o o> o> o> d d d o 0 0 O LO COLO 00 Is- ~ h- r~- CN o d d d o o Tf oo CD 33 44 o CO T— CM LO CO CD LO CO CO o d d d NCN CN CN o 05 o d d in o to CM o LOLO LO o CD o LO -C h- CD i- DCD CD T“ o o p o CN 36 29 )0> O) MC CD CM CM d o 0 0 O LO CD CM T- o 00 co d CO LO oo ID d o CN oo ID d 05 00 CN 44 d d d d d d d o o o O ■M- OLO IO CM d d d oN" co o 00 CD d o d d d d CN o o o o o o ne nc )cn O) o cn cn o en cn T"1T- CO CN CO CD Ti­ CN d d o d d d o o o o CD 35 45 00 Is- 00 CD - oI ID ID co o o CD o o Dc co co ID 34 75 o o o> o> o CO 00 CO - T CM o 00 CD CO d d d d d d o (■'- o CN TC 05 oo 35 o CO s CMLOIs- LO LO LO LO CO CM CD LO o LO iddd d d ci d CN CO CO i— T“ o o o o d d d d O) CO o Is- T-* cn - co CN t t h- oTT oo o CN o oo co 05 34 37 O) d d d o CO CD LO CN CO CO o ID LO d 1- o oo 05 CN co 34 o> o CO ’M" OO Is- d T*“ CO DCO ID CO CO o cn ID h- TT d d ID o o T— p o Tf 35 O) T— o O) CD o> CD CM — T iddd d d ci o d d d Is- co T— DC CD CO CD i- Tf cs oo d - Ti­ 05 CO 30 50 O) d CO o o 00 d o . s LO LO CD - r 00 nID cn d o d d d TT CO o d d d d CN o o o o 0 0 o o cn 34 41 )0 00 00 O) CM o o o 0 0 Is- CO CM CD o CM cn cn - r o o tt o o co 45 d 00 CM d d oo LO CD CM 1^- CO co o o d d d T— —T— i— DCO CD o cn d d d d o o o oo oo T“ t 05 CD ID

T 64 30 66 CM o 0 0 LO Is- o T— o CN cn T— CO T~ O CD 05 05 N- T“ ID 27 000 00 d Is- d d d " V CO CD 00 CM 0CO00 d d d CO - T CN O o nco cn CN h- o 00 oo 05 CN co 70 o o 00 ^r* CM 00 CMCM 00 Is- ID CD CD d d o d d DID ID CN DID ID cn o 33 67 O) o o CD — T 00 CD N- 1- Tf co ID d 05 CO ID N- 34 57 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.02 0.98 7 71 0.09 0.91 6 32 0.16 0.84 40 509 0.07 0.93 0.04 0.96 6 72 0.08 0.92 11 27 0.29 0.71 35 514 0.06 0.94 0.16 0.84 2 76 0.03 0.97 5 33 0.13 0.87 43 506 0.08 0.92 a> (0’!fC0C0TfN°(0(0'J^'t0nnt0t0ininc0(D(Dt0(0'}-'^N CD CD r x OiO LO t o 00 05 o o O) oo co - o o o d 5 0

74 o o d 0 0 ox xr xr io d o o 00 CD CM 05 CM M- CJ) Is-

o 0 0 CO - v Is- xr d d xr CM d d CO d d N- CM 05 T— d o o m M" CJ) CO Is-

- 55 29 d 0 0 0 0 T— 05 LO o 05 LO d d d d d d o d d d o oo o o LO o ■M- T— oo CM 0 0 CD 67 69 36 ) O 5 0 T— o 000 00 d d LO d 00 00 d d d d t 05 d d d 00 CM d d o d d d d d d d CM - - 0 0 oo 0 0 0 0 34 — d d 0 0 “ T " T 00 O) d O CO CD 05 M- O) CO 54 34 5 0 CM o o o 0 0 LO 05 LO o CO o LO o oo o oo CJ) CM O) CM 72 CD > o o o o - r o o 05 LO d X“ d 00 Is- d CO o o CM oo 05 o CO CO CJ) 70 5 0 ) O > o CD t x Io o o o d d d o d d d 05 Is- 00 d d d o d d d CO o o o o o o O) CO CO CD 37 o i LO 5xT 05 LO o 05 IO LO o CO o o o o 73 36 d o o CD CD r x r x LO 00 05 - CD xr d d o CM CJ) 0 0 67 0 0 34 o > o LO Is- d O) in o 00 in d CM 0 0 CM o CJ) 0 0 64 36 5 0 CO d Io o o Is- d d 00 Is- CO o co o o d d O) CM CO 0 0 ■M- 72 33 o o 5 0 T— o 05 505 05 CO 00 05 - MCM CM CM £°£! co°£ ° o !c £ o !o £ ° !£ ^ o c ° ° « o o ? £ d d N- oo O ■M" CJ) CO o d 5 34 5 0 5 0 o CD o d d d d d d d d d d - v CD CM o xT o 05 IO d d d d d d d d d d d d d d d o io '- f CO o oo CJ) CM 59 36 o o LO T- s MCO CM Is- o 0 OO 0) 0) o d d d d r r 0 0 0 0 0 0 0 0 0 0 0 0 O O o o o d o> o o CO CJ) d o d d o d d d

70 0 0 0 0 XT 00 0(0 rr r O - h o o 0 0 co 0 0 T~ CO M- 65 0 0 d 0 0 T— CM XT 00 M N D M M M CM CO - h CJ) CM o oo d T - T - o o o 58 o 5 0 O05 0 CO T- O05 CO o o Is- LO 00 oo o c d oo - h CO CO 0 0 OO ■M- d d d

d 0 0 T— 00 t x n 0 o o CJ) CM N- co CM h- n ) 72 in N d d 5 0 CM 0 0 LO o 0 d O LO 05 LO o ■M- CJ) CO o o 74 ) 5 0 OCD CO o OO o Is- LO 0 n ) O o 00 d T— 0 0 CO d

63 )

o 0 0 Is- t rCM xr s CO Is- LO 0 0 Is- d d T— o 0 0 CO CO CO d d GO - r d d d d d d d CD 0 0 CM CM f- oo d d d d — 99 d CO 0 0 0O) 00 LO XT d 05 05 io o CO CO COCO LO IO CO LO CO 0 0 5 0 o o o o o - T o 05 05 io r x CM o o o d d d 0 0 o O) o LO o o CJ) o 70 0 0 s- Is 5 0 0Is- 00 d T— XT s LO Is- CD T— O O CM 0 0 LO o O00 LO d d d d 00 LO T— CO oo ■M- 66 oo T— CO o d d t X Is- 05 LO xr o d o o o CO CO o 05 CM co co CO f- o 72 5 0 T~ O o 05 IO o t x Is- 05 5Is- 05 00 - Is - oo r- CO CD 0 0 O CO M" O) d d 0 0 T“ CD xt xr Is- r x Is- IO CM m d o 05 CM Is- CM oo oo 62 - CM co 00 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.14 0.86 15 63 0.19 0.81 1 37 0.03 0.97 86 463 0.16 0.84 0.04 0.96 22 56 0.28 0.72 1 37 0.03 0.97 64 485 0.12 0.88 0.00 1.00 13 65 0.17 0.83 0 38 0.00 1.00 71 478 0.13 0.87 ' N O - O T ( l f N f O O ( ) O l O O i O f t f - D T ( O N r - - ' i O N r I CD O ( O ) O O a r O O c O n l i o f f N O N o S ( ^ O l o ^ ^ f i \ O l N c n i o T— o T— o T— o — T T— r^CBI^M-CMCMCMCN o CO CO 05 ^ ? ® m o)O)T-tD^O)O)(oo)McoNSO^-ioioir)oooMS(osu)'ir0(Oin0in^ d d d d 00 CO d Is- o d o o O’ o CM CO CO co in CO Is- CM o CO V“* o o 05 miO

1 0 2 d o o d o 3 o d o 05 CO o CM oo CO o T— oo d o 00 o o co in co o CO en e'­ 95 CO CO o 05 5 d o d d d d Is- o 00 o - CO in 0 0 in

) o J ! 37 75 d d 0 0 0 0 v~ 05 o o o o o o o o d d 0 0 0 0 CM co oo 65 1 oo CO d d 05 o o o o o o CM CO CO CO CO 67 T— — T — oo o CD 0 05 N- o oo o o o 05 d d d CM o d o o co 0 0 CO -

® ) o ° ) 37 67 o d d CO CO d d d o d o d o o d o 05 0 0 d o d o d d d CO d d d 00 Is- in CM OCM CO 0 0 h- CO CO 64 o> CO o o Is- o o o 05 M" d d d o in o> m CM CO CO co 0 0 CO CD o d o o o o 05 0 0 o 00 o d o> Is- T“ CM o o> co r^ 32 CM o CO o> o d 05 CO d o 0 0 d CD CM CO ■M" o CD CD T“ 35 43 o CD CO o Is- o q o d d o o T_ q o o o t o O ■cf 05 co co oo — 36 T— d d d d d d d o d d o o> >o> o> 0 0 CD CM o o o 05 -*■ CO d CO CO o CO d d d o o CD in 50 o d d o o o d MC CM CM CM 05 in o d o 05 CO o in CD co CO M- O) 53 o> CM o CO m o in O) o d 05 0 0 o o q o CO CO CM 42 o Is- o o CD CO 3 o in o o 05 m T“ 05 CO o o co CO o o o o o 05 o> CO o co 05 i"- CO CM O t CO d d d 0 0 0 0 d d d o 0 0 O) CM r-~ CMCO — o CO o o d o o d d o CD ^r co in 05 in o m d d CM o O d d CD CD o o 05 M" 5 36 f CD t— O CD CD r-. - M ■M" 00 CM T— O co CO CO SO) T - O O C O S t M O ) O N ( * ) CO oIs- oo t CM 00 d d 00 CD CD o o d o o o o - M CM ■M- co o o o 05 ■M- o o oo co ■O’ CO — CO CO o 05 in in co CO d o o CM o d d CO CO o O) CO M" ■sr T— CM 0 0 0 0 CO o 0 0 05 CM CO CO o d CO 0 0 d d o CD m in 35 CD o T— d CO 00 M" OC MCM CM CO CO CM o 1^ co CM o 0 0 o CO 05 62 o o o Is-o> o o 0 0 o d 05 CM d o d o 05 0 0 o co 05 1^ CM d d o o o 35 57 COCO 'p-*CO o in 05 in co CO d 0 0 ■M" o 05 CO T— CO -cr 70 CO Is- d d d o d o o d o m o o d 05 in CO CO o o CM o o oo o o o CO 05 t" o 69 CO CO h- CM 05 r-- - o CO oo CM d 05 0 0 27 72 T— o O o T— CO 00 M" CO o O 05 co d o in 05 m o O M- o 32 56 CM co n c Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.14 0.86 4 74 0.05 0.95 3 35 0.08 0.92 60 489 0.11 0.89 0.12 0.88 1 77 0.01 0.99 2 36 0.05 0.95 54 495 0.10 0.90 0.08 0.92 4 74 0.05 0.95 3 35 0.08 0.92 56 493 0.10 0.90 o o o CD CO r-f0NO(0°®(D0)0)(DT-nj;^CM xr N N D ( N N 0 S 0 0 ( 0 0 ( 0 N D 0 ( D 0 ( S 0 S - 0 h 0 K N 0 SlO(O(OU500CM(NO)O)CNSinS^(O 0 0 0 0 0 0 — ^ O O O O O o CD CD o d d d d d d o> CD d d d d d d T— o c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o o cocococDincoioYf'-coYYinYCMCo o LO CD CD IO LO CO o tXT xt d o CD o O o> d o 0 0 CO Xt d CD CD CD o d O d o o o d d O LO CD CD CD LO LO LO LO LO CD o o d T— T— CO CD o o CO d CD xr o h- CO CM 0 0 - r h- CD CD o o o CO o CD CM Y“ o o LO CO CD CD CMCO - r O LO d d d d o d o d d CD o d CD CO Tx rxr xr xr xT CD LO CO CO o CM d d d d d o d d d d T— o CD CD o o 0 0 r- LO "M" Y“ 0 0 CD LO CM LO Is- CMO o o o o CO CD o h- CD d d d CO d d d CD CO CO o CO CO T— “ T d d d 0 0 CD o CM CD CO d CD CO CM — T * r CD CO CD Y*“ CO CD LO o CD CD o CM CD CO t o CO o CO CO CD o> - r CO CO LO LO xr T— OO CO — o o o O o o CO t o o CO d o d d CO d d d d CO xr CO rxr xr T— CM d CO 0 0 h- — o CO d CD CM O O O CD CM —T“ T T— CD LO CD - T o d d d d CD o CO d d d d 0 0 CO CM d CD CD CD CM xr 0 0 r— Y““ 0 0 CD CO CD CO CO CD CO d CM h- CO Y~ CO CO CD CD Is- d CO CO o CO CM LO CO 0 0 xr CD CO o T— o o CD CO CO CM CM t o CO CD d d T— d d CO T— _ CD O O - d d o o o> CM d CD T— 0 0 d LO CO - r LO d O CD xr xr o CO d CD xr

N n n o n i ^ o r ^ o ^ N o t n - T M c o o d d d d d d d d d d COO)SNCO(DO(DO)0(DinONNn d d d o o 010 d o d d d d d d d d d o d LO d d d CD txr xt LO 0 0 0 0 0 0 0 0 0 0 LO 0 0 0 0 0 O O 0 O O O O O CM o CT) oo co oo d T— CO d CD CD oo CO xr LO CD CMCM rr—r- xr CMxr CO o o CMCMCM o o o o o 05 CO CM Y” T- 0 0 LO LO LO o o o o o o o CO o r—Is- r- r^- o Is- o o d o d o o CO d d CMCO Y CO CO CO ) 0 o o o CO CO CD co o CO 05 y co LO CO Is- LO LO LO rC CD o CO xr CO CO ) 0 CD CD p co Is- CT) CM CM d d CD Is- o 00 d d d d d ) OL rLO LO LO xr CO 0 0 0 CM xr CO Y“ CD o CO CT)Y CD CO o CO ) 0 X”* CO o o o CO LO CO r- CO o CO oo oo o CD CDr- o CO CO CM ) CD CM 0 t Y— Y“ d d CO CD CD o o r- d d rLO xr T™ m CT) r- ■M- Y O O - ) 0 LO o 0 0 CM CO xr CM d - f CO LO h- CO CO CO CO Y ) CD CD 0 0 0 d d d Y“ xr o o CO CO io ci o d d CD CM LO d o CO LO o o ci d 0 0 CO o Or CD LO r- o m m CO r- idoood o o o d ci o o Y— CO CO co Y in ) ’M’ 0 LO LO xr i D0 CT)CD 05 CMIs—m 0 0 f- o o> CO o CD 05 o - O - ) 0 in ^— Oi CM CO in o in CO oo d d o o 0 0 CD 1". CM CO o o CT) 05 CMCO Y CM co 'i CM — ) CO 000 idddd d d d ci Y Y t o oo -m f- Y o co N- co m m 0 0 o o o o oo CM Y CO oc co co co T— - T m CT) o T— t 0 0 CT) in h- o d d d CT) CT) Y o d d d CM CM - h oo m CO o Y O - ) 0)0000 in 0 0 o 0 0 5 o o d CT)CM 0 0 f- o o m CM 1"- CO o o v— co Y Y t o CO CT) Y CTJh- 0 0 t'- o T“ 05 in o T“ co h- 0 0 oo CM - Y m t r— 0 0 0 0 CM C- Y N- CT) N- co _ o oo CO Y Y m o Y - _ Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

0.12 0.88 6 72 0.08 0.92 1 37 0.03 0.97 50 499 0.09 0.91 0.06 0.94 6 72 0.08 0.92 2 36 0.05 0.95 69 480 0.13 0.87 0.08 0.92 7 71 0.09 0.91 8 30 0.21 0.79 111 438 0.20 0.80 0.31 0.69 7 71 0.09 0.91 4 34 0.11 0.89 64 485 0.12 0.88 o 00 o 0 0 d - d d d d d d d d d d d d d d 0 0 3C0 Is- CM03 03 CO CM N ^ O ( ° O C N O O ^ ^ N ( ^ D oo < n o ° D C ) O l f ( D ( o d d 03 CM CO xr d “ r “ T o o o o o o d o o d d CM o o o o CM o O 00 00 d d d d d d d d d d d CO d d h- h- O) CO d d d o o o o o o 0 0 03 Is- o o 05 o r'- CM oo o 03 CM CO nCO in 00 - 03 CM m Tl- 0 0 Is- 00 CO d CM d CO CO 0 0 0 0 CO CO O' CD T— 0 0 T” CO o d d d d d d d d d d d o d h- d d d a> CO oi CO in co CO CO o O) CO r-- CM o o co o o o o 03 CM ID CO CO co CO o Is- a> 05 CO d d d d d d d CO 03 in T- o CO M" OCO CO CO d T— co GO Is- CM 03 Is- m 00 CO CM CO CO co co r^- o o o d d d o o in o o o o o o o CO * T Is- 03 0 0 Is- ■M- 303 03 00 CO CM r-~ o o o d o o o o o o o d CO CMCDCO oo CM CO CO CO 0 0 30 03 03 03 CM 03 03 03 Is- o in s nin in Is- o CO 05 ■M" T“ o a> o T— ncoin os d d d d d d d d d d 0 0 m CM CO m m Is— CM o o CM 05 oo 00 03 o 03 Omo CO m CO 0 0 CM 0 0 t - Is- in - d t CO oo 00 h- ■M- m in CM CO CO * T 0 0 03 co Is- Oom CO o s o Is- r- o m in m ■M- m — o o d o o o o o oo 05 CM CO CO CM T—T— os 0 0 CO 0 0 o o o o o o o o in o 00 o> 'M' o oo 05 CM o h- o 30 03 03 03 o CM CO CO 303 03 03 CM o o 03 3 0 o in T— CM oo oo T“ -r*~h- O o o>M" CO CO CO CO CO o T“* CO 00 in d d d d d d 0 0 CMxr 0 0 s o o Is- CM - c - r co oom CO CO CM d d d d CM CO 0 0 o o o 03 o Is- o> CO o 05 CO m CO T—T— co o 0 0 Is- CO CO CO o CO 03 no in 03 in - o 05 o r-- o 03 o o CO co 0 0 CO T“* q 03 O nin in 03 o Is- o> -M-M- O 05 CO M" CO M"05 0 0 CO ■M- r* o CO ■M- d d 0 0 — T 0 0 Is- >o> o> o T— o 05 o r- o O T 05 - co Is- T“ o o o CO 03 Is- CO in m CO —

q 0.91 0.92 0.91 0.93 0.85 0.83 0.71 0.77 0.86 0.87 0.93 0.91 0.86 0.94 0.91 0.79 0.88 0.88 P 0.09 0.08 0.07 0.09 0.29 0.23 0.14 0.13 0.07 0.09 0.14 0.15 0.17 0.06 0.07 0.93 0.08 0.92 0.10 0.90 0.09 0.91 0.18 0.82 0.21 0.12 0.12 0.11 0.89 - 500 506 510 391 509 497 514 513 506 473 466 455 424 472 501 0.09 478 498 500 515 0.06 0.94 499448 0.09474 0.91 0.14 0.86 488 496 487432 0.11 0.89 482 482 + 49 83 94 52 39 77 76 43 51 36 34 62 67 67 158 125 117 q 0.97 0.98 0.97 0.99 0.90 0.93 71 0.89 0.81 0.92 0.98 35 0.84 0.89 50 0.77 101 0.89 48 0.91 53 0.84 61 P 0.03 0.02 0.01 0.07 0.07 0.93 40 0.14 0.86 0.02 0.16 0.03 0.24 0.76 0.10 0.12 0.880.12 43 0.88 0.14 0.86 49 0.17 0.83 75 0.09 0.34 0.66 - 177 178 180 169 162 0.11 147 0.19 169 168 0.08 157 152 177 138 164 162 0.11 160 161 174 0.04 0.96 169 0.07 0.93 147 0.19153 0.81 0.16 157 141 0.23 5 5 4 2 8 + 4 178 14 18 16 166 30 20 21 161 0.12 0.88 44 21 q 0.81 35 0.82 25 0.94 13 0.89 0.67 0.45 0.81 0.92 0.90 P 0.12 0.88 0.11 0.14 0.86 0.19 0.15 0.85 0.14 0.86 0.14 0.86 13 0.19 0.06 0.33 0.10 0.90 0.24 0.76 0.08 0.11 0.89 61 121 0.01 0.99 22 0.09 0.91 310.10 0.90 151 20 0.12 0.88 41 - 90 91 94 93 0.09 0.91 92 0.10 87 83 84 0.18 96 88 92 78 83 94 0.08 0.92 20 162 0.11 92 0.10 0.90 35 93 92 9797 0.05 0.95 0.05 0.95 29 25 46 0.55 101 101 0.01 0.99 242 9 8 5 + 15 12 1414 88 88 18 14 11 11 91 0.11 0.89 13 10 34 68 56 24 q 0.85 0.96 8 0.79 11 91 0.86 0.83 0.94 0.96 5 P 0.17 0.08 0.92 0.32 0.68 0.07 0.93 19 0.04 0.09 0.91 0.06 0.09 0.910.07 0.930.05 9 0.95 10 10 - 126 0.15 127 0.14 0.86 136 135 0.09 0.91 135 0.09 0.91 6 138 135 0.09 0.91 10 142 142 0.04 0.96 1 137 141 127 0.14 133 0.10 0.90 19 122 0.18 0.82 123 101 117 0.21 0.79 122 0.18 0.82 139 142 0.04 135 9 + 6 15 12 13 135 21 22 21 26 q 0.88 0.98 0.87 13 0.74 0.93 13 0.90 6 0.83 0.73 0.81 13 P 0.17 0.12 0.02 0.15 0.85 26 0.22 0.78 25 0.09 0.91 0.03 0.97 31 0.27 0.12 0.88 47 0.15 0.85 10 0.08 0.92 230.26 125 0.16 0.84 0.07 0.11 0.89 0.05 0.95 21 127 0.14 0.86 0.19 - 97 85 99 95 107 0.09 0.91 106 102 0.13 105 0.10 103 0.12 0.88 31 117 0.21 104 0.11 0.89 105 0.10 0.90 10104 138 0.07 0.93 + 4 113 12 14 13 20 26 91 Central (n=117] North (n=148) South (n=102) West(n=182) Total (n=549) Band Id p266_700 10 p266 p266 460 14 103 p266 p266 640p266_670 11 15 total number of individuals in each category. The frequency q was 1-p. p266_520 p266 32 550p266_580 14p266_610 103 18 p266_430 p266_370p266 400 2 18 115 p266 490 99 p266_310 8 109 0.07 0.93 13 p277_430 p277_460p277_490 9p277_520 30 108 87 p266_280 8 109 Appendix 11 - Allele frequencies for each of the regions. The frequency p was derived as the number of present bands (+) divided by the p277_550 12 p277 640 p277_790p277_940 10 8 107 0.09 0.91 109 0.07 10 0.93 138 6 0.07 0.93 1 p277_580p277_610 6 13 p277_670 111 p277_700 19p277_730 22 p277_760 98 16 11 0.16 0.84 101 29 0.14 106 0.86 0.09 119 0.91 11 0.20 7 0.80 12 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CMCM o 05 05 00 CM CO CO T— h- CO m CO 00 m CO o 00 CO T— T- CO 05 T— T— CO CM o in 05 CO TT 05 05 05 05 CO 00 00 05 a> CDCD 05 00 00 00 00 h- 00 O) 05 00 00 00 00 00 Is- 05 05 00 05 05 00 00 05 05 O d d d OO d d d d d d d d d d d d d d d d d ddddddddddd d

COCO o 05 T” CMoo h- h- CO 05 CO Is- LOIs- CM m Is- o CM■m- 05 05 'M- 05 05 Is- 00 o in r* Is- CO O o X““ O X~ x— o o o o o T— T— T— T— CM T— O T— x— x— T*“ T“ CM o O T“ o ▼” o o o o d O d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

CO CO CO 05 CO 05 CO o o 00 XT" in 05 CO 05 xr m CMCO Is- in o T- o o 00 Xj" CO 05 o o o o 05 05 00 00 00 o ▼— O Is- m CO m CMCD 05 00 Is- co o o m o 05 CO 05 T” in in in in LOin in Tf -M- in M- m in ■m- m M- m m 96 09 CM 0 0 CO in X*- o 0 0 O O r* 05 05 T~ 56 54 76 79 80 59 39 35 85 39 39 74 95 45 67 53 50 43 46 46 CO 48 0 0 CO xt* xr 05 CO CO 1 2 0 T—T“

LO 0 0 KT CO CO in Is- CO CO 0 0 CO 05 oo o m in 0 0 CD in in oo 0 0 CO CMCO 0 0 in Is- CO CO T“ KT oo 05 05 05 05 05 05 05 05 05 05 05 05 05 Is- 0 0 05 0 0 Is- 05 05 05 05 0 0 Is- 05 Is- 05 0 0 Is- 05 05 05 05 05 05 ddddddddodd d d d d d d d d d ddddddddddddddd in CMCO ■M- CO Tt* in CO *t CO Is- CM"M* CMo in in CMM" m m CMCM 0 0 Is- CMcn CO xr Is- 05 CO CM o o o o o o o o o o o o o CMX“ CMo o o o ▼- CMo CMo CMO o o O O o d d d d d d d d o d d d d d d d d d d o o dddddddddddd d o 05 xr CO CM o o CO Is- CO Is- s T_CO m Is- CO 172 137 176 179 171 176 172 177 175 171 179 143 137 178 174 172 160 175 170 165 171 178 173 175 175 T— T** V r* V X“ T-

X” 05 T*“ 0 0 m o CM CM 05 CO - Is- o r^- CO 0 0 CD CD -

to in 00 1 2 r-

13 19 1 0 1 2 17 xr 40 T~ CO CM CM ■M- V“ CM m CM 45

05 CO CO CM Is- m CO Is- 05 CM CO o Is- ’M* X“ CO o 05 CO 05 CO in CO 'M- CO in o in TT 00 00 00 00 00 CO Is- 00 00 05 05 05 00 00 05 00 Is- 05 05 05 00 05 Is- 00 05 Is- oo 05 00 05 05 CO 00 05 05 d d d d d d d ddddddddddddddddddddddd d d d d d

V x r Is- 00 CO in CM CO T“* 05 00 05 TT 05 o CO CO 05 Is— o T— Is- T ~ 05 in CO 05 05 M- in o in CO CM o o O CM O o o CM s CM o o o r * CM o o ddddddddddddddddddddddddd d d d d d d o d o o

T-eoin^rosoojT-nTtnoontMroiocoincMT-iOT-cooosoocDfonoosNStt)(jicococotoooeoo30)0)®o)oocoo)ooNO)0)0)0)oiooooa)Nooo)ooo)0)(Oooo)0) co CM

•>- ^r h ~ c o c o in cm c o O ) O CO N 05 ID ID O t- r r r (\| r O) CO O) J f - t - CM 05 CM CM t- CM i n co

CO 00 00 o CM Is- CO 05 in CO CO ’M* o CM M- in Is- CO 00 CO o CM 05 05 o m Is- o 00 05 00 05 05 Is- 00 00 00 05 00 05 00 Is- 00 00 Is- Is- oo 00 co Is- Is- Is- CO Is- Is- 5 00 05 00 h- Is- 05 05 00 d d d o d d d ddddddddddddddddddd d d d d d d d d d h- CM 05 CO CM o 00 CO Is- m xj- xj- CO o 00 CO ■in co •M- CM x f CO o 00 05 o m CO o 05 05 CM o O o CM CM x ~ T“ o o CM CM CM CM CM CM CM CM CMCM o T ~ CM CO O o d d d d o d d dddoddddddddddddddddd d d d d d d d

00 o 00 CM in CO 05 oo CO CM CO in CO CO CO CO CM CM CM CM o CO CO CO CO 134 116 118 1 2 1 129 113 139 140 127 119 107 109 115 1 1 2 109 118 117 135 126 114 T“ *r“ r* 104 T ~ X“ * 130

o oo "

cn T" 't— CD o CO m CM Is- 00 Is- m OO co o 00 CM co CO 05 o CO Is- cn T“ CO o CO CM CO ’M’ co o> cn 00 cn 05 05 05 05 05 05 00 00 OO oo 00 Is- 05 cn CO 00 00 00 00 05 05 05 05 05 o> cn 05 05 05 o o d d o d d d d d d o d d d d o d d o d d d d o d d d d d d o d o d £ cn cn o h - m 00 05 CO CM CO in CM h ~ o CM 00 r— - t o Is- CO 05 05 o Is- cn co Is- 05 CO o o o o o o o o CM CM o o CM CM o O s x — o o o o o o o o d d o d d d d d d ddddddddddddddddd d d o d d d d xj. CD CD in CO V oo cn CM CO Is- 05 o o o o T“ * r * o o o o O o o o o T“ 97 94 05 94 97 92 1 0 1 105 109 m 108 1 0 2

t 106 1 0 0 1 1 2 105 107 106 — T“ r— T“ r * v T“ X“ X"* 109 108 T"“

c o T— x— CO CM T~ in Is - CO CO CO CO 00 O CO ID T— CM 00 CD O) CO CM o 05 oo o ID T* r* x— CM CM CM CM CM CM co 05 co T” T_ T“ T” T— T_ T_ T_ T_ T_

W w w o o o OO o O o /TV o o o o o o o o O o OOOO o o O o o o o Is— CO 05 CO 05 CM i n 00 Is- CO 05 i n 00 V M" h- O 00 O) ID o - t 1— IN IN o CO CM CD CM 0 0 ■>- M- r-- Is- 00 00 i n i n i n N- CO 05 05 05 o o O 1 1 i c o , X“ r* T— *■, 1 1 1 S. t S. 1 ° ° l T™T— ® i ® l i ® l CD, 1°°l 1 1 i CO CO CO CO CO CD CO CO VUCD1 LL/tc\ LL/CD1 m i n i n in m m m in m ID CO m ID ID ID ID ID ID in m in CO CO CO CO CO CO CO CO Is- Is- Is- Is- Is- Is- h- Is- h - h- h - h- 1^- r - r - - I— r-'- h~ m in in tc\ VUtc\ r-- r-- r-- Is- Is- CM CM CM CM CM CM CM CM rvl rvi CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM Q. IN IN IN CM CM CM Q. Q. CL Q. Q. CL Q. n n n CL Q. Q_ Q. Q_ Q. Q. Q. Q. Q. Q- Q. a . Q. Q. Cl CL CL n n n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 00000)0)0)00000)0000000)0)0)0)0)0)CDOOO)0)0)0)0)0>0)OqO)CncOOCMCOr^COOOlOOCDCOCOCMCNIOCMT-r^COCOCOCOCOjCOSfiHSSSSS^Gl^ 0)0)00000)0000 00000000000000000000000000000000000

T_ h- 0 0 0 r- CO LO ^r xr Is- Is- 0 0 CO 0 CO CD CO r-. N- Is- Is- Is- CO Is- 05 CO r- eg CO 0 5 r- O) T— x~ 0 0 0 0 0 0 0 X“ 0 0 XT* 0 O 0 0 0 0 0 x- 0 0 0 x- 0 T—T— O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d d d d d d d d d d d d d 0 d d d d d d

0 CO 1 0 h- CO CO CO Is- CO T” CO CO CO CO CO 0 h- a> eg CM CM CO LO CM O O) LO 00 •** X " X " 00 Is- 0 5 LO 0 5 0 Is- h- CO Is- h- T— ▼- 0 0 0 5 0 0 Is- 0 T“ T“ X“ N O ) T - o 00 CO o 10 xr x r x r x r LO LO 1 0 ’M* 10 10 LO 10 LO LO LO LO LO LO 10 LO LO ^ 10 10 10 xr

CO 00 T" CM CO CO 37 37 37 36 34 37 79 50 34 88 53 72 65 48 54 76 36 75 76 49 40 41 05 59 46 46 43 o> 42 co CO CO CO 102

CM0 CO 05 X 0 0 LO xT xT CMCD CO CO 0 CM0 CO CO r-- 05 m CO CO CO LO CM0 CO 05 CO CO T- 05 Is- O) 00 05 CO Is- 05 r- 00 05 05 05 05 05 05 05 05 05 05 05 05 05 o> 05 05 CO CO 05 05 0 0 Is- CO CO 00 ddddOdddddddddddd d d d d d d 0 O d d d d d d d d d d CO r* Is- CO CM1 0 CO 05 CO CO XT Is- XT 05 05 0 CO 0 xr xr CO r- m X xr CMLO 0 0 0 CM CMxT 05 0 CM0 O T—CM0 CMX—0 0 0 0 0 0 0 0 0 0 O 0 O 0 V* T" 0 CM d d d d O ddddddddddddd ddddddddddd d 0 d d d d

Is- CO 0 Is- 05 xT 0 T“ 0 0 co xr r- r- co CO CO CM Is- Is- CO CO CO V“ CO 1 0 ’M* 162 171 174 166 166 164 167 164 174 175 176 181 173 174 174 155 160 X“ r* 161 171 153 167 X“* r* T— T—t— XT“ xn* X“

xr* CO CO 05 X— 05 CO 0 LO - o> 0 0 CM0 0 in 00 1"- CO 05 0 0 0 0 X CM00 15 15 16 16 3 5 CO CM CMxT 53 CM CM 2 7 T—r* CMCO CM 2 5

CO CM x r Is- LO 05 CO CO 10 CO CM CO 05 CO 0 5 x r CO CO CO "M- 0 CO 0 CO 00 CO Is- CO CM CM CO 0 0 5 05 0 0 5 CO CO 05 05 CO c o 05 05 05 0 0 0 0 00 CO CO CO 0 5 0 5 r - 00 05 CO p 05 O) 0 5 05 0 5 0 5 05 05 05 CO CO 05 d d d d d d d d dddddddddddd d d X” ddddddddddd d

CM 00 CO CO LO CM Is- LO x r 0 0 xr T—CM X~ CO xr Is - x r CO 0 x r 0 CM CM x r CO CM CO 0 0 h- 0 0 O X—XT* 0 0 r* 0 0 0 0 0 CM 0 0 0 0 0 O 0 0 0 T" X— d d d d d d d d d ddddddddddd d d d d d d d d d d d d d d d 66 0 06 66 0 0 CO 00 0 CD CO CO 00 0 CM 84 97 95 97 98 84 95 78 92 98 CO O) CO 05 05 05 00 0 5 00 CO 94 94 95 92 05 05 05 ’M* r* 102 100 100 ’M’ CM

CM CO X CD O X O T- T- O X h- CM T - OCMCMMCOCNICOCON

0 T— 0 •*— ’M" Is- LO xr ■M- c o CO 1^. CO co CO CM 05 0 LO 05 CO LO Is- CO 1 0 0 x— xr LO CM CO 0 CO CO 05 05 05 00 05 05 05 00 CO 05 05 05 05 05 05 CO 05 05 00 05 CO 00 00 CO Is- 05 05 05 00 CO 05 Is- Is- d d 0 d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d 0 0 05 0 o> CO CO Lf5 CO CO CM Is- CO xr Is- 05 Is- 00 0 LO Is- 1 0 CO CM LO 0 05 CD 1 0 CO CO r- 0 CO CM X— X— 0 0 V 0 0 0 X— X— 0 0 0 0 0 0 X— X— 0 X— 0 X— X— X““ CO 0 0 0 0 CO CM d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

CO 0 CO LO 05 05 05 05 0 CO CO CM CO LO CO CO CM CO 0 CM Is- CO 05 0 CO xr 05 0 CO 05 CM CO CO CO CM M- CO CO CO CM xr xr CO CO CO CO CO CO CO co CM CM CO CM 0 CO CO x r CM CM CO 0 0 r* T" XT“ x— T— x — x— x — x — x— x— X— xr- X“ T—T— T— T— T—T— T— T— T"" T” T— T— T—T—

0 00 LO CO 05 05 ( s . 05 05 CO LO 0 CO 0 CMCO LO CO CM 05 c o CM xr xr xr Is- 0 05 CO T“ LO CO T“ T~ x~ T“ xr* CO X“ X“ x— x— 05 CO CM T” T“ T— CM T_ CM CM xr T_ CM CM xr CO

0 T - r * 1 0 05 CO 0 CM r-. 05 LO xr co 1 0 T“ CM r^. CO h - 1 0 00 LO LO r- Is- LO 0 05 1 0 LO 05 05 05 05 CO 00 05 05 00 r- CO 05 05 CO 05 05 05 05 00 05 05 05 CO 05 05 05 05 05 05 05 05 00 05 05 CO d d 0 d d d d d 0 d 0 d d d d d d d d d d 0 0 0 d d d d d d d d d d 0 0 05 05 1 0 r-- 0 CO co x - 1 0 05 CO xr 1 0 05 CO 05 CO Is- CO 1 0 CM LO LO CO 05 CO CO LO 0 XT’ LO 05 LO X— 0 0 0 X— T-“ x— 0 X— CM X— 0 0 0 0 0 0 xr* 0 0 0 0 0 0 0 0 0 0 x— X— 0 0 0 d 0 d 0 0 d 0 d d d d d d 0 0 0 d d 0 d d d d d d d d d d 0 0 0 0 0

LO CO r - xr K«_ LO CO CM CO 0 CO CO CO CM 05 CO CO x— x— x r CO 0 xr T“ LO xr x - CO X— T— x- 05 0 0 0 0 05 0 0 0 05 05 0 0 0 0 0 0 0 0 0 0 0 0 /T\ T—T— X“X“ x— xr- T— T— T— T— 'T— T— T— T— "■

T“ CM 0 CO CO CM 05 CO - Is- CO CO 05 1 0 00 xr CO xr CO CO CO - Is- CO CO CM CO CO - CO 1 5 X” T— x— r— 2 0 CM X“ X“ X“ ▼—

OOOOOOOOO 0— 0 0 0 00000000000000 CM CO CO t- M' N O c o CM CM CM CO m^NOnO)CM in(»r-Tf, 0 X NOn(DO)(Nin'TNOntDO)M r— T- T~ t- r* r* t- ilfcocoxxxioioincococo o> T-| 1- -I- T- CM CM CO CO x x x x in " l ^ 1 “ 1 CN CN 10 10 in 10 10 m i n m'CMCMNCNCMCVICMCMCMCMCMCMCMCMMM’M-M’M-MM'M-'tM'M-MM-CN CN r-- h- c- r- :FOOCOCOOOCOCOOOCOOOCOOOCOOOOOCOOOCOCOCOOOCOCOOOOOOOOOCO00 00 00 00 CM CM CM CM CM CM CM JTJCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCN CN CN CN n n n r i n r> r \ V, Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q. Q. Q. Q. Q. Q. Q.Q.Q.Q.Q.Q.Q.Q.Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0.92 0.89 0.90 0.88 0.92 0.93 0.94 0.94 0.89 0.85 0.86 0.90 0.90 0.87 0.92 0.90 0.87 0.90 0.93 0.87 0.90 0.94 0.90 0.87 0.84 0.85 0.90 0.12 0.07 0.93 0.08 0.08 0.07 0.06 0.15 0.13 0.14 0.86 0.10 0.06 0.15 0.10 517517 0.06 512 484 491 0.11 466 491494 0.11 0.10 504 0.08 495471 0.10 0.14 478 0.13 514 511 0.07 496 0.10 480 499493 0.09 0.10 0.91 398 0.28 0.72 470 442469 0.19478 0.15 0.81 0.13 0.85 485 0.12492 0.88 0.10 483 0.12 0.88 494 477 0.13 463467 0.16 83 58 55 37 512 32 58 65 45 504 54 78 71 45 504 53 50 56 38 57 35 64 86 82 54 495 0.10 72 66 151 0.89 0.84 0.93 0.90 0.97 32 0.96 0.93 0.96 37 0.94 0.96 0.98 0.95 0.89 0.90 45 0.84 107 0.93 80 0.86 71 0.90 69 0.87 57 492 0.85 79 0.80 0.81 0.87 55 0.07 0.10 0.11 0.16 0.06 0.04 0.02 0.03 0.04 0.07 0.04 0.08 0.92 0.12 0.88 0.10 0.90 0.07 0.93 0.12 0.88 0.11 0.05 0.10 0.30 0.70 0.16 0.07 0.14 0.10 0.07 0.93 0.13 0.14 0.86 0.05 0.95 0.07 0.93 0.15 0.13 0.20 0.14 0.86 0.19 0.12 0.88 162 152 169 164 158 128 157 155 164 172 169 163 167 161 177 174 174 147 164 7 175 8 4 178 11 171 13 169 37 145 24 54 27 26 156 21 161 0.92 18 0.90 30 0.92 21 0.87 0.79 0.87 22 160 0.91 12 170 0.940.88 18 20 162 0.94 15 0.94 5 0.08 0.13 0.10 0.90 0.05 0.95 0.10 0.90 12 170 0.20 0.80 29 153 0.21 0.05 0.950.13 25 0.08 0.92 230.07 0.930.09 159 9 173 0.08 0.920.09 0.91 13 19 0.10 0.08 0.11 0.89 20 0.06 0.12 0.06 0.08 0.92 0.06 0.04 0.96 0.07 0.93 8 82 81 97 92 9394 0.09 0.91 13 92 97 92 89 94 95 94 93 96 90 92 0.10 0.90 18 96 94 94 93 0.09 0.91 96 98 9895 0.04 0.96 13 169 245 7 95 0.07 0.93 5 8 9 9 8 8 35 99 0.03 0.97 35 8 7 9 93 8 9 7 4 98 0.04 0.96 26 156 6 6 6 4 4 13 10 13 89 10 10 92 0.10 0.90 12 10 17 85 0.17 0.83 10 10 14 88 0.14 0.86 11 91 21 81 0.21 0.79 20 21 0.80 0.78 0.76 0.79 0.86 0.80 0.83 0.86 0.91 0.78 0.85 0.88 0.86 0.75 0.92 0.86 0.18 0.82 0.20 0.23 0.77 0.16 0.84 0.09 0.91 0.11 0.89 0.14 0.09 0.91 0.14 122 119 114 125 115 0.22 117 0.21 127 0.14 119 0.20 123 0.17 135 132 130 0.12 134 139 0.06 0.94 136 0.08 127 0.14 9 13 135 0.09 34 22 126 0.15 0.85 27 121 0.18 0.82 20 128 0.89 26 0.88 29 0.96 19 129 0.13 0.87 0.55 23 0.91 360.91 31 112 0.24 0.79 33 0.95 23 125 0.16 0.84 0.89 220.89 30 126 0.15 118 0.20 0.80 0.90 21 0.91 29 0.91 0.92 25 0.95 13 0.92 32 116 0.22 0.78 16 0.88 9 1390.97 0.06 18 0.99 0.94 200.95 270.81 128 121 0.18 0.82 0.97 22 1260.92 0.15 0.85 12 0.94 120.90 136 21 0.08 0.92 0.96 17 131 0.11 0.89 0.45 0.09 0.05 0.03 0.97 0.06 0.94 0.05 0.03 0.97 0.08 0.920.09 19 129 0.13 0.87 0.03 0.04 103 0.12 111 104 0.11 113 0.03 0.97 14 114 110 0.06 108 0.08 1 116 0.01 6 6 111 4 7 110 0.06 0.94 7 110 0.06 0.94 34 114 0.23 0.77 4 113 0.03 13 14 15 102 0.13 0.87 37 111 0.25 12 105 0.10 12 105 0.10 p285_730 p285_760 p285_790 p285_820 10 107 0.09 p284_580 p284_550 p284_610p284_640 5 9 112 0.04 108 0.08 p284_730 53 64 p284_790p284_820 10p284_880 10 107 0.09 107 p284_760 25 92p284_910 0.21 4p285_400 113 4p285_460 113 9 108 0.08 p284_940 7p285_430 110 26p285_490p285_520 91 14p285_550 0.22 13 103 13 0.12 104p285_640 0.11 104 p285 670 0.11 p285_700 6 22 111 95 0.05 0.19 p285_850 p285_910 p285_970p287_310 7 p287_370 9 p287_400 p287_490 5 112 p284_700 10 107 p284_670 9 108 p285_580 3 3284 3284 106(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. uo!ss!LUJ0d jnoLjijM pajjqjijojd uoqonpcudaj jaqpnj jauMo jqBuAdoo aqj ]o uojssjwjadmm paonpojday

rrirnrnrnMi0>050J03050505t0 to 05 COCOCOCOCOCOCOCOOOCDOOOOOOCDOOOOOOOOOOCX) I I 1°* I01 I ,<* ,<» ,<» .« ,« ,« .« ,« ,« .« 101 .« I-1 fn(oiolilt'O^D^Doooo-^i-vi-vi'via)a)0)aicn4^^.cocooocD'vj-vi-vj~vio>0)a)aitntn mniofnio^^^oooimoiuos-u-^airomo-ii-iOiNxorowos-ik-iflooiNJ ycx^HKoooooooooooooooooooooooooooooo

to (D to OO - v l N N305I I o o icx>00(DOTw a,a> -tk0,^ ai CO to CO 05 S ' J 000)UIO)00U1 115 111 113 102 106 107 102 109 109 108 101 114 112 113 103 102 108 105 108 108 108 109 110 110 111 110 112 102 101 109

0 _1 0 0 0 CO to X- CO CO

0 0 0 0 0 0 0 0 P 0 0 0 0 0 O 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 p 0 0 0 b b 0 b b 0 0 0 b b b b b b b b b b b b b b b b 1 0 0 1 CO CO CO - t ~ t 00 J*. CO -tv CO 2 IO CO CO O 0 0 05 0 0 ^ 1 05 CO 05 —V 0 1 tO 05 ■vl -tv CO t v ~v| CO

0 0 0 0 0 0 0 0 O 0 p 0 0 0 O 0 p O 0 0 p 0 0 0 0 O p 0 p 0 0 0 O 0 0 b b b b b o b b b 00 b b b b b 00 bo b CO b b b b b b b 0 0 b b b b b 00 00 b 0 0 0 0 0 1 - t CO CO tO O) -0 05 CO - j 05 00 -v l tO 0 NJN3 N5 CO t v - t -tv co 0 1 0 0 -tv CO 05 v t 05 CO -VJ 27 28 2 29 25 30 25 23 34

to 2 CD N5 N5 CO CO 05 N5 tO CO 05 0 1 0 0 1 Ca > 0 0 0 -v l 05 -vj -tv ~vl -v i CO CO 129 139 132 133 128 133 127 127 135 137 140 138 130 132 142 131 146 134 123 125 129 114 120 126 _k 131 119 123 144 135 127 118 121 -tv CO CO 0 _V

0 0 0 p p p 0 p 0 0 O O p p p 0 p 0 p 0 0 0 0 O 0 0 p 0 p O 0 P 0 0 P 0 b b b b 0 k > b 0 b b 0 M —X a t o CO 0 5 0 -Cv 0 £ t v CO - t C l *n | t o 0 1 _ v 0 ^ 1 CO -IV CO CO -tv O 0 0 - s i 0 5 G) CO CO c n 0 O 0 p O p 0 0 0 0 0 p 0 0 0 0 0 0 0 0 0 p p O p 0 0 O 0 O 0 O 0 p p 0 0 b bo b CO b 0 0 0 0 b b b b 0 0 b bo bo 0 0 b bo b 0 0 b b CD 0 3 b bo 0 0 bo 0 0 0 0 CD 0 0 0 0 - t -tv CO 0 0 5 0 0 5 0 5 c o c n c o 0 0 c n co 0 CO ~v| CO 0 5 CO CO CO CO 0 5 O t o 0 0 t v -0 c n

05 corooij^to^oicncoojoioicxi'jto-titD^oiaitojiN^cntooi^^Q'jioo)

N5 100 100 7 9 99 97 93 94 96 99 95 92 95 tv 90 97 4 9 99 97 94 95 93 93 97 96 87 96 93 97 05 CO CO CD co CD CD co 0 00 00 0 0 00 05

0 0 0 0 0 p 0 0 O 0 0 O 0 p 0 0 0 0 OO 0 0 0 0 0 0 0 0 O 0 p 0 0 0 O b b 0 0 0 0 O 0 b O b b b 0 b b O O 0 b b b 0 b b b b « x b b b 0 1 CO to 0 1 to CO cn 0 0 CO 00 05 0 1 0 0 -t co -tv CD 4*. cn 05 CO tv CJ1 05 co cn 0 to 05 0 p p 0 0 0 0 0 0 0 p p p p 0 p p p O O 0 0 0 0 0 p p 0 0 O p p p 0 0 b b b b b b o b 0 0 b b b b b b b b b b b b b b b b b b o b b b b 00 b b b b 01 CO -v l 0 0 0 1 0 0 CO cn t o - 0 K) tv tn to CO 05 O) cn tv ■vl 05 co 0 1 tv cn o> CO 0 CO 0 0 tv 0 2 2 2 8 2 2 2 to -V CO to -V CO CO to -V to tv to -V -V to t v N) to 05 N> CO 05 O 0 0 0 0 0 1 tv 00 -IV to to 0 0 01 00 -V 05 05 00 cn CO CO N> 00 co - t CO tv ro O —X 2 7 1 1 6 1 2 6 1 1 0 7 1 6 7 1 3 5 1 0 7 1 140 154 167 4 5 1 0 6 1 153 166 4 5 1 7 6 1 3 6 1 4 7 1 3 7 1 5 7 1 9 6 1 160 161 152 154 164 147 148 154

—V 0 6 05 05 05 0 5 05 00 tv -vl 05 CO

p 0 0 p p p 0 0 0 p 0 p 0 p p O 0 0 O 0 0 0 0 O 0 O O 0 O 0 0 O 0 0 p 0 b to b ho b b O O b b b b b b 05 CO 05 01 0 CO CO 0 1 00 to 05 cn 00 O to cn cn to CO cn 00 0 0 5 g cn -~t CD ^ 1 0 5 cn to to 0 0 O 0 0 0 0 p p p O 0 p O 0 p p 0 O 0 p p OO 0 p 0 0 0 0 0 0 0 p p co b 00 bo b 0 0 00 bo b 0 0 b o b b 00 -v l 00 00 b bo b b bo b b b b b b b b b CD 00 bo tv tv 01 0 cn to 0 0 - v l cn to 0 00 cn cn 00 cn t o 0 tv w 05 cn a> 0 5 to 0 5 ~ t cn CD CO 00 9 4 5 4 5 6 4 5 8 7 8 5 0 4 6 6 3 5 2 4 7 4 6 4 7 3 0 5 43 60 5 3 3 5 48 44 96 0 5 55 32 60 70 72 58 54 36 55 01 05 -vl 05 00 CO CO 495 471 491 484 496 499 483 504 499 510 509 500 502 503 514 512 453 478 495 494 507 491 489 494 491 479 477 480 506 513 517 501 cn tv t v 0 0 0 CO cn co 05

0 0 0 0 p p 0 p p p 0 0 p 0 0 0 0 p p 0 0 0 0 0 0 0 0 0 0 p O 0 0 p p 0 b b 0 0 0 b b b b b 0 b b b b —V 0 0 0 0 0 0 0 - t t o O 0 0 0 t ? t o 0 05 0 CO05 05 CO 0 0 - 0 ^ 1 - ^ 1 05 CO CO 05 -vj CO CO -

0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 O 0 p 0 O OO 0 0 0 0 0 0 P 0 O 0 O b b bo b 00 00 00 00 b b 00 b b b CO 00 00 b b b b b b b b b b 0 0 b b b b CD b CD 0 05 00 0 t o 0 05 c o 0 CO 0 CO ~-t ■vj ^1 t o CO 0 t o 05 CD 05 ^1 to t o t v 05 05 CO 0.92 0.91 0.90 0.93 0.88 0.90 0.89 0.93 0.87 0.74 0.78 0.80 0.87 0.85 0.88 0.79 0.87 0.88 0.90 0.85 0.72 0.89 0.83 0.91 0.76 0.93 0.93 0.09 0.07 0.15 0.85 0.100.10 0.90 0.11 0.08 0.07 0.10 0.12 0.13 0.190.13 0.81 0.87 0.26 0.22 0.20 0.18 0.82 0.13 0.15 0.08 0.92 0.12 0.21 0.13 0.28 0.12 0.10 0.17 0.07 0.09 0.24 0.07 0.06 0.94 504 502 509 512 467 492 492 491 493 492 0.10 0.90 481 480 507 479 409 444 481 426 440 448 396 475 465 483 494 516 509 436 477 467487 0.15 0.11 508 417 454 498 57 33 62 41 40 140 153 0.91 82 0.94 58 0.95 45 0.89 56 0.93 68 0.92 57 0.95 37 0.88 57 0.87 105 0.83 123 0.72 0.89 69 0.79 113 0.91 74 0.93 68 0.86 101 0.92 42 0.82 82 0.75 95 0.80 0.84 0.88 51 0.88 0.09 0.11 0.07 0.10 0.90 0.06 0.05 0.07 0.93 47 0.11 0.08 0.05 0.12 0.880.12 70 0.07 0.93 40 0.13 0.14 0.860.07 84 0.17 0.25 0.750.14 109 0.28 0.08 0.21 0.04 0.960.10 66 0.90 55 0.14 0.86 72 0.20 0.18 0.18 0.820.25 132 0.09 0.16 0.12 0.07 0.93 0.12 0.09 0.91 170 165 170 131 159 161 161 163 157 170 151 137 157 171 173 150 175 164 167 170 168 173 153 146 144 156 165 9 12 17 12 19 12 11 17 165 12 14 13 169 51 20 162 31 32 150 25 25 22 160 20 162 0.96 0.73 0.85 0.940.88 21 0.87 21 0.83 0.89 0.88 0.75 0.93 0.96 0.58 0.96 32 0.63 36 0.96 0.94 0.95 0.98 0.18 0.820.04 23 0.16 0.84 0.12 0.15 0.85 0.13 0.17 0.11 0.12 0.25 0.09 0.910.15 9 0.07 0.13 0.87 45 0.04 0.42 0.03 0.970.04 46 136 0.06 0.94 38 0.06 0.03 0.970.02 22 160 0.37 0.04 0.16 0.84 26 0.13 0.87 0.05 98 91 74 0.27 95 92 0.10 0.90 98 59 96 9497 0.08 0.9294 0.05 0.95 0.08 7 0.92 18 15 96 0.06 85 82 0.20 0.80 17 247 3 99 8 5 8 9 93 32 99 100 7 4 98 4 6 4 66 96 0.06 0.94 29 5 97 4 98 6 96 16 86 13 89 10 18 84 1217 90 1513 87 89 11 12 90 15 87 16 86 13 89 38 64 28 26 76 20 43 0.94 0.84 0.93 0.75 0.70 0.82 0.82 0.88 0.89 0.92 0.07 0.93 0.11 0.89 0.28 0.72 0.16 0.25 0.22 0.78 0.20 0.80 0.22 0.78 0.30 0.13 0.87 0.05 0.95 0.17 0.83 0.17 0.83 0.06 0.94 0.06 0.94 0.32 0.68 0.09 0.91 0.07 0.93 0.18 0.82 0.18 0.12 0.09 0.91 0.11 0.07 0.04 0.96 0.18 0.09 0.91 142 0.04 0.96 139 137 122 132 107 124 122 142 111 115 119 104 129 140 122 112 0.24123 0.76 130 0.12123 0.88 139 135 130 134 139 0.06 137 135 0.09 0.91 137 134 8 16 18 18 14 17 131 14 12 136 0.08 11 37 11 137 0.07 0.93 33 115 41 0.80 0.77 24 0.69 0.75 0.84 6 0.89 33 0.85 29 0.94 44 0.89 19 0.91 0.83 25 0.81 0.83 0.97 9 0.86 0.850.89 9 0.86 11 0.76 36 0.79 25 0.88 6 0.68 26 0.850.74 9 48 100 0.85 13 0.78 11 0.78 26 0.85 0.89 5 143 0.03 0.97 0.68 26 0.96 0.84 0.91 0.85 13 0.91 0.22 0.32 0.24 0.21 0.16 0.15 0.15 0.15 0.14 0.14 0.12 0.15 97 0.17 88 0.25 90 0.23 9592 0.19 99 8681 0.26 0.31 98 0.16 91 91 0.22 80 99 98 100 0.15 110 0.06 106 0.09 100 113 0.03 112 0.04 101 100 0.15 103 100 104 0.11 106 0.09 4 5 19 17 17 14 11 13 20 27 22 25 580 11 820 37 790 38 79 0.32 430460 18 31 220 250 490 36 130( 100( 16 127( 19 _370_400 13 104 0.11 _520_550 7 13 104 0.11 _670 26 _700 29 _880 20 97_970 18 0.17 .121C 10.124C 17 107 0.09 p245_ p245__340 p245 p245. p245_ p245 p245._640 26 p245. p245 p245__310 p245. p245 P245._280 p245 _730 760 p245_ 23p245. p245. 94p245._850 0.20 28p245 p245 910 89 p245._940 p245 p245. p245. P245._610 17 p245 3245_ 3245_103( 3245_106C 133245_109( 163245_115C 104 0.11 101 3245_ 3245 3245_ 3245_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CO o o> CO o CMCO CN X CO CO CMCO 00 CO o CO cn CO xT XT in CO CMxr CMo CO CN X O) o> oo s G) 05 o> o> s CD CD O) O) cn O) O) 00 CO CD 00 00 cn O) 00 Is- CD CD cn cn cn O) CD CO CD CD d d o' o d d d d o O o d d d d d d o o d d d d d d o d d d d d d d d d

X“ Is- o - CD Is- o 00 Is- CD 00 CD Is- Is*- 00 Is- CO CM1^ o Is- Is- CD CO LO CD CD Is- 00 CO CO o CN co CO o o o o o O O O o o o o o x— T“ o O T— CMo o o o o o o o d d o o d d d d OO CDd d d d d d d o d d d d d d o o d d d d o o o o 60S 00 CM oo CMCO CN CN CD o O) CD f X— o CD o 515 511 506 515 507 518 503 515 511 481 496 455 489 460 414 512 504 513 504 516 499

485 454 m 490 497 X LO 494 xr X in LO in 09 CO CO 56 00 00 50 37 34 53 94 38 34 89 34 57 31 47 43 43 36 51 64 42 55 59 52 37 57 46 40 45 45 41

CO CO 135 CO CD o in in COT—CMin 00 00 r“o Is- 00 00 COin cn in COCNco in co CNoo cn O)CMcn COcn 00Is*- COcn O)CMcn O) o) O) o> o> cn 00 00 o> cn 00 cn 00CM00 00 o> CO("■ cn 00 CDCDCDCDCDh- 00

X fr COCMxt LO CMCN CO CN 16 15 1 0 1 0 1 2 16 1 0 16 18 16 13 1 0 00 1 2 cn 14 13 15 00

T“ 2 2 28 24 2 0 2 1 49 r - T*“ CM CMCN CO CN 40

Is- COin in COCMCOm in CMIs- 00 COin CNCOCOIs- COCOCOxr o 00 T“ t- O m cn LO oo CD CD o CM O) cn 00 cn cn O) 00 o> O) cn o> oo cn cn CD cn 00 CO00 00 00 COCDCD

CN CN CO h - m in X oo in in oo co t"- if i— ^f d o in h - m oo i f co co CN < 5 ? 00

00 m cn T—o cn Is- CM Is- CO in o Is- cn CO cn o m xr 00 in m o xr oo oo xr 00 CO in 00 cn oo cn cn 00

o o CO co co xr 00 oo t— o o o cn cn cn o Is*. CO ■M- CO CO xr CO CO CO CO CO xr CO CO CO co CO 94 135 131 129 141 133 146 143 119 140 145 139 145 135 134 T—T- T ~ ^T“r * x— T— r - r * T- x— X ~ T“r * x— 140

OO Is - CM 0 0 0 0 0 0 T- 0 0 m Is- m CM cn 0 0 0 0 CO CO 0 0

17 13 in 19 14 10 m 10 17 h- cn 13 14 cn cn x— 54 r * x— CM CO x— 29 x—

in x— Is- m CM LO T— Is- h- Is - 0 0 CO Is - o CO o in in l—Is - o CM Is- m 'M’ m CO cn LO CO m cn CO 0 0 cn cn 0 0 cn cn 0 0 cn cn cn cn 0 0 cn cn cn cn cn cn cn CD cn cn CO cn 0 0 cn cn cn cn 0 0 cn cn cn dddddddddddd d d d d d d d d d CD d d CD d d d d d d d d d d m cn CO cn cn m cn 0 0 in cn CO CO CO CM Is - CO o r- o m m co CO cn O 0 0 CO in CO in i^ x— in xr in o T“ o o o o o o o o o o x — o

x— CO co xr co in Is - 0 0 o x— CM o T“ X*“ o o o X— T— 95 94 107 107 100 108 100 102 107 103 109 113 109 105 m m 113 114 102 m 109 104 r * T“ T— m

c n m o o f'- O CO N r r r CD N'CO'f5-0ON-^!00^!cOCON-CO°^O)^2cDt^CO0O^2cOincO

w Sm^ w w w OOoOooOoooooo o O o o o o o CO c n CM i n 00 Is- O CO CM CO c n x— O CO CO CO x r m LO LO CO CO Is - c n c n 00 O CO CD cn CMin oo xr 1—o CO CD cn CM00 xr Is- T" x— x— ^ 1 ° ° , cn 1 ■ ■ I 1 1 i 1 1 1 ■ ■ i 1 i i 1 i “*1i ^11^11®l1 I ®l1 ^11 1 1 1°°l1 1S l 1 i X“ x— x _ T“ m m LO i n i n LO LO LO LO LOm i n m LO LO UD in in s ■n in LO 5d UDin UD LO in m in m m in x r x r x r x r x r x r 'M’ CM CM CM CM CM CM CM CM CM CM CM CM CM CM CMCNCMCMCMCMCMCMCNCNCMCN CMCMCMCMCMCMCMo CN CN n n n n n r» n n n o n o n Q. a. CL Q . Q . CL Q . CL Q l CL CL Q . CL Q . Q . CL CL a _ CL Q . r» o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CO CO CO cn o> CO O’ CMCMCO X— CO O' xT CMT m CMCMCO xr CO CO CM00 CMh- 00 o CO o> o> o> 00 00 cn O) cn o> o> cn o> cn O) o o cn O) o> O) 00 O) o> o> cd o> 5>

Is- x — CO 00 oo Is- cn fx- CO cn CO CO CO in 00 00 xr CO CO Is- CO CO cd Is- 00 CM 00 CO CM o r - o o o - X— o o o o o o o o o o o o o o o o o o o o o o o T“ o o o o d d d o d d d d o d d d d d d d d d d d d d d d d d d o d d d d SOS O) oo w o 00 CM in 00 in CM o> oo o T* CM T— T—T~ T“* o 00 00 o 504 514 504 450 479 492 499 512 501 509 515 474 505 517 509 511 512 507 503 487 "M" CO CO 499 in in in in in m in 'M* xr in

00 T* CMCM oo CM CM OS 66 70 57 35 64 67 40 75 37 34 37 37 50 34 41 45 29 44 45 40 CO 62 60 M- COM" 46 M" 40 5 44 CO CO00 COCOCMo cn 00 xT o in CMXTCOCDxr xr m in 00 00 COO COxr co r- COCOxr COin COCOm o> o> 05 o o> cn CDcn oo CDo o> o> 00 00 00 o> cn CDo> cn 00 00 CD00 Is- 00 00 CDCD o d d d o d d CDd d O d CDd d d d d d d d d CDd d CDd d d d d d d d d

M" V” Is- r - Is- M’ 00 o £ CMCOcn o m oo CO COCOin m CMCMCD o Is- CO COxr xr CDxr m Is- in o o o T—o o o o o O T—o o o o V" V o o o o f o CMT“ o o d d d d d d d CDd d CDd CDd d d d d d d d d dddCDddddddddd xr o CO CM CM 00 o o cn COCD h- CO COCOh- h- s COh- M- Is- s Is- Is- CO m CO 157 174 154 151 170 172 170 167 163 162 159 172 173 161 161 T“* V 171 T" 167 T“ T“" r* T— 171 T* T" T“ T“T“x—

T" T“ T* CO o 00 CMCOO) o m 00 o CD OO CM 12 18 12 13 16 18

34 T“ r* T“ 25 29 43 28 20 22 £ v~ V 20 T~ r* CMCM CM CO r*

COoo CMo XT M" o m m CMm Is- o CO CO00 in Is- xr m m xr xr CDO m COh- CO00 xr COCO CDO) cn cn o > CDcn cn O) o> o > 00 oo CD cd Ol o > CDo> O) CDCD00 CDCD00 00 00 00 CD CD 00 d d o d d d CDCDd d d d d d d ddoddddddddddd d d d d d d cd xTCM00 o COCOo in in 00 in COo Is- O) h- CMin 00 COin in COCO- o in Is- COIs- CMCOIs- xr o o o o o o o o o o o o o o O o o o o o o o o

100 o> o> CDCD oo 100 CD 00

o in x~ h* 1*^ CM CD xT CM 00 CD CO o in m OO Is-

CD Is- cn CD m CM in in Is- in m CO m CM m CM m CO in 00 CO CO co CO in oo co CO r-- CO co en m 00 CD cn 00 CD cn cn CD O)

T— CM CO CO CM CO CO 00 r— 00 00 00 T— CO CO co M" xr M- CO co CO CO CO co CO 143 147 141 141 141 140 141 140 140 135 116 142 134 142 140 145 114 123 117 r* T* T“ 127 T~

N- in CO h- CM 1— r- in r- fx. CO 00 CM r- CM 00 o 00 CM CO o CO oo CO o in Is- 13 14

— X 1 0 - T“ X CO T* — 34 CM CM CO

in in xr xr O cn CO CM in Is- m CO CO CO CM o xr CO T“*co Is- Is- Is- CO M" CO CM CO o CD CM CO xr CM CD oo 00 oo 00 cn cn cn 00 00 00 O) o> o>

— 109 108 112 109 105 112 112 108 109 107 105 x x— T- xr* V” T“ X—T“ T“ *r“ x— 108

l-~ O) o> CO COT - T - T~ CM coo)“ |^ 52ooiocoo) 5!soo°oococomiflNino)co°Jiioo)inso) w OO O O O OOOOO ooooooooooooooooo xr CO x— CM xr Is- O 1- CO CM oo O’ IOCO t -M-COCDOJCMIOI^-OCOCOOJCNIOOO T“ T“ °> | 1 1” i1 ®l 1 ®l1 1" l 1 1 1“ 1l 1 "l "l ” l Tl Tl Tl “l “*1 ®l 'j 'j 'j ®l °°l °°l 1▼“ 1T— ▼— V T“ T— V— I I I I I I' oooocococooooocococooocococooococo^ I in in CO CO s CO CO CO CO s s CO QOOOOOOOCOOOOOOOCOCOOOOOOOOOOOOOOO CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM n o Q. Q. Q. CD. CL CD. CL CL CL CL r» o r» r» r»Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. uo!SS!LUJ0djnoLjijM pajiqiLiojd uoqonpojdaj jaqpnj j 0 u m o }i|6LiAdoo 0i|} ]0 uo!SS|UJj0d ifljM p0onpojd0y

2890 0 0 00 09 6 4 00 09 1 9 01 09 9 7 00 09 3 54 .6 0.94 0.06 0.92 0.08 514 0.94 0.06 506 35 0.95 514 0.05 43 173 0.96 0.04 35 175 0.95 0.05 9 u 173 7 0.90u 0.10 9 0.92 92 0.08 0.89 94 0.11 10 91 0.96 0.04 8 142 11 0.93 0.07 0.97 0.03 6 137 143 0.91 0.09 11 107 5 0.85 0.15 100 0.91 0.09 10 107 17 p288_970 10 p288_940 p288_910 ■o TJ “o "O T3 T3 t j TJ T3 TJ - o TJ TJTJTJTJ TJTJTJTJ W U Cl KJ w u N) NJ r o fO NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJNJNJNJNJ NJ NJ ro NJ NJ NJ NJ ro ro N) NJ MIO NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJNJNJNJ00 00 00 00 00 CX> 00 00 oo 00 , ° O I00 l ° ■ 1 1 1l°°1®i00 1 i 1I® 11®1®1®i®i® 1 1 i 1 l_^ l_^ ■vl a 4a ^ l ^1 -vl c n 05 c n cn cn cn 4 *45. CO CO CONJNJ 05 NJ NJ CO O) CO o -vl 4A — v oo cn NJ CO O) CO O -vl 4a — ^ cn NJcn o> cn NJ o o o o COO) CO 00 - v j 4a 00 CD O) oo o o o o o o O o o o o o OO o o O o o O o r > »""V 17 18 18 14 -vl —-I v j 4a 4 a c n CO co OJ NJ cn s Ol u N o M Ol s oo O) co to 110 100 103 111 112 110 112 114 114 111 110 116 110 103 113 110 116 116 116 115 112 110 109 107 111 114 108 99 CO o o -A CO CO cn -| O o o P p o o o o O o o o p o o o o o o o o o o o o o o o o o o o b o o b b b o _v o o o b b o b o o b o o o b o o b b at cn cn IOIO cn -v | cn OJ cn 0 5 0 5 o OJ 4A 0 5 4 a co cn o NJ -N cn *v| COcn OJ 00 p o o o p o o o o o O p o p o o o p o o o o o A o O o o o o o o 00 bo bo 00 00 CDCOb CO b b b b CD b b b b b b b b b o b b b b b b b b cn cn cn 00 oo cn CO4 a 'j cn -N CD 4a O —1cn 4A 0 5 -vl A CDCDCD o 00 cn 4 a CO cn -vl NJ 22 20 23 16 56 15 18 12 14 13 15 oo CO NJ _I. NJ ro 17 13 - cn o O NJ CD-vl CD cn COCDNJ - 0 5 4a NJ cn 132 133 128 136 117 137 142 118 130 139 121 136 134 127 135 133 133 145 139 146 137 126 128 142 125 131 135 144 CD 146 143 OJCD NJ o o o o p p o o o o O o o o o o O p o o o o P p o p O p o o o o NJo o NJ-A -A o o b o o o o o o o 1a o OJ o b b o 4a O o NJ4 a 00 cn 0 0 0 0 CO4A cn COo o NJcn -vj cn 4a 4A cn 00 it COOJ OJ O p o O o o p o o o p p p p o o p o o o o p p O O p O o o o o o -vl b b 00 bo b 0 0 00 b b 0 0 b b bo b b b b b b b b b oo b oo b 00 b b b b CDCOcn o COo oo cn NJ4a ro NJ cn 4 a o o oo 4a COco cn cn cn 4 a NJCD -vl CO-v |

NO - a - a —I 0 0 CO —a -vl CDNO O O O) O NO 00 cn NOO) QUOlMWOl^OXOoi^S OO

NO 100 96 92 93 90 96 93 80 92 92 95 94 95 92 99 97 99 98 93 92 97 95 c n 96 o 00 co 00 o co CD co co 06 CO cn oo 05 oo

o o o o o p p o o o o o o o o o o p o o o o o o O o p O o o o o o NJ o o b o o o b b o b b b b b o b b o b CO NJ o o cn o NJ OJ cn 4 a -vl 00 CD -vl NJ 05 o w cn NJ 00 cn 4 A 05 CO o 4 a ■vl 05 o O o o o o O o o O o o o o o O o o o o o o o O o o o O o o o o b -vl b b b b b b b b b b b b b b b b b b b b b b b b b 00 b b b b 00 o o 4 a o 00 -vl 4 a cn OJ NJ co OJ 00 4 A o -v| cn 00 -vl cn 05 4 a o CD 05 OJ 4 a CO 47 26 26 35 20 23 23 25 20 20 24 29 24 20 _ X -A 36 33 39 CD IO NJ oo NJ cn CO 05 co cn NJ Ca> £ —A -vl cn O -vl 156 147 162 159 159 162 163 156 166 163 167 146 149 170 173 159 168 157 162 161 135 158 151 143 165 167 153 158 167 A 162 165 05 NJ

o O o o o p o p p o p o o p o o p o o O p o p O o p o o o o p o o -A b o NJ o 1a o b -A NJ NJ o b b 05 CO 00 4 a o 4a CO CO o oo O oo -vl OJ OJ cn OJ 00 4 A NJ _A 05 05 -vl CO oo CO O o o o O o O o o o o o O o o o o o o o O o O o OO OO o o o o b CO b b b b 00 b b b b b b b b CO b b b b b b b b b b 1-J b b b b 4 a -vl NJ CD cn o cn CO o NJ o NJ 0J -vl -v | cn -v | ro 05 CO oo CO 4 a -vl oo CO NJ CO 104 44 49 44 42 66 67 75 32 45 62 64 75 60 53 39 32 35 30 35 49 50 36 32 74 75 00 4 a cn 05 05 OJ 05 445 474 482 474 483 498 505 517 489 499 485 510 517 514 519 514 505 518 475 487 508 517 463 474 504 513 500 4 a cn 4a 4 a co o oo oo 0 5 o oo 00

p o o p p o p p o o p o o p o O o o o o o o o o o p o p o o o o -A 1a b o o o o b o o b o o b o b b b cn 4 a CO0J CONJ4a -vl 00 -v| NJNJ0 5 O CO-vl 05 05 cn 05 CO00 CO4 a oo 05 cn

o O o o o o O O o o o o O O o O o o o o o o o o o o o O o o o b b b b b b b b b b b b b b b b b b b b CD b b b b b b b b b b 4A 05 -vl CO 00 0 5 OJNJCOOJ00 00 4A o 00 4a 4a cn 4A NJCOCO 0 5 NJ4a 4 a oo 1—co x— COCOCO00 00 COco ’N" CMCO■M" CNCO o CN CO o> T— 00 Is- oo o> o Is- Is- Is- o o> CO00 00 COoo 00 00 00 00 00 G> 5 o> cn o> cn O) O) a> c d o> CD 00 o> O) 00 oo 00 00 CD 00 oo 00 O) oo d d o o o d d d d o d d d d d d d d d d d d d d d d d o d d d d d d d

CMCOi— cn M" CMCNCNCMi— cn COoo Is- CO00 h - o> o 00 Is- T“ COo> CN CO CN T— o CO CO CO o T- r* T“ X— o o o o o o o o o T“ o o X ~ o o X“ X ” X- X“X“ T™ X* o o o o d d d d d d d d d o d o d o o d o o o o d o d d o d d o o o o

CNCN i— CO O) CO Is- oo h - XT* 00 CO Is- CN O) o Is- CO O) oo 00 r* X— X“ O) CD o o 00 r - o 00 Is- 00 00 cd Is- oo Is- O) 00 508 518 507 506 478 455 454 485 499 485 447 474 484 in n in ^ r m in in in ’N’ NT N- 09 99 T— o 00 CO CO CM 00 00 cn 72 56 35 57 70 71 62 50 94 95 32 42 41 42 75 43 67 67 64 64 Is- 65 5 in co CO CO IO CO ■N- CO CO 102

M" CMo> ^r COCOCOin CO Is- r- m N- COo CO m CMin co o CO in COm o e'­ co co 00 00 oo oo h- 00 00 00 oo 00 CD 00 cn 00 00 o> CD o> o> 5 cn o> cn cn O) o> 00 COcn O) cn en cn cn cn d d d o d d d d d d d d o d d d d d d o o d d o d d d o d d o o d o o COo> COoo COCOCO■M"■N- r- in e- CO COin CO■N- o cn X in COin o in r-~ in o COcn r- h- CM X ~ o o X“ o o o X-" o O o o o o T* o o o o o o d d d o o d d d o d d d o d d d d d d d d d o o d d d o o d o d o o o

CM in o CD CN ■N" oo COIs- CO in m i^- m Is- Is - Is- CO COtn i" - 173 169 170 173 164 165 170 170 152 148 149 143 152 159 164 165 175 172 155 X 152 159 157 157 169 X“ X— X— X““ T“ T— —

o> CO in CO Is- CN CO CO oo Is- o ^ r CO CD Is- 00 Is- CN CN CO o y~ 00 Is- CD CD CO 1 2 30 34 30

30 25 X— COCO 30 CN 25 CN CN CN CN V- X“ x- CN

■*— CNCN in CO in a> CO Is- ■N- in CD CN V- Is- Is- CO in TJ- Is- CN in Is- o in CN in CN in CN 'N* m CD CD 00 5 COa> CD 00 00 00 o> CD cd 00 CD CD 00 CD CD CD CD

cn 00 00 CD m CD Is- in N- CO CO in 00 o> CO CO m CO CO 00 in CO o in 00 in 00 in 00 CO CD m o O X— T“ T- o o X“ T- o o o o o X“ o o o o p o o o o T—o o o V“* r * o o o o o o d d d d o o d o d d o o d o o d d o o d d d o o d o o o o o

00 ^ CO h- COinNT-OOO)0Nr^(OO)O)COS(OO)^NO)MN^N^N^(D(DS O) CD 00 OO 00 0)0)000)000)0)0)0)0)0X00)0)0)0)0)0)0(00)0)0)000)0)0)00000) in CN cDooJB^^cDi^l^JI^oocoin^Ioocn^coTj-incooocoin^^inoo^ooinco^E^in

Is- ^ r CO in 00 V m X*“ T— O CO Is- OOm CO CD CN CN 'N* CO 00 CO 00 o in CD OO'N’ CO CO 00 00 00 00 oo CD 00 CD CD CD 00 00 O) 00 00 r- h- 00 CD 00 d d d d d d d d d d d d d d o d d d d d d d d d d d d d d d d d d d d CO CD CO

CO i n CO m CO ▼- 00 CN CN in 00 00 CO CO o CO CN CO CN CO CO CO co N- CO CO CN CN CN CN CN CN CO CN CN CN CN 143 135 125 120 123 143 145 130 135 137 XT"* 130 T— r * r * T“ x — ▼- T— x— x— T“ 130 x— x— 117 115

i n oo 00 CO CN i n CO Is- CO r— oo c o o CO i n CN 0 0 v - CO 13 14 13 15 10 25 22 23

26 24 23 20 T— 24 CM x — X“ CN CM CM CN CN c o CO 25

CO CO o X—CO 00 CO CN o 00 Is- h - m CM CN c n CO CO CO CO I- CM ■X o CO CD O CO h - i n i n 00 00 00 co oo oo c n 00 CD CD CD cn cn CD CD CD cn CD c n cn c n c n 0 0 cn c n oo oo 0 0 0 0 CD 0 0 0 0 0 0 0 0 0 0 d o d o o d d d d d d d o d d o o o d d d d d d o o o d d d d d d d d Is- o cn M" CM cn N- 00 CD o CM co CO CO m oo 0 0 M" M" M" Is - c o oo co o o CD CO i n in T“ T“ CN T— o o O T— o o o o o o o o o O O X” o o X“ CM x- X“ X“ X“ X™ T~ T- o o d o d o d d d d d d d d d o d d d o o o o o o o o d d d d o d d o

X“ oo CO i n IO ’N’ CO T- CO CM CM CM X"" N- m 66 o o o o o T— T ~ X” T— O o o o 97 94 95 97 94 95 98 101 103 107 114 108 102 100 X“ T— T ~ r * 114 108 108 X— x—X—X— x— x~ T-

O CD CO CN CD c o CN T- CN CN r- Tr25?o>^£!cNcocoTt-tDCDCDT-ioioin^cocD2!!£3$£S2£!$££j!£!£:

O O O O w w w OOOO OO O o o o CO CO CD CN io 00'N* O CO in 00 O O OOO OO o CM LO CO X“ X 1- o> CO CO CD CN in CO ’N’ Is- O CO CO CD CN in o o o O CN CO CO CO -x r CO x— r — X“ 1 1 1 es, 1 °°l °°l ° ° l ® i ®l 1 1 1 i i i 1 i 1 1 ■ i 1 N | C°, ^ 1 wi o O o o o o o o o o o O o 1 o 1 o ' o ' o o o ' o ' o ' OO o CM CM CM CM CM CM o o o O O o o O o o x— x— x— X—x—X— x— x— X“ X“ CM CM CM CM CM CM CN CN CN CN CN CN CN CN CN CN CN CN CN CM CM CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN Q. CL a. CL CL Q. o r \ r \ n n o n r \ o o o r \ r» Q. Q. Q. CL CL Q. Q. Q. Q. CL CL CLQ . a _ Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. uo!SS!LUJ0d jnoLjijM pajiqiijojcl uoqonpojdaj ja q p n j j 0u m o }i|6LiAdoo 0L|j ]o uo!SS|UJj0d ifljM p0onpcud0y

TJTJTJ-OTJ-OTJ-OTJTJ 0.91 0.09 0.90 0.90 0.10 0.10 499 493 495 50 0.94 0.06 56 54 171 0.93 0.97 0.07 0.03 170 176 11 TJ 0.87 12 6 0.13TJ 0.86 89 0.14TJTJTJTJTJ 0.88 0.12 88 90 13 0.89 14 0.11 12 132 0.89 0.11 0.82 0.18 131 16 121TJTJTJ 0.91 0.09 17 107 27 0.89 0.11 0.92 0.08 104 108 10 p210_640 13 9p210_610 p210_580 MKIMMMWWMMN) NJNJNJNJNJNJNJNJNJ NJ NJ NJNJNJNJNJNJNJNJNJNJ MMMMMMNMMM - ■ v - v - v -V - v V-■ v v ^a ^a MMMMMMMMMIO ,° l° ,° ,° 1° 1° 1° WUMN)N)-i-iOOOO COCOCOCDCDoo “vl "•vl v l -vl OJ (DOUOS-^OOOlUO vj 4s. -a CDCJ1NJCOo>COo vl o o o o o o o o o o cooN^-iooNJcorouo o O o O o o o o o o o 15 10 16 18 -s. -s. NJ CO CO NJ CD CD OJ CD CO - NJ NJ CD 4s 4s. O NJ NJ a CO CO 102 108 108 107 112 112 104 111 m 114 107 114 114 112 108 103 102 107 105 106 103 108 108 103 93 73 95 -A 96 0 o 01 66

o P o o o o o O o o OO o o o o o o o o OO o O o o o o p O o p NJ o o co o b b 0 b b b b b b b b b o o o o CO oo 00 CD CO CO 4s. 4s. it 01 cn CO CO CO CO O l 4s. 00 NJ CO CO o CO NJ 00 00 4s. O l 00 NJ o o o o o o o o o o o o o o o o o o o o O o o o o O o o o o o o c o 00 -v| t o b b b 00 b b CO b b b b b b b b b CD CD b b b 00 b bo bo CD b oo o -vl co NJ NJ NJ OJ O) CO O l Ol -v| -v| O l OJ NJ CD -vl o oo NJ NJ OJ Ol NJ oo 26 28 23 19 NJ OJ NJ NJ CO CO 00 CO CO Ol -Vj - NJ c o 00 CD a NJ NJ OJ 4s. £ NJ o NJ £ o 00 00 O l 4s. 129 130 125 134 136 136 142 132 124 134 126 139 138 139 136 140 139 139 134 138 122 120 130 140 143 141 133 134 137 129 127 125

O O p O o o o o o o p oooooooooooooooooo o o O b b b b b b b o b b b b b o b o b o b CO NJ OJ CO 00 00 4s. OJ CO O l OJ -v| OJ 00 Ol OJ OJ CO V | 00 CO NJ Ol CD Ol *vj o CO OJ £ OJ p P o o o o o o p o p o o o o o o o o o o o O P p p o p p p o o CD CD bo b b b b 00 oo b bo b b b b b b b b b bo bo 00 b b b b b b b bo b -v| CD 4>. NJ NJ OJ CO 4s O l CD 4s. NJ Ol 4s. 4s. CD NJ oo Ol -vl Ol CD o -v| OJ

NJ c»OJ OOjJcOOJ'JOOOJCOWOJCOCOCOCOCOyQOOoiolNCOCOOJ^^OJQQ

NJ CD NJ COvlCDCDOOCDCOCDCDCDCOCOCDCDCOCDCOCOOOCDCOCDCOvl ^C 0-^^^0)0JU l^0J0>S0)0)0J0J0)0)C D N J^N JO 0J ■UOJOJOJOOCONJNJ

o o p o p o o o o o o o o o o o o o PPP oooooopoOpo b NJ o b o o o o o 0 o b b b b b b NJ b b b b 00 OJ 00 00 CO OJ ■ v| 00 OJ CO 01 OJ CO CO CO CO CO OJ o 00 o NJ -N 00 CO OJOJ £ OJ o o p o o o o o o o o p p o o o o o o o o o o o o o o o o o o o p o b vj b b b b b b b b b b b b b b b b b b b b 00 b b b CD CD b b b NJ vj CO NJ NJ OJ NJ O l -N - v | o NJ o 00 OJ NJ •I** 4 * OJ •V j o o

- a _a _a _A _A _a a _A _k _k _k . OJ CO CO NJ OJ NJ NJCO CDCO NJ CD NJ CD 4 s. —* 00 -vl o 00 CO o 4 * OJOJ 4*. OJ -vl OJ CJ1 4 s. o CD co o -vl CD NJ NJ v l v v ...... '... ■vj OJ -vl OJ OJ -vl -vl OJ -vj OJ OJ Ol OJ V j Ol O l V l OJ 4 s. -vl -vl OJOJ 4 s. OJ a CD V l V l OJ v l -* -N. O l NJ 4 ^ OJ 0 J NJ 00 OJ CO CO 00 OJ OJ O l CO OJ •Vl 00 NJ CD -vl -*• CD NJ CD CO o o CD -*■

O p o O p p o p p p o o p p p p p o o o o o p o o p o o p o o o b V NJ o 1 a b b b b b b 1 a b b 1 a 1a o o L i b b b _k NJ I s . NJNJ b b o o OJ o o O l o o O l O l 00 Ol •vl V j OJ CO OJ O l OJ O l CD CO CD CD oo NJ D o a. V l V l CO OJ o o p o o o o o o o o o o o o p o o o o o o o o o o o o o o o o b b CD b b b b b b b b b CO b b CDCD b b b b b b bo -vl CO CO ■vl b b b b •N o o Ol o o Ol O l NJ Ol OJ OJ -vl -vl Ol VI Ol NJ CD O l NJ 00 CO CO o OJ CD CD a

Ol ■vj CO -N Ol 00 OJ Ol Ol OJ Ol OJ •N OJOJ -N 4 * OJ 4 s. OJ CD OJ CD OJ OJ CD OJ co CD CD CD CD o 4 ^ Ol -vl -N O l 4>. -vl OJ OJ V l -vl V l 4 * OJ v | CD oo NJ CD CD CD o CD CD OJ NJ V l oo

4 * -N. Ol -N O l 4 * 4 * Ol -N Ol 01 Ol Ol O l Ol Ol CD 4 s . 4 s. a 4 s. 4k 4 s. -N. 4 s. 4k •IS. 4>. a 4 s. CO v j Ol o CO OJ CO CO CO o ^a _ao o o oo CO 00 co oo oo CO 00 CD co co co CO CO O l 4 ^ 00 NJ Ol 00 00 Ol NJOJOJNJ NJ NJ O l OJNJOJ —s. ~v| 4 s. a . OJ CO OJ a CD V l NJ

o o O O o p o p o o p o o o o o o o o o o o o o o o o p p o o p _k u _k —k _k o _k o _k o b o b o o b o b o b b o _x v l CO CD v l v l o CD OJ o CO OJ o OJ 00 v | v l CO 00 OJ CO - o NJ- CO o CO o

o p O o o p p o p p o o p o o o o o o o o p o O o o o O o o o o b 00 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b v l CD CD o CD 4s. o a o 4s- NJCD CD NJ4s. CO CO CO o oo CO CO CD o o CO r-~ o oo 05 r- o> CO co M" CO o CD CN T“ XT CO M" CO CO xT xr 00 CO 00 oo 00 00 o> CD 00 oo O) 00 00 CD o> CO CD CD CD CD CD CD d oooodddoood d d o d d d d d d d

co o CN T—co i^ r- CO M" o CO00 CD CO Is- CO Is- Is- CO CO CN o o T— r* O o T~ o o o o o o o o o d o d d o o d d d d d o d d o d d d d

CO CO CN *T“ CN i n CO T" CO CD CO T— 515 509 518 509 508 505 500 510 470 492 479 480 ■N- 485 487 479 487 LO M’ x r LO

o> CM o CO T™ 34 34 58 87 39 87 79 57 70 40 40 41 64 62 CO £ CO Is- CO 44 49 CO

o CO LO O CO XT CO LO 00 o o CO xr CO CO LO LO o> r - o> o> O)

CD CO CO LO CD T—V“ o LO CO 00 CO LO T—t * CD CD LO CM CM s CO Is- CO CO CO Is- h - r - IO 5 CO XT CO CO LO r— CO CO CO r- Is- T—T- T—▼ - T-’ T“ T- V“ ■*“ T— T—T—T_ T—T—'r_ T“ T— T—T—

00 co

o o CO o> XT Is- o O 1 ^ 00 xT CD CD xT h - xr T" r- CD CM Is— r- o> CO 00 00 o> 00 O) CD CD 00 CD 00 00 CD CD CD CD CD CD CD CD

66 06 66 96 66 T— 66 66 CM T- CO O) CM CO T** T— o 92 85 CO o> O) 00 o> 92 CD CD CD 96 93 94 253

- CO o CM -- CD T— CO 10 17 CO co CDCO CO 00 CO 10 CO CO 20

CO CD V CO CO Is- CO o CM 00 CD CD CN xr CO Is— 00 V Is- CO CO CD Is- 00 CD oo oo CD CD oo 00 oo 00 00 CD CD 00 00 CD O) CD CD CD d d d d d d d d d d d d d d d d d d d d d d Is- CD CD Is- CO h- o oo CN 00 CO Is- CO CM CD CO Is- Is- o CM O T— o o CM T“ T—o o T— o o o o o d d d d d d dddddddddddddddd

00 CO CM V CO CD 00 00 CO CM CM 00 CO CO CO CO 117 120 134 123 143 137 118 130 131 123 145 134 T— 129 144

o LO V CD CO I- i— CD in CO xr 14 12 19 10 10 28 25 30 CO 25 CN CM

xr LO LO xT xT 00 o co M" CO 05 05 o o o *r~ Is- 00 s 00 oo 5 55 CD CO CO 05 s 05 05 OO i— 05 CD CD CD CD CD d o d d d d d d d Oooooddodddod CO LO CD LO O) CD CD CO CO CN o O) i— CO Is- o o o CD CD CM o o o o CO o o o CM o O O d o d d d d d d d O o o o o d d o d d o o d

o Is- 66 Is- o 00 in CO o o o O o 95 97 92 CO 75 116 105 105 105 106 106 106 106 109 T“ r* t * r* t— T— 110

*r~ r- O OO CM T“ O CMM" CN T— Is». O IO _ CN CN CN T* t“ T“ •t— 00 1—* CO CM ■M- T“ ■*“ CM

o o OO O o o o OOO o o OO O t*) (D S tO (D Ol CMm 00 r- o CO CO CMm oo V" 1- 05 O O O CM CO CO CO “*1“*l *°l ®l ®l ® , ^1 °°| °°i °°l OTi ®l 1I CMCNCNCMCMCMCMCMCMCMCMCMCMCMCM CMCMCMCNCMCMCMCMCMCMCMCMCNCNCM CNCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM CN CN CM CM CM CN Q. Q. CL CL Q. CLCLCL Q. CL Q. CL Q. Q. CL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q 0.90 0.92 0.86 0.86 0.93 0.83 0.79 0.89 P 0.08 0.92 0.07 0.93 0.13 0.87 0.14 0.10 0.90 0.07 0.11 0.89 0.21 = 496) = - 383 0.23 0.77 410 0.17 0.83 457 418 0.16 0.84 446458 0.10 0.08 428447 0.14 461 465 0.06 0.94 443 0.11 Total (n Total + 71 425 0.14 0.86 35 461 68 31 55 441 53 44 452 0.09 0.91 113 105 391 q 0.820.66 86 138 358 0.28 0.72 0.87 0.920.94 30 466 0.06 0.94 0.92 39 0.82 78 0.94 38 0.850.85 65 431 0.72 0.82 71 425 0.940.89 44 86 4520.86 410 0.090.92 49 0.91 0.17 0.91 410.95 38 455 35 458 0.08 0.92 0.08 0.92 0.84 0.94 46 450 0.09 0.91 0.97 0.95 0.850.92 66 430 0.13 0.87 P 0.08 0.15 0.06 0.06 0.15 0.34 0.16 0.08 0.06 0.28 - 138 0.13 149 149 0.06 139 0.12 0.88 145 132 149 135 114 135 0.15 104 149 146 141 0.11 0.89 50 130 0.18 9 9 + 9 12 17 23 20 28 254 q 0.920.85 5 80.88 153 0.03 150 17 0.05 141 0.11 0.89 59 437 0.12 0.88 0.93 0.84 29 129 0.18 0.91 22 136 0.14 0.94 19 0.92 13 1450.94 0.08 13 0.92 9 0.87 0.860.86 24 12 134 146 0.08 0.89 0.87 29 129 0.18 0.77 54 0.87 0.92 8 150 0.05 0.92 0.87 P 0.08 0.15 0.12 0.14 0.08 0.13 0.09 0.07 0.930.08 14 144 0.09 0.08 0.06 0.13 0.14 0.11 0.23 0.08 0.13 = = 197) = (n Vegetative 158) - 149 0.24 0.76 26 182 167 173 173 0.12 0.88 181 169 183 0.07 180 172 0.13 153 0.22 0.78 18183 140 0.11 164 0.17 0.83 44 173 0.12 0.88 Male (n Male + 14 11 186 0.06 31 166 0.16 24 25 26 171 44 q 0.83 0.83 0.91 25 172 0.83 0.73 46 151 0.87 24 P 0.10 0.90 28 169 0.09 0.27 0.17 0.26 0.74 33 - 130 0.08 0.92 15 129 110 0.22 0.78 48 124 0.12 0.88 30 129 0.09 0.91 134 0.05 0.95 22 175 130 0.08 0.92 16 181 105 Female (n = (n Female 141) + 5 136 0.04 0.96 12 185 8 133 0.06 0.94 25 172 7 11 17 1814 123 0.13 127 0.87 24 12 11 130 0.0814 0.92 127 16 0.10 181 0.90 10 131 0.07 0.93 17 19 122 0.13 0.87 16 12 16 125 0.11 0.89 11 31 38 103 ■ ■ 24 117 36 21 120 0.15 0.85 27 170 0.14 0.86 23 Band Band Id p277_430 p277_520 p266 p266 490 26 115 0.18 0.82 p277 700 24 117 0.17 p266_310 p277 p277 670 24 117 p277 0.17 790p277_940 10 131p266_370 0.07 0.93 14 p277_730 p277_760 13 128p266_280 0.09 0.91 15 182 p277_640 p277_610 p277_460 p277_490 p277_550 p277 580 13 128 0.09 0.91 28 p266_640 p266_460 p266_550 p266_430 p266_520 p266_400 p266_670 p266_610 p266_580 19 122 0.13 divided by the total number of individuals in each category. The frequency q was was divided 1-p. q The frequency the ofby total category. number individuals each in Appendix 12 - Allele frequencies for each of the sexual characteristics. The frequency p was derived as the number of present bands the (+) as number was bands derived ofp present frequency The Appendixfrequencies characteristics. forsexual the Allele of-each 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CN CM CN O 03 0 0 0 CN CO CO LO CO CN 1 0 CO 03 00 CO CN 0 h - co CN CN CN CO 03 CN CD o> 03 CD 55 0 0 O) 0 0 o> CD 03 O) 03 0 0 00 00 00 Is- 00 03 55 00 00 00 CO 0 0 r-- CD 5 00 CD 03 00 CO 03 O d d O d d d d d d d d d d d d d d d d d d d d d d d d d d d d 0 d d

00 00 CD OO) 0 CN 0 0 h - LO 03 N- 00 1 0 r ^ CO CO 03 CN N ’ 00 0 CO CN CO CD CO CO 03 N* X* 00 O 0 O 0 0 0 0 0 0 T— CN T*“* 0 0 CN CN 0 0 0 0 X“ 0 O d d d d d d d d d d d d d d d d d d d d d O d d d d d d d 0 d d 0 d

CN LO a> CO 0 0 CO 0 0 00 LO CO CO x - 03 X” CO 03 0 0 CN 4 4 3 4 5 4 4 5 8 4 6 4 4 2 8 4 0 6 4 3 2 4 5 4 4 5 3 4 0 9 4 5 4 4 5 0 4 5 7 4 5 7 4 4 6 N- 4 4 2 4 4 5 N- 4 5 5 4 6 3 4 6 2 N- 4 5 3 4 2 9 4 0 9 4 2 4 N’ CO N- 4 5 0 N- CO CO 6 0 CO CD V CO Is- CO CN 00 00 03 5 3 5 8 8 7 5 0 5 4 3 4 7 2 7 8 9 8 6 4 4 2 4 6 4 4 2 7 6 7 4 6 4 2 4 3 4 2 CO CO LO CO 5 CO 4 3 00 00 CO CO CD CO 1 0 5 1 0 9

CN a> CN Is- T“* h - 03 Is- 0 0 CN N* O 0 O N* CO CO N- 03 03 CN 0 co 0 CD CO CN CO 03 LO 03 0 0 CD 00 o> 00 00 00 CD 0 3 CD CD 03 O 00 O) OO Is- 00 03 03 00 00 CO 00 CD h - CD 00 0 0 03 03 00 00 03 d 0 O d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

^- r * 00 T— h - 00 00 00 CO o> CO - CO 0 0 00 CO 0 0 0 0 CO 1 03 CO 0 CD i- - 0 CD N* 10 0 O T“ 0 O O 0 CN CN 0 O x - CN O CN T“ 0 0 0 ddddddddddddddddddddddodddddddddddd

CO l-~ 0 h- CN CD CN CO LO 00 Is- 0 CD LO CN T~ 00 CD 0 co N* CO xr CN N* CO X" CN N* CO CN T“ N’ N- CN CO 5 10 141 144 137 146 X— T“ 142 T“ 146 149 144 142 T* t“ X" X" r - 148 140 141 T— X“ 144 T— X" X“ T" 147 145 X* r *

T— CN CN N- 00 CD CD CN 03 N- CO CD 0 00 Is- 00 N- CO CO 0 - CO CN Is- 00 32 30 32 25 CN CN V" CN T“ T“ X“ T“ 43 r * T" CN N- CO CN

CN CO CN 00 CN 03 CN CD xr LO CN CO LO LO Is- CO LO CO 0 03 CD CO 10 N- CN LO CN CN X” 0 00 03 03 o> CDCD 00 03 03 00 03 03 03 03 03 00 00 00 00 00 00 03

T" 00 h- CO CD CN 00 03 00 N" CD 10 00 CN LO 10 COIs- LOh- 0 xr Is- LO CO 00 LO 00 00 03 0 CN - 03 0 0 0 0 0 0 T~ 0 0 0 0 0 0 - V 0 0 0 0 0 0 d d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 0 d 0 0 0 0 0 0 0 0 0

T—CO T“ 0 N- X* 03 T—0 CD h- CN xr 00 h- CN CO Is- CO Is- CD 0 N" Is- in Is- T- CN 03 00 CO CD 03 00 00 00 00 Is- 00 h- Is- 0 0 03 00 00 00 Is- CD CD Is- CD CD CO Is- Is- Is- CD CO CD CD 00 00 CD h- Is- 1^ Is- Is- X* T“ r* T- X“ X” X“ X” X” X“ V* V T™ X X X X“ X T*“ XX T“ XXX T-

00 0 0 CD (O CO c o CN CD h - in xr CD co in 00 03 00 30 34 30 30

X 23 29 25 20 27 33 32 CN CN T“ T“ CN CO X—CO T“ X“ 24 CN

0 in CN m 00 03 h- N- CO CN N- 0 0 CN CN Is- 0 Is- in 03 h - CO 03 N" h- 03 03 CO N- 0 N- CD T— 03 03 (D CD 03 00 00 00 03 03 03 03 03 co 00 00 h - CO 00 03 00 00 00 r^. r^ 00 Is- 00 CD 00 03 03 00 CO CD d d d d d d d d d d d d 0 d d d d d d d d d 0 d d d d d d d d d d d d

0 in CO CD in CN CO CD Is - 00 CD 0 0 00 00 CO 0 CO i n V c o Is- f CO CO CD 03 0 CO T— CD 0 0 0 0 T“* 0 0 0 0 CN CN CN 0 T" CN CN r* CN T“ 0 0 r—T“ 0 d d d d d d d 0 0 0 0 d d d d d d d d d d d 0 d 0 0 d d d d d 0 0 0 d

^r CO CN 0 CO 00 CO CN 10 CO X* 00 CO 00 co CN CO CO CO CO 0 CN CN 0 CN CN CN CN 1 2 7 1 3 4 1 3 0 1 2 9 1 2 4 1 2 6 127 113 1 1 5 1 1 5 1 1 3 1 3 4 1 2 5 1 1 7 112 T- T" r* ■r" T— T— T— 12 5 131 11 9 12 7 11 9 ■(—

- CN N- r - 00 03 0 00 co CO Is- CD 00 0 CO 0 CN CO x r CN 10 15 18 16 19 r* 13

2 6 2 6 2 8 2 4 T T—CN CO 2 9 co r—CO — CN r* CN

o o o o o o o o o o o o,^000000000000000000000 o o _ w,o) ■sr O CO OnONIOOOT-^KiS^^SOntOroCNlOOOT-^NOtOfflfflNinmr-^NO CO CD CN W 00 "if h- o o I I I°°l°°l“ l 0)|® |0)| ° ^ ^ C0| "l m| "i “ l ®.<°| ^1 ^1 ^1 °°| °°| °°| °\ o> cn - - (O(D(D(O(O(Dio(0!O J J J 'n w>ninioioioiomioinioiomioininioinioin J .n (0(o(0(D(D(0(0<0(dSSSnnnnsnnnnnssssssnnnnsK;P CNaaaaaaaaa^^^aaaaaaaaaaaaaaaaaaaaa^^ CN CN CN CNCNCNCNCNSjXjSjCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNKiK;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o CM o CM CO Is- CO 'M’ M" Is- CO CO CM CM o CO CM CO CO M1 CO M- m c o V“ CM OO M* X— CO c n c n 0 0 0 0 c n CO 00 00 c n c n c n c n c n c n c n 00 cn c n c n cn O) c n cn 00 c n cn c n 00 00 cn 00 d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

CO o CO o 00 CO ■O' CO CO CO M- CD 0 0 oo o h - 00 M* Is- CO i ^ c o CO i n CO M- cn CO 00 CM CO c n r - o T— T— T— o o o T“ X“ o o o o T— o o o o o o o o o x— o o o x— x— o X- d d d d d d d d d d d d d d d d d d d o d d d d d o d d d d d d d d d

m Is- CO Is- h - IO IO c n

O) o O) c n IO i n N- LO c n CO CM CM c n h - c n CO Is- M- o T“ i n r - i n V 00 c n 00 Is- CM CO M" o> M- CO CO CO CO Is- CO CO CO CO M- M- c o CO CO CO CO CO CO CO CM CO c o M" CO CO i n Is- M- 00

r-CM Is- cnr- CO O LO CO CO CO CM ■r- 00 o CM CO CO CO CO M- c o i n CO c n M- xj- c n M- CM h - o> o> 00 00 cn O) oo 00 cn 00 00 00 c n c n c n

CO 00 c n CO c n CO T- CO r - o IO 'M’ r^» o o

CO LO 00 00 CO c n o h - r - ^ r CO CO c o c n CM m r - TT 00 T- o h - o c n oo o CO LO r - LO M- CM CO M" M- x r CO ■M* CM CO CO i n M- M* CO CO M- M* m m i n "M* m - CO ■M" co T— T" T*“ X* T" T“ T— T“ T— T" .T - V T— T— v— T— T”‘ T“ T“ T— T— T— 'T— x - r * r— T— T~ r - T" T— T”

T“ t o CO o o i o c n 00 T“ CM fs . CM i n c n CO c o Is- M" [ s . o fs. oo OO c n O 00 m CO T— CO CM T_ T— CM T_ CO CM CM X— T“ T— T“ T“ T— CM t— T“ T“ T— T~ T— T— CM x— CM

CM CM CO CM CO CM M" CM c n O Is- x— CO CO CM M- CO c n CO ■M- Xf CO M- 'M’ CO CO c n CO c n CM c n O) 00 O) c n c n c n 00 c n 00 c n 00 c n c n c n c n c n c n c n 00 c n c n cn c n c n c n cn 00 c n cn 00 00 00 00 OO d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

CO 00 Is- c n 00 Is- o o CO 00 o CO c n Is- h - oo CO CO h - c n CO x f c o CO r - . CO CO Is- Is- x— CO CO o o X“ o o o o o T— X- o o o o o o o v - o o o o o o o o o X— x— x— X“ d d d d d d d d d d d d d d d d d d d d d d o d d d d d d d d d d d d

CM CO c n CM CO CO CM CO Is- CM o CO xj* V i n i n CO CO o CO cn i n i n xj- CO i n CO CO o CO CO CM 00 00 CO r- 0 0 00 00 CO 00 Is- Is- r ^ 0 0 00 oo 00 00 00 00 Is- 00 00 00 00 00 CO 00 CO 00 oo h - Is- CO Is- CO X— X- T_ X-— T" X— X*“ X™ T™ X“ x— r * T“ T— T“ T— T— T“ T“ T— 'r “ T— T— T— T“ v T— X- T— ’T—

_ X“ CO i o M" 00 LO CO LO o LO CO CO CM CM ■O’ T— r ^ wr rt CM CM CO CM CO Is- x - i n T— T” CO T— T— X- CO T“ CM CM CM T— T“ r — r * r * CM T” T_ T“ T_ ■*” x— CO T_ CM CM CO CM CO

CO LOCM CM M- X- 00 r- CO CM LOx r ■O' CM c n CM r-- M- CO Xf x r CM M- CO CO i n O ■M* T~ CM o 00 00 c n c n c n h - 00 c n 00 00 00 c n O 0 0 c n 0 0 c n cn 00 cn cn cn cn cn cn c n OO o> c n c n c n 00 c n 00 d o d d d d d d d d d d d d d d d d d o d d o o d d d d d d d d d d d

Is- LO00 0 0 c o c n CM CO M" 00 LO CO CO 00 oo CO CO c n CO CO cn 00 CO M* c n Is- c n CO LOo CO c n 00 o T*X- o o o CM X— o T— x~ X— o o T— o T— o o o o o o o o o X— o o o x— x— o X- d o d d d d d d d d d d d d d d d d d o d d d d d d d d d d d d d d d

T~ o IO o CM c n o CM CO CO o c n CO o LOo CO CM c n T“ CM CM cn o CM CD c n Is- 00 CM M- Is- c n oo i n CO CM Y“ CO CO CM X” CM CO CM CO CO CM c o CM CO CM CM CO CO CM CO CO CO CM x— CM CO CO CM x - CM X“ T" r * T“ T " X~ X" T” T " x— T— T— X“ V- T“ T“ T - •T" X“ T~ x~ X“ X“

O T - CO IO in CM CO CO T - 00 CM O o> cn CM 0 5 h - ■M- CM CO CO t - CN CM CM CM CM o> t- CM o> in 2 3 £ r - CM t - CM o o o o o o o o o g5f3K£?3!inm00000000000000000000000000 ” ” ~NSt22^sono)CMinoor-^so'tNon(oo)CMin^son(DCj) ^ ^ J I ^ ^ ^ ^ " ” ncOM-M-'^inininT-i-i-'i-CNCMCOCOM,m m c o c o co t - c n | o> t - , - cm cm c o co x - x - M-, m- M-. if.

R^RiSiRlR-KliiiKKioococnoooooooooooooooooooococDoooooococooocooooococou ju ^ u j in 1 in1 in'in'in'in'CNCNICSjrgcNCNCs,CNJcgcsJCN,(NCNCN|':1'' ^ ' ,a' ' ^ ' r,' T3''^ ’ '^''^"T:,' ' J' ^^^vJ^^^^^Q.dQ.Q.Q.ClQ.Q.CLQ.Q.aQ.flQ.Q.CLClQ.Q.aQ.Q.ClCLQ(NirdrJfNifNitNifvifsilvif^fNCMCNCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. V" U) in o CO o CD CO o CO Is- CD o o xr CO CO oo CD Is- CM X“ O CO in CD o 00 CM CO in xr CN O 00 00 00 CD 00 CD 00 Is- 00 00 00 00 o> CD CD CD 00 00 CD 00 00

c d in LO o M- o Is- o xr CO o o CO h- xr CM CD x- CO 00 CD o xr tn o CM 00 Is- in CO 00 o T“ V CN CM o o o X“ T~ O o o o o o O ddddddddddddddd d d d d d d dddddddddddo d d

CO xT oo CD 00 CD o 00 o> ^r“ CD xr LO Is- CD Is- Is- CM CM xr T“ Is- in xr CO in 00 tn CM CD in xr CO o CM CM xr CM CO CO CD CM CO CO M* xr co in CM CO in xr CO in tn xr CM CM xr xr CO tn CO CO CO in M" ■

CM co CM 00 Is- 00 Is- CO CO Is- in r^ CM CD Is- CD CD in xr xr CM in O) CM CO 00 M- Is- CM o o> Is- Is- xT CO xr in CD CO CO tn in in CM co CO in xr in CO xr xr xr r- in m in xr CO CN CO xr in

CM Is- CM Is- o in CM o m in T— xr CO CM CO o CM xr m CM CO 00 00 r- CO CM CM CM in CM CO CD CD 00 00 oo CD oo CD CD Is- oo CO CO 00 CD CD CD CD 00 CD CD CD 00 CD CD CO oo 00 00 CD CD CD CD CD CD 00 00 O d d d d d dddddddddddddd d d d d d d d d d d d d d d d

00 CO 00 CD CO o CD LO oo o m in CD CO Is- oo 1^ o 00 CO in 00 CM CM CO xr 00 oo OO in 00 Is- x- x- T” o X— X— o CM T— CM V” o o o o T— T— o o X— o o X— x— x— o o o o o o r* X— d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d

CD 00 o M 1 oo CM xr CD

X"“ xT CO CD XT o xr co o CM CD o CD Is- in CM h- CD r- CO CD

CD CO xr T“ CO o COCM o 00 o CO in oo co CD CO xr CD in Is- CD CM CO 00 Is- in Is- CO x~ X- X- T" X— X— CO CM o V X— T— X” o o T" T— O T" xr* x~ T— O X— X— O X" o o o o o x— d o d d d d d d d d d d d d d d d d d d d d d dddddddddddd

CD LO CD CO in 00 CO xr Is- T— in Is- CO CM r^- CO CD CD CO m CD oo xr CD xr CO r— xr Is- xr CO CO LO CO CO Is- CO 1^. CO CO in 00 Is- Is- Is- h- oo CO Is- CO N. Is- Is- CO CO Is- Is- CO 00 00 00 00 00 Is- T— X“ T— X" T— T“ T“ v“ V T— T_ T- T— T— T— T” T” T" x~ T— T— T— T— T— T— x— x— ▼— T~ T—

00 CM 00 CM CD CO o CO CM o T™ tn o CO CO 00 CO co V CM oo CD CO 00 CO CO CO o CO CO CO CO T— CO CM CM T— CO CO xr CM CM CM CM T” CM CM T_ CM CM CM CM T_ CM CM CO T_ T“ CM

CM to CD o> T— CO CD CO CO o 00 CD xr M* CD xr o r-. xr x^ xr Is- x— CD

00 to T— CD X“ CD CD xr T*~ xr o CM CO CO CO o CO CD CO CD CD CO CO CD XT* CD CD CO in CD oo X“ X- X- o X- o o CMCM T— V“ r * o o T— T— X— ▼“ O o O o T— v o x— O o o o O o d d d d d d d d d d d d o d d d d dddddoddddddd d d d d d

CO o LO 00 CO 00 CD Is- CM r * T- Is- xr tn CO CM in CD Is- CO 00 CM CD CD 00 CM 00 CD CO 00 00 h- xr 00 o X-* CM CM CM CM CM CM o CM CN CM CM CM CO CO CM CM CM CM 00 CM CM CM CM CM CM CM CM co CO CM CO T" X— V x— x*~ x—• T™ T— T— T“ T— T— T— T— T— T“ T“ T— T— T— T— T— T— T— T— T_ T— T— T— T— T_” T“ T—

_ to CO CO in CO CM xr CD o o xr Is- CO rf\ /T\ CO CM xr 00 CO CM CN 00 CD CO m in CO CO |v co CM X“ T“ w/ O) v T— N 1—• CM CO CM CM CM T— T— T— CM T_ T_ T— T— T— CM T“ T— T”

o o o o o o o o o o o o o o o CO o o O o o o o OO OO o o o o o o o o o CM in 00 r * XT Is- o CO CO CD CM 00 xr tJ o CO CO CD CM i n 00 xr O CO CO CD CM in x — Is- T— Is- o " l “ *1® l ® l ® l °°, °°l S l°> { ■°l CD, °°l °°i ° >,®l w l*■, xr xr xr xT xr xr xr xr xr M" xr D in tn in tn in in in tn in in in in t o tn in in tn Is- Is- Is- 00 CO 00 00 00 OO 00 00 00 00 00 00 N 00 00 00 00 00 00 00 CO 00 00 00 w 00 00 00 oo 00 00 00 00 00 00 00 CM CN CM CM CM CM CM CM CM CM CM CM CM CM rv l CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. Q. VN Q. Q. Q. Q. Q. Q. Q. Q. Q. CL CL Q. Q.Q. CL CL CL Q. CLCL CL CL CL Q_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

p287_490 8 133 0.06 0.94 15 182 0.08 0.92 10 148 0.06 0.94 33 463 0.07 0.93 p287_520 7 134 0.05 0.95 32 165 0.16 0.84 20 138 0.13 0.87 59 437 0.12 0.88 p287_550 14 127 0.10 0.90 14 183 0.07 0.93 23 135 0.15 0.85 51 445 0.10 0.90 2f3° ° 3 f “2 2 s ^ - T O ( n i ) o o ( 5 < ( o s ^ - T O i j o > o o ^ - T n i M C ) O D t n o s t > r i ) « CNjT--fna>^-tn -T -T T -on T d r- o o OJ 00 r- 00 CO d d d d d d d d d d d Is- 00 O) oo CO CO N" d d d d d d d d d d d d d d d d d d d d d o T—T— d TT o d d d o o o d d d d d d CO CO d d d - d d o oo 00 cn ^ ^ ^ ^ a a a a a a a a a a a a a a a a a a a a a a a a . a . o a a “V“ T“ CN s CN Is- d T“ o CM CO O) o >o> o> o f Is- " T CN 00 CO OO 00 CO LO o 00 OC CO CO CO ncn cn CN N- N* N* 50 N* 00 Osl T— oo o o cn T— T— T— lo d o o d d o d d d d d d d d d d d o d cn d d o 00 d d d d d d d d o CO d d d ■r" h~ cn s t T N* N- 40 *N-N" - N N* ’ N ~T“ T~ CN OLO LO CO cn 05 CN ) O o h- cn 00 Is- IO o Is- T“ o 00 O o> ) O CO d d d d d d d d d d d d d o o )5 O) o V" -M- o LO - N- oo cn T—T*“n cn ncn

18 179 - 35 CN o cn o cn CO 00 d d d d d d cn o o 00 i- 00 o Is- cn CO N" N- LO CO 14 N- 46 CN *r* r* CO CO CO CO CN o 00 o o o 00 cn cn CO n c CN T— 00 o CO cn N" N’ CO N* CO Is- cn CN 34 o cn T— CN CO LO o 00 o CD o Is- CN CO T-“ d n c CO n c 00 00 in in N* N* cn CN CO T“ CN CO IO CN O o 00 o cn d d d d o d o cn CN cn o n c T CM T~ T“ co cn T~ N- N* cn — 176 46 V* CO CO CO CO CO o o o 00 d d * r cn CO cn CM o oo cn CN 00 —T— T— LO o N* CO o LO o Is- cn LO 15 oo CN 34 —T” T— o 00 d d o 00 cn CN n c CM * r o cn O t O oo N* N* LO N* LO N* LO LO LO o CO cn N" T“ N* N* 20 177 - o o cn CN n c CM 00 d T“* 00 cn cn cn N* o CO o 00 cn o N" CN n N*

22 175 - " T cn 00 -T” V- CO d o CO o o> o Is- d d d d n c CO CN 00 00 o -T- T- N- cn N* 23 1 74 43 00 CN o CO n c d o 00 CO cn cn CN o o

co co co r- r-| r- co co

177 - 52 cn CO CO O o T—T—T—T—T— o o o Is- cn CO o o o o n c o Is- 0) CO N* Is- o oo CO CM

14 00 CO 36 o> CO LO cn o Is- o cn cn cn N- cn o 00 CO o CO cn N’ v— i- n c CM 180 3705 cn o CO o CO o 00 cn CN 00 CO CN N* N* N- o Is- T— CO CM oo n c o c ■sf 169 oo cn OL LO LO CO d d d T“ "N* N" d d d d d d CN 00 CO LO CN o 00 CN cn CN CM CO 00 oo oo N* N* 174 53 cn CN o oo OL OCO CO LO LO CO cn CN d n c 00 oo 5 o 00 cn CN cn N- o LO CO x— IO LO co CN - > cn CN o 00 T“ o cn d d d d d d 5 OL CO LO CO 'r_ N* m t o o 00 CO ncn cn CN o n c o c x— oo N-

— 179 85 T“ CN d o d d LO 00 d d d o d d d d d d oo 00 d d d d d d d 00 CO T— N" T“ CO d d d LO d d d o cn NC CN CN CN o o o o oo n c T— Is- o 27 N* d d d d d d LO CO V* CN oo 00 CO 00 o cn m d d d d d d 00 LO s n c t 00 h- T— ' N N* N* CN LO — 25 172 " r co 00 r^ co T- CO cn NCO CN CN 00 00 00 oo CM cn CO 00 00 LO cn N* 65 NCN CN o CO 3 o o o O) o cn o r* N" 00 Is- O CN CO 00 CO 00 Is- 20 177 49 CO 1 n i J J NCN CN d 00 h- CM - CO cn o o o LO cn m cn T“ N* 00 LO 176 48 * r 00 00 T" CN d d T“ O O 00 cn N* CN o cn cn o 00 oo 00 "Is- N" m n V

24 173 - 56 CO o CO CO o t— o LO cn co cn LO T— In LO d o N- o xr T cn CO cn T— oo ■'3- K. —

26 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

p235_1960 8 133 0.06 0.94 30 167 0.15 0.85 9 149 0.06 0.94 47 449 0.09 0.91 cm noonononnnnnnoonnonnnnno nJ J J J J J J J J J in inioioinioinioininininininioioininioinininininiom T“ CM M CM CM W o CM o * r h- o o 00 o o o cn O oo CO d o d o i". d d o o - h M" cn Tf -sf LO h- CM _ d d d d cn CO a> CO ) O ) N CO O) O) O 0 CMCO 00 ^ ^ Tf ^ ^ COLO IO N 00 S d d o 0 0 d o o o CM ^^^^^^^^ ^ ^ ^ ^ ^ 1^ ^ a a a a a a a a a a a a a a a a a a a . o a a . Q a . o a

cm o ncn cn CM oo X x CO o CO cn £ o d d d M" o> cn o CM o oo — —

130 00 cm CM CM M" in d o 00 o co CO o o CO T~ CO d d o OO(DN^t O(OO>NO) ) O N > O O ( lO M ( ^ M ( ) O 0 O C O C O ( ) O S ) O t- 00 ^ N D ( O lO O C S N - T N ) O O N O O o LO r>- cn co o> LO cn d o o CO M" . a

184 m c m c m c m c m c m c m c m c m c m c m c m c m c n m c m c m m c n m c m c m c m c CO o ~ v CM “ r d LO o V cn o oo CM o CO oo - m cn CM i c ^ * i c C M i c C i O c C O d C O i c ( M C O f O C O ^ T t C O C O ^ C M C M C M T - c O ^ C O C O C O T f ^ T t T t T f ^ f O C O oo o> 5 & 5 00 o> 03 x o CT> CL — 1 r^ O CO o CM CO OO - T | v C O O O < 0 - r r N - r ) O COCM O C - T CM o o oo o d CM d m CM h- CO CO, o O o CM d d o d d d o in r-- in 0 0 Q. 103 49 148 CM oo CO T- T d d cn t— CM oo i c oo CM OJ^NSw^^r^COCO^oSn^fvitOOiT-CNJOT-^cOCNOtnT-^ "M- 5 -CMo> COh- d d d d d d T™ CO d d o in o M" CO h- O ( - r 1 I h~ d cn OO X— NNU)5o)lOlOCO00NlO®°CO5!o>U)(OMOlOinir)^^COU)lO CL

1 37 160 oo CM i c CM CM CM M "M "M " M " o o o o o o o o o o o o CO O o oo m h- d d o o d CM 00 co t co co in d -CMCOCMCMCM

I 110 24 173 d o o d o d d o o d CM d o o o cn X— oo cn oo T™ CM OCOCO i c oo r- M" CO - o o cn oo oo .1.1 23 174 CM COCO CO cn CO r^. T— CO cn o o ' o I-- f- LO O) CM O) d d d CO - x n t-n T V“ in CO CO 97 62 CO o T— co 00 00 CM o X o C-- 00 CO o O CM CM V V“ CM i"- in r^- h*- CT) CM — 46 00 O) co r* CM CM oo x 00 co cn cn h- in oo o cn 00 h- i n c c c h~ co co co in in . m CM o CM — o d d d d d d d d d o> o d d d d d d d Ooo CO d d o d o oo r" ’M’ o o o cn CM X— x— d o d o o o o 00 oo cn CM n i 130 176 o> CO t o cn CM OCOIO >O o> o - h

o 171 CO LO Ocn CO CM in M* o o o d oo o X CM co oo h~ CM o x— CO h~ 25 — 00 CO00 O) GO o o o cn -r- h- CM CO oo tN O ) r - O ) ( M W O C M O ) 0 ^ ( O C O C M ffi ffi M C O C O ( ^ 0 ) O M C O W M ( ) O - r t ) O tN cn o co in o M1 127 166 -OOCMOOCOCM - h 00 CM co CO CM CM d o r- r~- o cn d 00 x— COOOCMinMr-M’ o h~ in COCMCMCOCOx-x-CMx-x-x-x- x— CO o CM iocOT-Tj-cocoCT>cNcncoCT)in o o o o o o o o 106 37 00 o CO CM o o o 00 OO)IO d d d o d d d o o d d o o o o oo CM d d o o CM CO o d o o oo CM X in d o LOoo h~ h~ — 46 151 00 CM o 0 0 CM o oo o 00 d oo oo CM LO v— CM o V“ 35 162 CO CO o> CM CO CM in N- in CM CO o o o o d o o CMCMN. h- CO o o o r ® ° 2 2 2 - D D 2! 2 D! D! - 2 2 2 ° ,® .ro B c oo co co ’M’CO o -M-

- - - J J J -I -I -I I 107 54 CO o o o d d 05 d oo CD -■M-M- M" h- h- r-~-cn d CM CO 108 5 156 00 00 CO ^LO1^ CMCM o o o cn cn x t d x— o d oo CO oo cn CM oo CO cn d X — -CMCM 125 — 00 oo CO T—’ T“ CO o oo h> o oo cn 00 h~ d COCOcnco T— CM CM 22 175 00 CM d d d d LO in o o o M- T" M" o oo CO d d d o o o 00 d d o oo CO d d o M" 119 CMCMoo 169 00 00 CO -LO h- CM CM d o d oo 00 t o> 00 CO h- h- CO c- o 122 - O) o o TM- TT cn o ncn cn o t oo o> cn x CM CMCMCM S o oo o o o N M - o ^ m o i o o o c n o o o — 175 - 00 o> CM - - d d o M- o o d t d d - - d d o o o o oo cn 00 r-~ o o o s d o CO 122 176 - CO O) OCO CO o o oo o o d cn o oo cn t oo a> CM S S CM 126 175 — o> CM LO o 00 o o t cn CM d X—o cn o o> •M- co CM d o CO T-!® 20 177 — d d o d O) CM "M* LO o OO o o o o d o oo t o d nc oo cn cn CM d d o o cn cn s s d d o O) CM T“ CO o 00 180 05 - o> CO CO — t o - h o CO d d o a> d o O N- >o> o> CO T— CO CO o o> CM CO 129 a> IO o co o o M- t o d d o o> CM S J a> d o o o> 128 180 T CO o> CM - 00 CM d O) oo O) CM o CM h- CO o 00 00 CO ’M’ V

130 CM LO o> CO00 o> o o V" T_ M" CMID COCO XT CMCM 00 CMo COCD COCOCO COCMT— CO CMCOCMCD Is- cd o> 00 o> o> CDO) CD CD CD CD CDCD CD CD CDCDCD 00 00 CD 00 COCDCD00 Is- CD CD CDCD CDCDoo 00 o d d d d d d d d d d d d d d o o d d o d d o d d o d d d d d d d d d

i^ Is- T" o o COCD CD CO CD oo ID Is- COoo 00 COCM00 o Is- Is- h- Is- oo CD Is- 00 00 1- CO o o T— o o o o o o o o o o o o o T— T— T— T— T— o o r - CMo o o o o o T- d o d d d d d d d d d d d d d d d d d d d d o d d d d d d d d d d d d CMo> CO CO ID O) COID CD xr CD CMCOCOh- h- M- CD CO CD o COCOIs- ID CMM- CO00 COCO COID xr co XT ID CO xr ID COCOCOCO ID ID COCOo M* COCOCO >r“Is- ID ID CO ID COID xr CO M- M* XTxT XTxt M-xT xT XT M- M’ xT xj- M- M- •M* ■sf M- M-M* M- M" M- co M- M* 'M*xr M* xr Is- co o Is- CO Is- CMIs- CO oo CD CD CDh- o ID Is- COCO CO o> ID CMCOoo COCO COXT COID ID LO CDCMxT M* CO XT xT CMCOCOCMco COCOIDCM 00 ID 00 LOCOCOoo M* CO COCOID CO

COCMxr OOCMXTCMCOxT Tf CMCO xT M-CMCOCOo T— CD Is- ID M- xr CMoo COo M- o a> O) CD 00 o> CD CD CD CD CDCD CD CDCD CD CDO) CDCD 00 CD CO00 CD CDoo oo CD 00 CDCDCDCD CDCD d o d d d d Q d d d d d d d d d d d d d d d o d d o d d d d d d d d d r- 00 COCM00 CO00 Is- COCD CO00 Is- COCD(30 N- M-o CDCD 00 ID COCOCD00 CM o COCDo CD o o O T— o o o o o O o O o o o o O O T— T— o T*“ T “ o o T— V o T— o V- o o o d d d d d d d d d d d d d d d d d d d d ddoddddddddd d d d iO o> o> CO 00 CO CDxT oo ID CD CD ID h- CMCM00 COo Is- o 00 CO 00 CO CD CM00 xr CMCO m- Tf xr CO XT XT xT "M* XTXTM- M* m- xT 'M* M-ID M*CM M- M- COID COCM COID M* xr M-xr ■r- T“ T— r * T“ ▼— T“ T- V“T*“ V” ▼- v ~ T—T— T— T—T— T— T— T—T— T“ T_ T—T— T— T— T— T— T— T— o CO o> CMo CM r * XTo CO O) co r * COo ID 00 T— o ID o CMCD | s . COo xr CO1D CO T— O) T“ CD T— T*“ O) CO 00 T— T— T— T” T— T— T— T— T” 'T—T— CO T—CM T—CMCOT”•'r* T— CM

o oo T“ CO xT 00 CDXT o CMID COCMM- co T_ ID ID 00 CDCO CO o CMo CMT~* CMCOxr oo xr CD O) oo O) oo CD 00 00 CDCD CDCD

CD o CMcd xT COCM COo oo ID Is-. OOCOh- CD CD ID ID CMT“ CMCD Is- o oo o 00 CD 00 Is- COCMCO o o T— O T— o T— o O o O o o O O T— T— T— CMr- o o CMCMV o o o o o T— T— d o d d d d d d d d d d d d d d d d d d d d d d d o d d d d d d d d d o 00 o> o ID XT CO CM00 xT ID co CDo Is- r- COID CD COoo Is- CMCD ID COID COIs- h- r- h- 00 Is- Is-CO00 Is- 00 00 00 00 oo 00 h» 00COco h- ID Is-M’ Is- 00 ID M- Is- 00 Is- 00 00 00 Is- CO V"V r * T“ T~ T“ V T* T“ T— T~ T*“ T“ T_ T— T_ T—T— V T— T— T— T— T_ T— T—T— T“ T— x“

Is- cd CO00 Is- CMCOT” T~ o ID COCOCMM- oo Is-- o o M- CMCO00 CD COo ID 00 COCOCM CM r * r * T“ T“ T“ CM CMr- CMCM CMT“ T” T” -r“ COCOCM CM CO ID CMT” T“ T_ T_ T-‘ CMCO

COco ID LO CMCM 00 COCO xr ID COM- CMCMT“ COM- Is- Is- M*CMM- COCO CD CD CD 00 cd CD CDCDCDCD CD oo

xr ID o> o> ID CD 00 00 CD CM Is- COID CD h- COCDCD00 00 CD h- COCO COCD COCO Is- Is- CDCD T— o o o o O o O o O o o o O o o O o T— o "T-" o o o r - CMo o o o o o o T— d o d d d d d d d d d d d d d d d d d d d d o d d d o d d d d d o d d

ID COo 00 CJ)xr CDo o 00 xT CO T*- CO CD CM00 o COoo CM CM00 CMo CM CDCOID COCOCMCMCMCOCMCOCOCMCMCOco COCO CMCOCOCM CO CMCOCO CMo COCOCOCOCOCMCMCM T~ T" T— T“ T~ ▼—V“ T“

CO CM CM t- t— CO I— CM O co n t- in co 05 CO T g, O O CM CO CO CO CO CM CO co O) 1- CM T- CM 1- 05 T— CO 05

o o o o o o o o o COo _ o 05 o CM oco o 00 o xr Is- o CO COCD o o o o o o o o o o o o o o o o o o o o o co co‘ co ‘ "M" M" ID ID ID COCOIs-CMCDCD 00o COCO05CMIDCO ■M- o CO CD 05 CMoo T—M- o T“ T— T™ ", IDID 1— °°l 1 1 1 1 1 1 1 1 1 1*1^11 I 1“*1 I1 1®l1®l®l1 1 1 1 1" l1 I OTI1“1 l J J J J J IID IO ID ID ID ID ID1 ID V V T“ T— T— T— xr M’ xr M-M* xr IOIDLO5 5jIDIDIDIOinin in In In in In in in IO CMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCMCM CMCMCMCMCMCMCM q_ q_ a. q_ a_ a. a. Q. Q. Q. Q. Q. CLa. a. Q. a.Q. a Q.Q.Q.a Q. Q. Q. a. a.a. Q. a Q. a. a. Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CM CO CO CO 00 CD CO xT CM CO xr T_ in CM CM CO in xT CO CO T- CO CM 05 CM 00 Is- 05 c d CD CD CD 00 oo a> CD CD CD CD CD CD CD CD CD CD 05 CD 05 05 00 CD 05 05 05 05 05 05 05 00 OO 00 00 d o o d d d d d d d d d d d d d d d o d d o o d d d d d d d o d d d o

CO CO Is- Is- Is- CM T_ Is- CO 00 CD CO CD Is- CO CD CO CD CO in 00 00 ’M' in CO Is- CO Is- 05 Is- 00 T” 00 CO CO o o o o o T— T— o o o o o o o o O o O o o o o o o o o o O o o T*“ x- x- X- d d o d d d d d d d d d d d d d d d d d d d o d d d d d d d d d d d o

Is- Is- o o 00 Is- Is- CO CO CD o m in CO 00 CO in in 05 CM CO CM Is- CO 05 o xr o m xr CO LO (D CO CO CO CO xr CO co m in CD xr CO CO in CO m CO Is- in in CM Is- CO CO co CO xr CO in xr o CO CO X f xr xr xr XT M- XT xT xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr xr

o> CD in CO CO 00 in in CD CD CO o Is- CO T“ m CO 00 CO , Is- xr o xr CD CO Is- CO CM CO CM CO CO CM CO CO CO m in CO CM CO xr CO xr CO CO xr CO xr CM CM xr xr CO CM CO CO CM CO xr CO in 05 CO CO

CO CM xr xT CM CM xr CD CD o CO o xr xr xr CM CO xr xr o tn xr CO CO CM o CM CD T- CO O xr CD o> CD CD CD CD CD CD CD CD 00 CD

o> xr 00 CO CO 00 oo CO xr o xr o co CO CO 00 Is- CO CO o in CO Is- Is- CD 00 o 00 r * 05 xr o CO T ~ o o o o o o o o o T— o o o o o o o o T— T— T— o o O o ’r - o T" o x- CM x — X* d o d d d d d d ddddddddddd d d d d d d d d d d d d d d d d

x fr CM CO CD CD in in CD r * o CM CMCM CD CD 00 in r- 05 05 CM in CO Is- Is- xr CO CM CO o CO CO Is- CM x— xr LO xT xr xT xr xr xr m xr xr in xr xr xr xr xr xr xr xr xr CO CO xT xr xr xr xr xr xr CO CM CO xr T- T- T- T— T— T“ r * x— T— T— T— T— T— T— T— T— T— T— ‘r “ T— T— T” T— T— T— T— T— T— T— T— T—

xr CM CO CO 0 ) fs. oo CO CO o co 05 CO CO in xr CM CO CM oo in CM CO Is- CO CO O) CD CO 05 05 05 r * T— T" T“ T— T— T—T— T_T_ T— T_T—T_ T- CM CM T— CM CO CM CSI

CO T“ X““ 00 Is- CM xr xr CD CO CM in CO 05 xr CD CO CO CM in o CO in in xr in O CO CO 05 in c d CD CD CD CD oo co CD CD CD 00 CD CD CD CD OO CD OO 05 05 05 CD 05 CD 05 05 CD 05 05 05 CD O) 00 OO 00 d d d d d d d d dddddddddddddddddddd d d d d d d d

c d CD Is- CD CD CM CO CO CO CO Is- 00 in Is- T“ CO T— Is- xr 00 in o xr in m CO in o xr 05 05 Is- in o o o o o r * r * o o o T~ o o o o V o o o o o o o o o o x— o OO x*~ T" T" d d o d d dddddddddddddd d d d d d d d d d d d d d d d d

CD o CO CD o CO CM in CO CO CO CM Is- CO CO in CO 05 Is- 00 05 00 Is- in Is- i^ o 05 05 CO CO 00 Is- 00 00 Is- 00 Is- Is- CO CO CO Is- 00 CO 00 CO Is- 00 Is- 00 CO 00 00 Is- 00 00 00 00 00 Is- 05 Is- Is- CO Is- CO r* T— r* r* T“ T— T— r* x— T— T— T— T— T” T— 'r“ T— T— T— T— T— T— T— T_ T— T” T— T— T—

00 Is- XT CO Is- xr in CO CM xr in o xr CM T“ 0 0 CO O 05 00 o CM o o |S. 00 CO xr 05 X— X“ X"~ x- X— T— T~ T— T*" 00 05 CO T— T—

IO CO xT •r- CO in oo CO CO CO CO CO CD 00 xr O CO CM CO CO xr xr xr CO CO CO CO in 05 CM xr 05 CM 05 00 05 o> CD CD CD 00 oo O) 05 CD CD CD 00 00 CD O) 05 CD 05 05 05 05 00 05 CD 05 05 05 CO 05 05 00 00 00 00 d d d d d d d d o d d d d d d O d d d o d d d d d d d d d d o d d d d

m CO CO Is- m CM Is- h- Is- xr Is- CM CO O xr 00 xr xr CO CO CO xr Is- Is- xr in T- CO CO 00 CM o o o o o o o o o O r- r* o T“ o O O o o o V o o o o o V O o V- V T" d d d d d d d d d d d d d dddddddddddddddd d d d d d o

"T in CM CM o xr m in xr CO Is- in o in in CM CO 00 CO T" CO xr CO o CM in in CO xr CO CO CO CO CO CM CM CO CO CO CO CO CM CM CO CM CO CO CO CO CO CO r“ CO CO CO CO CO CM CO CO CM T“ CM CM *r- V r* T— T— T— T~ T— T— T“ T™ V" ' x—*r“

C-- CO CT> CT> N- O O O O CO co LO o o en co co m n CN CO ^ 00 J CO CO CO o> 00 CN io e'­ 01 r (\| t- r

o O O /-. co ^ oo P o ooooooooSSSSSSoooooooooooooooo o O ^NCOCNCO^-^s2SSi:2Su)OOT-^COCOO)CNU)SOe«)(OC3)CNlO ...... - , . o o o 2 2 « N- CO CO f— 00 00 05 05 CD ■ T— T— ' CN CN CO CO NT N- N- LO LO ID I- t- (- I- 0O( C0( I II I I II I I I I I I.oooooooooooooooooooooooooooocooo T- T- r- ;n CO COCOCOCOCOCOCOCOmmmmmmCOWOOOOOOOOOOOOOOOOCOOOOOCOCOa)oooooooooocooooooooooooooooooooo m lo lo iR cncncncncncncncncnSSSSSS —cncncncncncncncncncncncncncncncn I fvl n l Al #M HI /vl /VI /VI /VI /VI /VI /VI /VI /VI /VI CN0 .0CN .0CN .“- cl O- O.O.O.O.O.O.O.O. O.O.O.O.O.Q.O.O.O.O.O.O.O.O.O.O.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o CO CO CO CMxj* CO CO CO oo 00 CMT—XT M* M* CO T—M* 00 00 o CMCOin 00 CM03 Is- V- 03 CD o> o> o> o> CDCDCD00 oo oo 00 CD CD CDCD CD CDCD CDCDCD oo oo CD CD 03 03 00 00 03 00 00 03 d o d d d d d d d d d d d d d d d d d d d d d o d d d d d d d d d d d

o h- CO r- Is- 00 CO COr- XT Is- CMCM00

00 o to CMto CO to CMIs- o 00 CO oo CO CO 00 COCO CD o CO CO in Is- Is- m o xr Is- M* o o xr COCOCO CO LO COCOCO CM co CO to in COCO COCOLO m in CO CO co co M* m CO CMco in M' COLO xr xr xr XTxT xT xT xT 5 XT M* M' M- M- KT M* M- xr xr xr xr xr

00 CO T”* to o V CD CO 00 o 00 COo 00 o o CO co o CDCD CM CO CMCD CMm COCO ■m- COCOCO CO M- CO CO CO CO oo LO CO CO XT CO CMCO CO CO M* M- CO CO m CMin COIs- in xr in CO xr

T- CM CO o XT CO CMxT Is- CMoo o o CO Is- m M- CM M- Is- o LOCD o in in o 03 03 in 03 a> o> O) o> CDa> CD CDCD 00 oo oo CD CD CDCD CD

00 CO h- o CO CD Is- 00 CO CO 00 CMo CDo CD CO in CO 00 COCO CO o in o in in o T— in T— o o o T—o o o o o T—T— T“ o T—o o o o o o o o T“ ■t— o T—T—o T— ▼— T— T—v - T- d d d d d d d d d d d d d d ddddddddddddd d d d d d d d d

CO 03 Is- CM03 M’ Is- CO 00 00 o CD CM CM M- o CD CO CDCDoo CM o o CMo xr CM o o xr xr xT xT M- xt xT CO COCO M- xt in LOin M* M- CO in in CO xr M" xr CO xr r * r - T— ■r- T— T— V T— T*” r* T" x—‘T— T— T—T— T—T— T— T—T— T—T—r - T—T“ T—T’“ T“ T—

CM CMo> T" CO o> xT T—CMo o 00 CD CO xT CO M- oo CD CMo> O) o CO 00 00 CO 00 xr CO 00 COxr Is- CD T~ T“ 'r“ T—T_ T—T—CMCMr- T— T— T— CMT— CMT—

o ■M-xr CO xT CO XT CO CO CD Is- in CO Is- in CO o CD CMin Is- M- CM03 xr Is- xr 00 in T— O) CD cd o> cd 03 CDCDCD 00 00 00 00 CDCD CD o> CDCD CD CD 00 CD 00 00 CDCD03 oo 00 oo 03 00 oo 03 d o d d d d d d d d d d d d d d d d o d d d o d d d d d d d d d d d d

o CD COCOIs- CD CO Is- CO xT Is- r — CO in Is- CDCO in Is- CDo 00 in CO CO CD 00 CD CO COCMin 03 r* O o o o o o o o T—T—V* o o o o o o o T—T—o T“ T—o o o r * o T“ o d d d d ddddddddddddddddddddddd d d d d d d d d

00 o CO in CO o> LO M1 LOo xT CO h- CO o Is- M* CD oo LO CMoo CMin CD CMCO CO CO CO 00 03 Is- 00 00 oo oo h- oo 00 00 Is- CO Is- Is- 00 oo 00 CD00 00 Is- Is- Is- 00 CO Is- 00 h- 00 Is- CO Is- 00 Is- CO Is- T— T—T— T—T—T—T—T—T—T—T“ T“ T- T—T—T—‘r“ ▼—T_ r* T" T—T—T“ T“ T—r* T“ T—T—

CD Is- T- CMxt 00 CM CO CMIs- CO CO o xT Is- /o o CO 00 CD CMtn CD in CM00 in T—CO xr 03 oo T“ T” r- r* T-" VL/ T— T” T_ T_ T— CMCO CMCMT“ T_ T- T~ T” CMT“ CMCMT_ T_ T~ CMCO CMT” CMCM

COCO XT LO CMxT IO CO xt CM Is- Is- o CO Tf CD M* COCD T* CD Is- M-03 co in oo 00 T“ CM 00 o> O) a > o> CDCD CD CD 00 00 00 oo CDCDCDCD 00 CD CD 00 CDCDCD 00 CD00 03 03 oo CO03 03 03 03 d o d d d d d d d d d o d d o d d d o d d d d d d d d d d d d d d d o

CMIs- CO LO 00 CO LO CD CO 00 co COo CD M- CO T™* COIs- CD CD CO CO Is- in CMCM03 CD03 oo T- o o o o o o o o V“ T—r — o o o V- o o T~o o o T—o T—o o T—T“ o o o o d o d d d d d d d d d d d d d d d d d d d d o d d d d d d d d d d d o

XT CM o CMXT to CD CD CO CO CO Is- 00 in CO in CM CO CD in CDCO CMin V“ xr oo 00 oo o CMCOCOCO COCOCOCO CM CMCMCMCMCO COCMCOCO CMCMCO CMCMCO CMCO CO CMCMCMCMCMCO T“ ▼” V T”“T“ T” r * r * T— V* T~f T“ V” V" T—T- V T— T” T”

h- O CMCN in 00 CO M- CO CM 00 CO O ^ I— CO CO CO cn r*- 05 I"- CO CM CM T— T- T- C0 00 ^05°«^! CO 05

o o o o o o o o o o o o o o o o ooooooooooooooooooo Is-. o CO CO 03 00 x r Is- 00 CO CO 03 00 xr o o o o r — CM CM CM x r CO CO CO COCNinr-M-NOnCOaiCMIOOOi-M-SOCOCO 03 r — T“ T“ T- CM CM CO CO CO M- M- M- N" IO IO IO CD CD CD 1^ t- °°l ° >, °>l 1 1 1 1 1 1 1 1 1 T“1 1 1 1 00 00 oo oo 1 1 1 ooooooooooooooooooo 00 00 oo 00 00 00 00 00 00 CO 00 oo 00 00 00 00 CMCNCMCMCMCMCMCMCMCMCMCMCMCMCNCMCMCMCM CMCMCMCN 00 oo 00 00 00 00 00 oo 00 00 00 00 CMCMCMCMCMCMCMCMCNCMCMCMCMCMCMCNCMCMCM Q. Q.Q. a . CM CM CM CM CM CM CM CM CM CM CM CM Q.Q. CL CL Q_ Q_ Q . CL Ol Q.Q. Q_ aaaaanaaaaaaaaaaaaa

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. without prohibited reproduction Further owner. copyright the of permission with Reproduced

p220_790 15 126 0.11 0.89 29 168 0.15 0.85 24 134 0.15 0.85 68 428 0.14 0.86 w w w w m w o o coo o oo cn O)co oi cm o CO 1- CM CM CM CO CO CM CM CM 1- CO o n g ci oo co -g-oo in o c\i io < « « o'o'o'o'o'o'o'o'o'o'o'o'o'o'o'o'o'1 ' '5 o 'o ' o'1 o 'o ' 'o o ' 'o o o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o ' o « XT o> O) to xr T— CO d o h- 00 CO I CM Oo> CO d d d x— d T~ d d 000 00 >CO o> 0o> 00 T— CO d c x- xr 1 M d d d d xT d d 00 —T— T— X— d T~ d d h- T" V " T d d d o o MCM CM 00 00 00 000 00 xf CO OCO CO d d d o o d d d d d d d d d m oo T~ T- -X X— X- x- h- o —x T— x— T— oCD oo d c X— N- 00 M ’M"■M- Oo CO - r 1 X“ CO O00 OO xT CO oo to T— o> ooo oo MC CM CM CM T— OCO CO CO CM “T— X“ OCO CO CO CO oo to o h- 00 00 CO 00 oo CO T— - CO o h~ ■g- o d d d oo d d d CM xT o CM to d d CO d o d d CO V d CM d d d o> V 00 MCO CM d d d o 000 00 xT d d d d T— T“ T“ V CM MCM CM CO T" h- >h CO h- o> X— 000 00 1^ to 00 o> CM O) 00 T* T— 00 CM to TxT xT X“ - T -CO h- N M C M C N N N M C N M C M C M C M C M C MCM CM CO o o o o o o o o o m ) o o o c o g o o o o i o N C ) o o o ( ooooi-T-T-cMcococog-g- o o c o o t X“ CO 00 0oo 00 T— CO CD T*— T— o d d XT oco co - T Txr xT X~ x- CO CO Mr to r- CM CO o> xt T— Q. Q. Q. - r n XT d T— CM CM * o h*- d o d 0O) 00 r* T-’ Oto CO a> oCO to o> MC MCM CM CM CM 00 o CD o c oo CM CO d d d d X“ CO h- MC CM CM CM d d d d 00 -h h- h- T— h- N. x— x— ci d d o d d O T— OC CO CO CO d d 00 00 00 00 0o 0CO 00 oo 00 d d d d MC CM CM CM CO oh- to d d d d d 00 00 00 00 to CO d d d d d d X“ xT * r CO o o t oxt co CD CM —T— T— O) CO 000 00 r- T“ —X— T— CO Oto IO >CD o> Txt xT OCO CO - h V- - to X“ CM to X— 0C CD CD 00 CD CO CM T0 CM CO 00 00 xT O ~T— X~ d d 00 d d OCD CO xT h- - h T— X“ CO CO o CO V tM- M xt T— 000 00 o o DCD CD o CO CO N* CD CO T” xr xr Doo CD xt CO CO o o o CM r^- d d d xr T— o d d d o T“ 'T— d CD T— CO d d h- CO X*" TM- M XT o T— X— CD xr co LO h- o CD TM ■M* M- xT ▼— CO O^r CO o T” oM" to CD CO T” oo CM o 00 d DCD CD CM U/ T— CD o CO d CM CD co CO d CD CD - M *. ' a . 'Q U . d ' . D ' . d ' . Q ' . d ' . Q ' . Q ' . d ' . d ' . d - . d ' d ' *3. . 2 * . 3 * . g e T— CM T- CM x_ o o o o CM d N- d 00 d d CD CD CM 0C CD CD 00 oo x— oo OC CO CO CO d d d d d d CO ■*” h- d o r- d d d d d d d CD CO M- OLO IO d d d d d d d o o o o r ^ “T“ T“ * CO o d d o T_ CO CO CO oo d CM xr T 'T—'T— oo 000 00 oo oo -N- h- CD OCO CO ■*” rLO xr d d d d d d o o oo DC 00 CD CD CM D00 CD m - CD OCO CO MCM CM r* CO CM 00 CO CO xr o CO CO o T— xr DC CD CD CD CO r^- M- xr d d o d d U/ IA DC DCD CD CD CD CM T“ * 00 r*- o CO 00 d d d d o CD d d d d CO o c ir- xr o T— T“ CD rCO xr rx rM* xr xr xr IO - M ’T- xr T_ 0oto o 00 d d d CO CO MCM CM CD O CD DC CD CD CD T~ Mx OCM CO xr CM v- to o CM CO d d d T~ IO T“* o o o CD CO OCD LO o xr xr Do CD T“ 00 MCM CM 'T— 0CO 00 CO rxr xr O MCM CM o o o o o CD CD — r T— CO 00 CD 00 00 0CD 00 T— r* rxr xr DC CD CD CD xt xr .Q. Q. 1 1 1 o V- - v CM CD T— Ds. CD xr 00 o CO O r“ T— -oo h- CO DC DC Do 0o 0C 00 CD 00 oo 00 oo CD CD 00 LO x— 0h- 00 CM o D00 CD Mh- CM CM OCO CO T“ O00 CO 000 00 h- XT 00 o ^* co CM CO CO 00 o CD T" T— CM CO d CM T“ T— CM - M CO x— CM CD co cnO o cno o CO00 T“ oo 00 o o O) oo CM CMr * CO M- o to o CO CM 00 o> o> 00 00 CD 00 oo o> O) 00 00 O) o O) o> o> O) a> CD 0) o> CD CD O) 00 o> CD 00 o d d d d d d d d d d d d d d o d d d d d d d d d d d d d o o o d o o

r~ o O) o o> o cno COO) CMCMo o CMoo CO 00 o> N- CD o> CO o CD CD CD in CO o h - oo r - o o V T— o T— o T— T— o o o o o o o o T— O o o o o O o d d d d d d d d o o d d d d d d d d d o o d d d o d d d o d d d d

CM N" CO to to CD CO CM to h- ’M’ h- CM r- COCO CO xr CO IO h- to T— CDo o> to CD h- m xr uo xr xr M’ CO IO CO co xT 'M- CO to CO IO lO CO CO to COxr COto xr h- xr to o ’M’ xT xr xT '3- xr tj* ■M- ’M’ xT XT xr ’M’ xr xr xr xr xr xr xr xr xr xr xr xr xT xr xr xr

CM CO LO to r^. o to CM T“ CD CM CD xT CD CM o o to CO CM CO CD to h**> CO h- CD LO LO to x r to t o ’M* IO 00 CO M1 CO to to to IO x r CO x r CO CO x r CO x r CO x r x r CM Is- to CO 00

to CD CD xr 00 O) to 00 to CD CO to o r * to o CM r * o LO CM CM X— to CM CO CO CM CM oo 00 00 CD 00 s CD OO 00 00 h- 00 00 00 00 CD s CD 00 CD CD CD a> CD c d o> CD CD CD CD CD S co o> CD CO o d d d d o d d d d d d d d c i c i d d o o d o o d d o o d d o o d o O o

to o> - CD CO CM to CM to xr to o o> CD to o oo CD o IO co oo CD CD LO co 1-'- CD CO co CM r * o O o CM T“ X— o O o o x— o o o o O o o o o o o T— d d d d d d d d d d d d d d d d d d d c i d d o o d o o d o d d d d d d

to xr T— CD a> to CO CM CM CM CO m CO w CD CO xr xT xr CO CO CO N" M" •M- M" M" CO ■M- CO 141 143 124 135 134 143 144 134 146 144 150 140 141 150 144 143 145 147 148 r * T“* X— x— X— f X— 145 T“

co N" N- in CD co CO co N- CM co in co CM O' CO CMCO xT to CO r “ O co co CD X CD X 00 oo 3 4 — — 2 4 T" CM X—CM CM CM CM V T-* T“" 2 2 x —

CD co o CM CM N" h- CM CD o CD CM CO oo CO ■M- CM CO n - xr r* to h- CM o 00 to 00 CM CD CD oo CD CD CD oo CD CD CD CO oo CD oo CD oo CD oo oo CD CD CD CD CD O) o> o> 00 ay ay 00 ay 00 oo CD 1^ o o d d d o d d d d o o d d d o d d d O d d o o d d d d d d d o o d o

CD r»o CO co CD 00 CD CO co 00 o X— oo CMCM h- CO oo CO CO 0) to CO oo o CM to COCM oo O T“ o X— o O o o T“ o X— o o o o o o o o o o T— o X— o CM o o d d d o o d o o o d d o d d o d d d d d o ci d d d d d d d o d d d

m CO c- CM o X— CD CO CM CM CO 00 CO x— O' CO CM CO to 00 CM 00 xr r-*- CO CO CM CO I-- oo c- oo h~ oo oo fx- CO C^ oo 1"- r- oo 1^- oo oo oo 00 00 CO oo r - 00 CO oo in 179

X 174 x— — x— x— X“ t— 185 179 172 T“ r — x—

CM CO CO oo m CD CO CO to xr CM CN oo m in CD co o m

18 CD 15 2 0 T“ X™ 2 5 x— 2 3 2 3 CM CM CO CN CM r— CM T— CM 00 2 4 5

ay o CD CO h- oo to CM cn X— N" ■N- ■sf N" CO CO o N" CD ay O) 00 CD oo oo OO CD CD oo CD CD 00 oo CO CO 00 ay cn cn o> 00 CD CD CD CD CD CD CD CD CD 00 CD CD d d d o d o o o o o o o d o d d d d d d d d o o o o o d o d o d o o o

X— ay ay - o - CD CO M- o CD co - T— CO CN ay cn to 00 - CD CO CD CO CO CD CD CD N" h- o CO o o x— o o X— o X— o o o o o o o o o o o o o X— o CM o d o d d d d d o d d o d d d d d d d d d d o d d o d d o d d d d d d

0 0 0 0 CO CO CO 0 0 CN h~ CD CO to CO CO N" cn CO xr o CO oo 00 CD co CM CO oo oo h- CM CM CM CM CM CM CM CM CM CN co CN CN CN CN CM CM CM CN CM CM CO CO CM CM CO CM CO CO co CM CM CM co X T“ T“ x— X— T“ — X— 1 3 5 x—

o o o o o o o o o o o o o o o ooooooooooo o o o o o o o o o in 00 x— ■o CO onioacMooT-^Non o CO CD CM m oo h - OOOOt-T-CMCMCMCOCO O « I 0 C 0 t- S O C 0 ( 0 ^ 1 00 CD ^ r |CM|CM|CO|CO|^|^|^| " l “ *1 ® l “ l 1 “ l t o o o o ' o ' o o o o o o o ' o o o CMCNCMCMCMCMCMCMCM x— X— X— X— X— X— T“ x— o'o'o'o'o'o'o'o'o'o'o' CMCMCMCMCMCMCMCMCM CN CN CN CN CM CM CM CN CN CM CN CM CM CM CM CMCNCMCMCMCMCMCMCM a . Q. Q. Q. a . a . CL Q. CL CL CL a . Q. CL CL aaaaaaaao.aa a a a a a a a a a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. h- t*- cn 00 cn h- cn CO CD 0 0 h- CM CO CO CM M- 00 cn 0 0 i"- OO 0 0 0 0 0 0 cn 0 0 0 co cn o> 0 0 cn cn 00 cn cn cn cn cn c i 0 d d O d d d d d d d d d d d d d d d d d 0

CO

co CM CO co co CO 3 9 4 451 4 3 7 4 4 2 4 5 7 4 6 7 4 4 0 4 6 5 4 6 0 4 1 7 4 2 8 4 4 6 4 4 4 4 5 6 451 4 1 7 4 6 0 4 6 8 4 6 2 •M- M" M- 4 3 0

CO CO CD co 9 9 CD cn 59 54 64 56 79 50 52 79 34 4 5 4 5 28 2 9 CO CO CO CO CD 4 0 CO co 102

m CMco O cn CO ■M- CO cn cn O 00 CO CO CO CO 0 0 0 cn cn 00 0 0 00 0 0 cn O) O) co co o> 00 cn 00 cn cn cn cn o> d d d 0 d d d d d d d d d d d d d d d d d d d

1— in 0 0 h- 0 T—CM COcn CO - 0 CMcn cn h- CO i f ■

h* o> CO 00 T“ CM cn ■M* h- CO r* CM CM CO CO to ’M’ CO CO to 134 147 1 4 0 141 141 1 4 6 14 4 r* T— T— 144 ▼— T— 1 4 9 151 T“* T— 1 5 4

T— V“ CM 'M* 1^ h- h- CO cn cn CO 18 19 10 2 5 CM r* CO r* T" T" r* 2 2 r* 265

cn 0 t o V* 0 0 cn cn 0 0 0 CM CO 0 0 CO CM CO CM CM CO CM CO

0 t o cn CM - CM co 0 co 00 N- CM 00 h- 00 00 N- 00 h- r* T- r* T- 0 T— 0 0 0 0 0 0 0 T“ d 0 d d d d d d d d d d 0 d d d 0 0 0 0 0 0 O

iosNO)^-ioir)'tinoo

CMOOOOrtCMN«MOlT-(DnoO«U)^tOtf)^ CO ■'f CN CNCNrOCOCMCNCMCMT-T-rOCOt-CNCMf-T-rOT-i- CM

00 T- cn h- CO CO cn in CO CO CM CD LD T- ID CN -M- 00 00 O) CO CO cn 00 00 cn cn l-~ co 00 cn 00 cn 00 OO O) O) O) O) O) d 0 d d d d d d d d d d d d d d 0000000

CM cn CO CO co

M- 00 00 00 co 00 m CM CM O CO 0 t—K 0 OOINONO CM CM V 0 CMCM CM CM CO co T—CM CM co T—co T- T— T— r * T* T— T— T ~ T— T— T_ T_ T—T_ T- r—

ro co __ h- CO CO CO CO cn IH 0 LO 0 N- O T— CM K. o> co T~ CM CO T- T—T—T— T_ co T—CM T_ CM T“ CM CM r- I '

O 0 0 0 0 O 0 0 O 0 0 0 O 0 O 0 OOOOOOO cn N. o n co n co co ro CM in CO 0 co CO CM in CO *f r - O O O CM CO CO CO “ *1 " l “*1 ® l ® i col ® l °°l °°l S i CJ>, CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM Q. CL a . CL Q.Q. Q.Q. Q. Q. Q.Q. CL CL CL CL Q. Q. Q. Q. Q. Q. Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix 13 - Allele frequencies for each of the thorns/no thorns categories. The frequency p was derived as the number of present bands (+) divided by the total number of individuals in each category. The frequency q was 1-p.

No Thorns (n=18) Thorns (n=82) Total (n=100) Band Id + - P q + - P q + - P q p277_430 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p277_460 0 18 0.00 1.00 9 73 0.11 0.89 9 91 0.09 0.91 p277_490 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p277_520 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p277 550 2 16 0.11 0.89 7 75 0.09 0.91 9 91 0.09 0.91 p277_580 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p277_610 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p277_640 4 14 0.22 0.78 4 78 0.05 0.95 8 92 0.08 0.92 p277_670 1 17 0.06 0.94 10 72 0.12 0.88 11 89 0.11 0.89 p277_700 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p277 730 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p277_760 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p277_790 1 17 0.06 0.94 0 82 0.00 1.00 1 99 0.01 0.99 p277_940 0 18 0.00 1.00 1 81 0.01 0.99 1 99 0.01 0.99 p266_280 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p266_310 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p266_370 1 17 0.06 0.94 12 70 0.15 0.85 13 87 0.13 0.87 p266_400 3 15 0.17 0.83 11 71 0.13 0.87 14 86 0.14 0.86 p266_430 4 14 0.22 0.78 11 71 0.13 0.87 15 85 0.15 0.85 p266_460 4 14 0.22 0.78 15 67 0.18 0.82 19 81 0.19 0.81 p266_490 5 13 0.28 0.72 13 69 0.16 0.84 18 82 0.18 0.82 p266_520 12 6 0.67 0.33 42 40 0.51 0.49 54 46 0.54 0.46 p266_550 5 13 0.28 0.72 29 53 0.35 0.65 34 66 0.34 0.66 p266_580 7 11 0.39 0.61 17 65 0.21 0.79 24 76 0.24 0.76 p266_610 1 17 0.06 0.94 17 65 0.21 0.79 18 82 0.18 0.82 p266_640 5 13 0.28 0.72 9 73 0.11 0.89 14 86 0.14 0.86 p266_670 3 15 0.17 0.83 8 74 0.10 0.90 11 89 0.11 0.89 p266_700 4 14 0.22 0.78 8 74 0.10 0.90 12 88 0.12 0.88 p266_730 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p266 790 3 15 0.17 0.83 10 72 0.12 0.88 13 87 0.13 0.87 p266_820 4 14 0.22 0.78 11 71 0.13 0.87 15 85 0.15 0.85 p266_850 3 15 0.17 0.83 15 67 0.18 0.82 18 82 0.18 0.82 p266_880 3 15 0.17 0.83 10 72 0.12 0.88 13 87 0.13 0.87 p266_910 5 13 0.28 0.72 10 72 0.12 0.88 15 85 0.15 0.85 p266_940 5 13 0.28 0.72 17 65 0.21 0.79 22 78 0.22 0.78 p266 970 2 16 0.11 0.89 10 72 0.12 0.88 12 88 0.12 0.88 p266_1090 4 14 0.22 0.78 7 75 0.09 0.91 11 89 0.11 0.89 p266_1240 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p266_1270 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p275_370 0 18 0.00 1.00 9 73 0.11 0.89 9 91 0.09 0.91 p275 400 4 14 0.22 0.78 10 72 0.12 0.88 14 86 0.14 0.86 p275_430 3 15 0.17 0.83 15 67 0.18 0.82 18 82 0.18 0.82 p275_460 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p275_490 4 14 0.22 0.78 9 73 0.11 0.89 13 87 0.13 0.87

266

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p275 520 4 14 0.22 0.78 22 60 0.27 0.73 26 74 0.26 0.74 p275 550 3 15 0.17 0.83 5 77 0.06 0.94 8 92 0.08 0.92 p275_580 3 15 0.17 0.83 4 78 0.05 0.95 7 93 0.07 0.93 p275_610 3 15 0.17 0.83 7 75 0.09 0.91 10 90 0.10 0.9 p275 640 1 17 0.06 0.94 10 72 0.12 0.88 11 89 0.11 0.89 p275_670 2 16 0.11 0.89 5 77 0.06 0.94 7 93 0.07 0.93 p275_700 7 11 0.39 0.61 13 69 0.16 0.84 20 80 0.20 0.8 p275_730 4 14 0.22 0.78 14 68 0.17 0.83 18 82 0.18 0.82 p275_760 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p275_790 5 13 0.28 0.72 19 63 0.23 0.77 24 76 0.24 0.76 p275_820 3 15 0.17 0.83 10 72 0.12 0.88 13 87 0.13 0.87 p275_850 2 16 0.11 0.89 4 78 0.05 0.95 6 94 0.06 0.94 p275_880 5 13 0.28 0.72 14 68 0.17 0.83 19 81 0.19 0.81 p275_910 4 14 0.22 0.78 5 77 0.06 0.94 9 91 0.09 0.91 p275_940 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p275 970 4 14 0.22 0.78 10 72 0.12 0.88 14 86 0.14 0.86 p275_1000 3 15 0.17 0.83 15 67 0.18 0.82 18 82 0.18 0.82 p275_1060 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p275_1090 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p275_1120 2 16 0.11 0.89 0 82 0.00 1.00 2 98 0.02 0.98 p275_1150 5 13 0.28 0.72 12 70 0.15 0.85 17 83 0.17 0.83 p275_1180 3 15 0.17 0.83 12 70 0.15 0.85 15 85 0.15 0.85 p275 1210 2 16 0.11 0.89 1 81 0.01 0.99 3 97 0.03 0.97 p275 1240 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p275_1270 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p275 1300 6 12 0.33 0.67 6 76 0.07 0.93 12 88 0.12 0.88 p275_1330 2 16 0.11 0.89 5 77 0.06 0.94 7 93 0.07 0.93 p282 340 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p282_370 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p282_400 3 15 0.17 0.83 14 68 0.17 0.83 17 83 0.17 0.83 p282 430 1 17 0.06 0.94 13 69 0.16 0.84 14 86 0.14 0.86 p282_490 5 13 0.28 0.72 6 76 0.07 0.93 11 89 0.11 0.89 p282_520 3 15 0.17 0.83 9 73 0.11 0.89 12 88 0.12 0.88 p282_550 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p282_580 6 12 0.33 0.67 10 72 0.12 0.88 16 84 0.16 0.84 p282_610 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p282_640 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p282_670 5 13 0.28 0.72 19 63 0.23 0.77 24 76 0.24 0.76 p282_700 2 16 0.11 0.89 14 68 0.17 0.83 16 84 0.16 0.84 p282_940 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p282_970 4 14 0.22 0.78 10 72 0.12 0.88 14 86 0.14 0.86 p284_100 0 18 0.00 1.00 0 82 0.00 1.00 0 100 0.00 1 p284_130 0 18 0.00 1.00 2 80 0.02 0.98 2 98 0.02 0.98 p284_160 1 17 0.06 0.94 1 81 0.01 0.99 2 98 0.02 0.98 p284_190 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p284_220 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p284_250 1 17 0.06 0.94 1 81 0.01 0.99 2 98 0.02 0.98 p284_340 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p284_370 2 16 0.11 0.89 5 77 0.06 0.94 7 93 0.07 0.93 p284_400 2 16 0.11 0.89 5 77 0.06 0.94 7 93 0.07 0.93 p284_430 3 15 0.17 0.83 6 76 0.07 0.93 9 91 0.09 0.91 p284_460 1 17 0.06 0.94 10 72 0.12 0.88 11 89 0.11 0.89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p284 490 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p284 520 3 15 0.17 0.83 7 75 0.09 0.91 10 90 0.10 0.9 p284_550 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p284_580 3 15 0.17 0.83 8 74 0.10 0.90 11 89 0.11 0.89 p284_610 0 18 0.00 1.00 7 75 0.09 0.91 7 93 0.07 0.93 p284_640 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p284 670 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p284 700 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p284_730 4 14 0.22 0.78 17 65 0.21 0.79 21 79 0.21 0.79 p284_760 5 13 0.28 0.72 15 67 0.18 0.82 20 80 0.20 0.8 p284_790 5 13 0.28 0.72 16 66 0.20 0.80 21 79 0.21 0.79 p284_820 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p284_880 1 17 0.06 0.94 10 72 0.12 0.88 11 89 0.11 0.89 p284_910 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p284_940 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p284 1060 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p285_400 4 14 0.22 0.78 5 77 0.06 0.94 9 91 0.09 0.91 p285_430 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p285_460 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p285_490 2 16 0.11 0.89 14 68 0.17 0.83 16 84 0.16 0.84 p285_520 0 18 0.00 1.00 8 74 0.10 0.90 8 92 0.08 0.92 p285_550 3 15 0.17 0.83 6 76 0.07 0.93 9 91 0.09 0.91 p285_580 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p285_640 5 13 0.28 0.72 7 75 0.09 0.91 12 88 0.12 0.88 p285_670 3 15 0.17 0.83 3 79 0.04 0.96 6 94 0.06 0.94 p285_700 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p285_730 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p285_760 3 15 0.17 0.83 7 75 0.09 0.91 10 90 0.10 0.9 p285_790 3 15 0.17 0.83 6 76 0.07 0.93 9 91 0.09 0.91 p285_820 3 15 0.17 0.83 5 77 0.06 0.94 8 92 0.08 0.92 p285 850 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p285_910 2 16 0.11 0.89 12 70 0.15 0.85 14 86 0.14 0.86 p285_970 4 14 0.22 0.78 4 78 0.05 0.95 8 92 0.08 0.92 p287 310 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p287_370 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p287_400 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p287_490 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p287_520 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p287_550 0 18 0.00 1.00 2 80 0.02 0.98 2 98 0.02 0.98 p287_580 0 18 0.00 1.00 7 75 0.09 0.91 7 93 0.07 0.93 p287 610 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p287_640 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p287 670 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p287_700 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p287_730 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p287_760 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p287_790 4 14 0.22 0.78 11 71 0.13 0.87 15 85 0.15 0.85 p287_820 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p287 850 1 17 0.06 0.94 2 80 0.02 0.98 3 97 0.03 0.97 p235 310 1 17 0.06 0.94 2 80 0.02 0.98 3 97 0.03 0.97 p235 340 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p235 400 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p235 490 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p235_520 0 18 0.00 1.00 9 73 0.11 0.89 9 91 0.09 0.91 p235_550 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p235_610 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p235_640 2 16 0.11 0.89 5 77 0.06 0.94 7 93 0.07 0.93 p235_670 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p235_700 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p235_730 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p235_760 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p235_790 1 17 0.06 0.94 2 80 0.02 0.98 3 97 0.03 0.97 p235_850 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p235_880 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p235_910 0 18 0.00 1.00 11 71 0.13 0.87 11 89 0.11 0.89 p235_940 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p235_970 3 15 0.17 0.83 9 73 0.11 0.89 12 88 0.12 0.88 p235_1120 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p235_1150 0 18 0.00 1.00 2 80 0.02 0.98 2 98 0.02 0.98 p235_1270 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p235_1300 0 18 0.00 1.00 1 81 0.01 0.99 1 99 0.01 0.99 p235_1960 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p245 220 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p245 250 1 17 0.06 0.94 2 80 0.02 0.98 3 97 0.03 0.97 p245_280 0 18 0.00 1.00 2 80 0.02 0.98 2 98 0.02 0.98 p245 310 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p245 340 4 14 0.22 0.78 39 43 0.48 0.52 43 57 0.43 0.57 p245 370 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p245 400 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p245_430 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p245_460 5 13 0.28 0.72 33 49 0.40 0.60 38 62 0.38 0.62 p245_490 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p245_520 3 15 0.17 0.83 5 77 0.06 0.94 8 92 0.08 0.92 p245_550 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p245_580 0 18 0.00 1.00 8 74 0.10 0.90 8 92 0.08 0.92 p245_610 2 16 0.11 0.89 13 69 0.16 0.84 15 85 0.15 0.85 p245_640 3 15 0.17 0.83 15 67 0.18 0.82 18 82 0.18 0.82 p245_670 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p245_700 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p245_730 2 16 0.11 0.89 25 57 0.30 0.70 27 73 0.27 0.73 p245_760 3 15 0.17 0.83 10 72 0.12 0.88 13 87 0.13 0.87 p245_790 0 18 0.00 1.00 12 70 0.15 0.85 12 88 0.12 0.88 p245_820 3 15 0.17 0.83 23 59 0.28 0.72 26 74 0.26 0.74 p245 850 3 15 0.17 0.83 15 67 0.18 0.82 18 82 0.18 0.82 p245_880 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p245_910 1 17 0.06 0.94 15 67 0.18 0.82 16 84 0.16 0.84 p245_940 2 16 0.11 0.89 13 69 0.16 0.84 15 85 0.15 0.85 p245 970 2 16 0.11 0.89 11 71 0.13 0.87 13 87 0.13 0.87 p245_1000 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p245_1030 0 18 0.00 1.00 12 70 0.15 0.85 12 88 0.12 0.88 p245_1060 1 17 0.06 0.94 16 66 0.20 0.80 17 83 0.17 0.83 p245_1090 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p245 1150 2 16 0.11 0.89 13 69 0.16 0.84 15 85 0.15 0.85 p245 1210 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p245_1240 2 16 0.11 0.89 4 78 0.05 0.95 6 94 0.06 0.94 p245_1270 0 18 0.00 1.00 13 69 0.16 0.84 13 87 0.13 0.87 p245_1300 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p245_1330 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p245_1390 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p245_1420 0 18 0.00 1.00 15 67 0.18 0.82 15 85 0.15 0.85 p245_1450 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p245_1480 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p245_1510 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p245_1540 4 14 0.22 0.78 10 72 0.12 0.88 14 86 0.14 0.86 p245_1570 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p245_1600 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p245_1630 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p245_1720 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p245_1930 0 18 0.00 1.00 12 70 0.15 0.85 12 88 0.12 0.88 p245 1990 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p251_280 4 14 0.22 0.78 8 74 0.10 0.90 12 88 0.12 0.88 p251_400 1 17 0.06 0.94 3 79 0.04 0.96 4 96 0.04 0.96 p251_430 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p251_460 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p251_490 5 13 0.28 0.72 12 70 0.15 0.85 17 83 0.17 0.83 p251 520 9 9 0.50 0.50 25 57 0.30 0.70 34 66 0.34 0.66 p251 550 2 16 0.11 0.89 15 67 0.18 0.82 17 83 0.17 0.83 p251_580 2 16 0.11 0.89 15 67 0.18 0.82 17 83 0.17 0.83 p251_610 1 17 0.06 0.94 13 69 0.16 0.84 14 86 0.14 0.86 p251_640 2 16 0.11 0.89 4 78 0.05 0.95 6 94 0.06 0.94 p251_670 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p251_700 4 14 0.22 0.78 18 64 0.22 0.78 22 78 0.22 0.78 p251_730 3 15 0.17 0.83 6 76 0.07 0.93 9 91 0.09 0.91 p251_760 7 11 0.39 0.61 12 70 0.15 0.85 19 81 0.19 0.81 p251 790 0 18 0.00 1.00 10 72 0.12 0.88 10 90 0.10 0.9 p251 820 6 12 0.33 0.67 9 73 0.11 0.89 15 85 0.15 0.85 p251_880 0 18 0.00 1.00 11 71 0.13 0.87 11 89 0.11 0.89 p251 910 2 16 0.11 0.89 3 79 0.04 0.96 5 95 0.05 0.95 p251_940 4 14 0.22 0.78 8 74 0.10 0.90 12 88 0.12 0.88 p251_970 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p251_1000 6 12 0.33 0.67 5 77 0.06 0.94 11 89 0.11 0.89 p251_1030 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p251 1240 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p251_1480 4 14 0.22 0.78 5 77 0.06 0.94 9 91 0.09 0.91 p261_370 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p261_400 1 17 0.06 0.94 1 81 0.01 0.99 2 98 0.02 0.98 p261_640 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p261_670 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p261_730 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p261 820 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p261_880 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p261_910 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p261_940 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p261_970 2 16 0.11 0.89 5 77 0.06 0.94 7 93 0.07 0.93 p261_1000 4 14 0.22 0.78 11 71 0.13 0.87 15 85 0.15 0.85 p261_1060 2 16 0.11 0.89 10 72 0.12 0.88 12 88 0.12 0.88

270

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p261_1090 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p261_1120 3 15 0.17 0.83 4 78 0.05 0.95 7 93 0.07 0.93 p261_1150 0 18 0.00 1.00 9 73 0.11 0.89 9 91 0.09 0.91 p261_1480 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p288_250 0 18 0.00 1.00 2 80 0.02 0.98 2 98 0.02 0.98 p288_280 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p288_310 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p288_340 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p288_430 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p288_460 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p288_490 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p288_520 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p288_550 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p288_670 3 15 0.17 0.83 7 75 0.09 0.91 10 90 0.10 0.9 p288_700 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p288_730 5 13 0.28 0.72 11 71 0.13 0.87 16 84 0.16 0.84 p288_760 0 18 0.00 1.00 13 69 0.16 0.84 13 87 0.13 0.87 p288_790 4 14 0.22 0.78 13 69 0.16 0.84 17 83 0.17 0.83 p288_820 2 16 0.11 0.89 10 72 0.12 0.88 12 88 0.12 0.88 p288_850 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p288_880 3 15 0.17 0.83 4 78 0.05 0.95 7 93 0.07 0.93 p288_910 1 17 0.06 0.94 13 69 0.16 0.84 14 86 0.14 0.86 p288_940 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p288_970 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p288_1000 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p288_1030 3 15 0.17 0.83 8 74 0.10 0.90 11 89 0.11 0.89 p288_1060 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p288_1090 3 15 0.17 0.83 4 78 0.05 0.95 7 93 0.07 0.93 p288_1180 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p288_1210 5 13 0.28 0.72 5 77 0.06 0.94 10 90 0.10 0.9 p288_1240 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p288_1270 3 15 0.17 0.83 6 76 0.07 0.93 9 91 0.09 0.91 p288_1480 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p288_1630 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p288_1660 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p288_1690 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p220_160 2 16 0.11 0.89 0 82 0.00 1.00 2 98 0.02 0.98 p220_220 2 16 0.11 0.89 3 79 0.04 0.96 5 95 0.05 0.95 p220_250 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p220_310 2 16 0.11 0.89 8 74 0.10 0.90 10 90 0.10 0.9 p220_340 3 15 0.17 0.83 3 79 0.04 0.96 6 94 0.06 0.94 p220_370 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p220_400 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p220_430 0 18 0.00 1.00 1 81 0.01 0.99 1 99 0.01 0.99 p220_460 0 18 0.00 1.00 8 74 0.10 0.90 8 92 0.08 0.92 p220_490 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p220_520 2 16 0.11 0.89 5 77 0.06 0.94 7 93 0.07 0.93 p220_550 1 17 0.06 0.94 12 70 0.15 0.85 13 87 0.13 0.87 p220_580 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p220_610 4 14 0.22 0.78 8 74 0.10 0.90 12 88 0.12 0.88 p220_640 3 15 0.17 0.83 8 74 0.10 0.90 11 89 0.11 0.89 p220_670 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p220 700 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p220_730 0 18 0.00 1.00 10 72 0.12 0.88 10 90 0.10 0.9 p220_760 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p220_790 5 13 0.28 0.72 16 66 0.20 0.80 21 79 0.21 0.79 p220_820 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p220_850 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p220_880 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p220_910 3 15 0.17 0.83 15 67 0.18 0.82 18 82 0.18 0.82 p220_940 4 14 0.22 0.78 15 67 0.18 0.82 19 81 0.19 0.81 p220_970 4 14 0.22 0.78 11 71 0.13 0.87 15 85 0.15 0.85 p220_1000 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p220_1030 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p220_1060 2 16 0.11 0.89 13 69 0.16 0.84 15 85 0.15 0.85 p220 1090 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p220 1120 1 17 0.06 0.94 13 69 0.16 0.84 14 86 0.14 0.86 p220 1150 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p220_1180 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p220_1240 0 18 0.00 1.00 4 78 0.05 0.95 4 96 0.04 0.96 p220_1300 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p220_1330 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p220_1390 0 18 0.00 1.00 9 73 0.11 0.89 9 91 0.09 0.91 p220_1450 3 15 0.17 0.83 10 72 0.12 0.88 13 87 0.13 0.87 p220_1480 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p210_100 3 15 0.17 0.83 1 81 0.01 0.99 4 96 0.04 0.96 p210_130 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p210 160 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p210_190 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p210_220 0 18 0.00 1.00 8 74 0.10 0.90 8 92 0.08 0.92 p210_250 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p210_280 2 16 0.11 0.89 11 71 0.13 0.87 13 87 0.13 0.87 p210 310 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p210_340 2 16 0.11 0.89 3 79 0.04 0.96 5 95 0.05 0.95 p210_370 0 18 0.00 1.00 8 74 0.10 0.90 8 92 0.08 0.92 p210_400 4 14 0.22 0.78 11 71 0.13 0.87 15 85 0.15 0.85 p210_430 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p210_460 1 17 0.06 0.94 4 78 0.05 0.95 5 95 0.05 0.95 p210_490 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p210_520 3 15 0.17 0.83 13 69 0.16 0.84 16 84 0.16 0.84 p210 550 4 14 0.22 0.78 11 71 0.13 0.87 15 85 0.15 0.85 p210_580 2 16 0.11 0.89 3 79 0.04 0.96 5 95 0.05 0.95 p210_610 2 16 0.11 0.89 10 72 0.12 0.88 12 88 0.12 0.88 p210_640 1 17 0.06 0.94 13 69 0.16 0.84 14 86 0.14 0.86 p210_670 3 15 0.17 0.83 10 72 0.12 0.88 13 87 0.13 0.87 p210 700 4 14 0.22 0.78 6 76 0.07 0.93 10 90 0.10 0.9 p210_730 3 15 0.17 0.83 7 75 0.09 0.91 10 90 0.10 0.9 p210_760 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97 p210_790 2 16 0.11 0.89 12 70 0.15 0.85 14 86 0.14 0.86 p210_820 2 16 0.11 0.89 13 69 0.16 0.84 15 85 0.15 0.85 p210_850 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p210 880 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p210_910 1 17 0.06 0.94 7 75 0.09 0.91 8 92 0.08 0.92 p210_940 5 13 0.28 0.72 18 64 0.22 0.78 23 77 0.23 0.77

272

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. p210 970 0 18 0.00 1.00 12 70 0.15 0.85 12 88 0.12 0.88 p210 1000 4 14 0.22 0.78 5 77 0.06 0.94 9 91 0.09 0.91 p210_1030 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p210_1060 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p210_1090 2 16 0.11 0.89 11 71 0.13 0.87 13 87 0.13 0.87 p210_1120 3 15 0.17 0.83 6 76 0.07 0.93 9 91 0.09 0.91 p210 1180 0 18 0.00 1.00 9 73 0.11 0.89 9 91 0.09 0.91 p210_1210 3 15 0.17 0.83 5 77 0.06 0.94 8 92 0.08 0.92 p210_1240 2 16 0.11 0.89 7 75 0.09 0.91 9 91 0.09 0.91 p210_1270 0 18 0.00 1.00 9 73 0.11 0.89 9 91 0.09 0.91 p210_1300 2 16 0.11 0.89 4 78 0.05 0.95 6 94 0.06 0.94 p210_1330 0 18 0.00 1.00 5 77 0.06 0.94 5 95 0.05 0.95 p222_100 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p222_130 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p222 250 5 13 0.28 0.72 3 79 0.04 0.96 8 92 0.08 0.92 p222 280 1 17 0.06 0.94 6 76 0.07 0.93 7 93 0.07 0.93 p222 310 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p222_370 2 16 0.11 0.89 7 75 0.09 0.91 9 91 0.09 0.91 p222_400 4 14 0.22 0.78 13 69 0.16 0.84 17 83 0.17 0.83 p222_430 0 18 0.00 1.00 8 74 0.10 0.90 8 92 0.08 0.92 p222_460 1 17 0.06 0.94 10 72 0.12 0.88 11 89 0.11 0.89 p222_490 4 14 0.22 0.78 18 64 0.22 0.78 22 78 0.22 0.78 p222 520 3 15 0.17 0.83 5 77 0.06 0.94 8 92 0.08 0.92 p222_550 1 17 0.06 0.94 9 73 0.11 0.89 10 90 0.10 0.9 p222_580 7 11 0.39 0.61 13 69 0.16 0.84 20 80 0.20 0.8 p222_610 1 17 0.06 0.94 15 67 0.18 0.82 16 84 0.16 0.84 p222 640 2 16 0.11 0.89 9 73 0.11 0.89 11 89 0.11 0.89 p222_670 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p222_700 2 16 0.11 0.89 11 71 0.13 0.87 13 87 0.13 0.87 p222 730 5 13 0.28 0.72 5 77 0.06 0.94 10 90 0.10 0.9 p222_760 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p222_820 1 17 0.06 0.94 2 80 0.02 0.98 3 97 0.03 0.97 p222_850 3 15 0.17 0.83 8 74 0.10 0.90 11 89 0.11 0.89 p222_880 1 17 0.06 0.94 5 77 0.06 0.94 6 94 0.06 0.94 p222_910 3 15 0.17 0.83 8 74 0.10 0.90 11 89 0.11 0.89 p222 940 3 15 0.17 0.83 8 74 0.10 0.90 11 89 0.11 0.89 p222_970 0 18 0.00 1.00 6 76 0.07 0.93 6 94 0.06 0.94 p222_1000 1 17 0.06 0.94 2 80 0.02 0.98 3 97 0.03 0.97 p222_1030 2 16 0.11 0.89 4 78 0.05 0.95 6 94 0.06 0.94 p222_1060 1 17 0.06 0.94 8 74 0.10 0.90 9 91 0.09 0.91 p222_1270 1 17 0.06 0.94 1 81 0.01 0.99 2 98 0.02 0.98 p222_1330 0 18 0.00 1.00 1 81 0.01 0.99 1 99 0.01 0.99 p222 1360 2 16 0.11 0.89 6 76 0.07 0.93 8 92 0.08 0.92 p222 1390 0 18 0.00 1.00 3 79 0.04 0.96 3 97 0.03 0.97

273

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VITA AUCTORIS

NAME: Mirabela Hali

PLACE OF BIRTH: Shkodra, Albania

DATE OF BIRTH: July 10, 1976

EDUCATION: “Oso Kuka” High School, Shkodra, Albania 1990-1994 High School Diploma

University of Shkodra, Shkodra, Albania 1994-1998 B.Sc.

University of Tirana, Tirana, Albania 1999-2002 M.Sc.

University of Windsor, Windsor, Ontario 2003-2006 M.Sc.

274

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.