Two Gastrointestinal Parasites from Freshwater Sharptooth Catfish, Clarias Gariepinus (Burchell, 1822)

Total Page:16

File Type:pdf, Size:1020Kb

Two Gastrointestinal Parasites from Freshwater Sharptooth Catfish, Clarias Gariepinus (Burchell, 1822) Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(4): 463 – 478 (2020) www.ejabf.journals.ekb.eg Two gastrointestinal parasites from freshwater sharptooth catfish, Clarias gariepinus (Burchell, 1822) Medhat Ali1,2*, Amira Lotfy1 and Ahmed Nigm1 1Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt 2Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, KSA *Corresponding Author: [email protected] ARTICLE INFO ABSTRACT Article History: The sharptooth catfish, Clarias gariepinus is a popular tropical catfish in Received: June 15, 2020 Africa. C. gariepinus considered a good source of protein for human Accepted: July 5, 2020 consumption and has been believed as an important fish for farming. The Online: July 8, 2020 present study aims to investigate gastrointestinal parasites of C. gariepinus _______________ in a local area within Qaluobaya Governorate, Egypt. Thirty males and females C. gariepinus (Teleostei: Clariidae) were examined for the presence Keywords: of gastrointestinal parasites. Two parasite species were found naturally Catfish; infect C. gariepinus. Polyonchobothrium clarias (Cestoda: Polyonchobothrium Pseudophyllidea) which infected the pyloric stomach, small intestine, bile clarias; duct, and gall bladder. The other parasite was Procamallanus laeviconchus Procamallanus (Nematoda: Camallanidae) which infects the small intestine of C. laeviconchus; gariepinus. The prevalence of P. clarias was 33.33 % which was higher Parasites; than the prevalence of P. laeviconchus (6.67 %). The prevalence of gastrointestinal; infection in males of C. gariepinus was 26.67 %, however, the prevalence of gall bladder infection in females was 6.67 % which was significantly lower than prevalence of infection in males. The total recovered P. clarias was 188 worms, while the total number of P. laeviconchus was 23 worms. It was also observed that the tissues at the infected sites were greatly destructed. This study reinforced that C. gariepinus is highly susceptible to infection with different helminths. INTRODUCTION Clarias gariepinus is a common and important tropical catfish in Africa and the Middle East (Clay, 1979; Marcogliese and Cone, 2001, Hassan et al., 2010). It is widely distributed, occupying tropical swamps, lakes, and rivers in Africa (Olufemi et al., 1991). C. gariepinus is regard as one of the best models of omnivorous fishes (Holden and Reed, 1972; Clay, 1979). It is considered as a predator, feeding mainly on aquatic insects, molluscs, fishes; it also feeds on plant debris and fruits (Micha, 1973 and 464 Medhat Ali et al., 2020 Bruton, 1979). Clarias gariepinus has been considered as an important fish for farming in Africa. C. gariepinus has many advantages such as, having a wide range of geographical distribution, an extraordinary growth rate, nearly unaffected with handling and trauma, and well appreciated in many African countries (Akinsanya and Otubanjo 2006). Clarias gariepinus is an important human food fish, as it considered as a good source of protein and had low level of cholesterol. Economically C. gariepinus is considered as a source of subsistence income (Aken'ova, 2000; Steffens, 2006 and Eyo and Effanga, 2018). In Egypt, parasitic diseases stand for nearly 80 % of fish diseases (Eissa, 2006). Parasitic infections in fishes lead to decreased production that results in economic loss through fish mortality, drop in fish growth and fecundity, rise the susceptibility of fish to more diseases, and elevated cost of treatment (Cowx, 1992). Under normal circumstances, 50-90 % of freshwater fishes, harbor one parasite species (Sineszko, 1979). It was also reported by Palm (2011) that, based on a cautious estimate, there is an average of 3-4 parasites in each living species of fishes and the described fishes were about 31,400 species, so it can be estimated that up to 120,000 parasite species may be found in fishes. Fishes are affected by different parasites, as they are not only can act as intermediate hosts for many digeneans and cestodes, but they also can act as definitive hosts for many helminths. The infection of wild fish with parasites are common where the requirement of parasites for intermediate and definitive hosts are chanced (Feist and Longshaw 2008). Piscivorous birds, in which several helminths develop into adult stages, are important, as they can spread parasite eggs over extended distances, making it difficult to control the propagation of infections among water bodies (Saayman et al., 1991). The most common parasites are gastrointestinal parasites that compete with the fish host for nutrients, hence reducing the essential nutrients to be absorbed by fish. Subsequently, these parasites hamper the growth of fish leading to morbidity and mortality and making the fish more susceptible to surrounding predators (Azadikhah et al., 2014 and Omeji et al., 2015). Fish helminthology is not as broadly researched as other aspects of aquatic parasitology and fish biology. This is possibly because helminths are principally infecting the internal organs, chiefly the gastrointestinal tract. For humans, the gastrointestinal tract does not involve the edible part of the fish (Ibrahim et al, 2008). Hamouda (2019) examined two catfishes, Synodontis serratus and Synodontis schall from lake Nasser, Egypt for endoparasites. She found in both catfishes, one cestode: Wenyonia virilis, and three nematodes: Cithariniella citharini, P. laeviconchus, and Spirocamallanus pseudospiralis. She also found a cestode, Proteocephalus sulcatus, and one acanthocephalan, Rhadinorhynchus sp. were only recorded from Synodontis schall. Polyonchobothrium clarias is extensively distributed in African freshwater C. gariepinus having been documented from Nigeria (Aderounmu and Adeniyi 1972). It was also described from the Bagrid catfish Chrysichthys thonneri from Gabon, the Two gastrointestinal parasites from Clarias gariepinus 465 mudfish Clarias anguillaris and Heterobranchus bidorsalis from Senegal (Khalil 1973), and in C. anguillaris from Egypt (Amin 1978). P. clarias was first spotted by Mashego (1977) from C. gariepinus in seven dams in the Le bowa region, Limpopo province, South Africa. Concerning P. laeviconchus, it belongs to family Camallanidae whose members commonly infect clariid fishes of African freshwaters such as C. gariepinus (Moravec, 2019). Polyonchobothrium clarias infects pyloric stomach of C. gariepinus. It is deeply embedded by its scolex into the infected tissue which induces a deep cavity-like depression inside mucosal tissue. Also, it destroys mucosal epithelia around the site of infection comparable with uninfected tissue leading to dilation of blood capillary of the infected tissue. (El-Mansy et al., 2011). P. clarias was also collected from the gall bladder of C. gariepinus that looked enlarged with thickened bile duct; P. clarias was also gathered from the glandular stomach. The parasites were mainly attached at the junction between the muscular and glandular stomach and sometimes, they were attached near the beginning of the bile duct in the glandular stomach. (Eissa et al., 2012). Procamallanus laeviconchus is an intestinal nematode of many fishes. It is prevalent in many African fish families such as Clariidae and Schilbeidae from Lake Kariba. In Nigeria, Chishawa (1991) and Douëllou (1992). Khalil (1973) recovered P. laeviconchus from seven species of fishes from Ghana belonging to the Mormyridae, Schilbeidae, and Mochokidae. Many species of Procamallanus infecting freshwater fishes have also been documented in Europe (Moravec 1994) and the Neotropical region (Santos et al., 1999). Opara and Okon (2002) and Yakubu et al., (2002) reported P. laeviconchus from Oreochromis niloticus (Cichlidae) and from both C. gariepinus (Clariidae) and Tilapia zilli (Cichlidae) respectively. El-Mansy et al., (2011) observed P. laeviconchus embedded its buccal capsule in the cardiac portion of the stomach of C. gariepinus causing damage, rupture to mucosal tissue and hemorrhage at the attachment site of the parasite. Due to the wide geographic distribution, the diverse diet of C. gariepinus, as well as its commercial and aquaculture values, the investigation of the helminth parasites of C. gariepinus as well as their effects on this important catfish were explored in the present work. MATERIALS AND METHODS Sample collection and worm staining: Thirty C. gariepinus fish were obtained randomly from a fish market in Qaluobaya Governorate, Egypt. Specimens were brought to the invertebrate Laboratory, Department of Zoology, Faculty of Science, Ain Shams University. The gills of fish were dissected out, deposited in Petri dishes containing saline solution (0.85 % NaCl), and checked for parasites. Then fishes were opened ventrally, and the body cavities and mesenteries were examined for parasites. The gastrointestinal tract was opened from the oesophagus to the 466 Medhat Ali et al., 2020 rectum and parasites were encountered carefully from the pyloric portion of the stomach, gall bladder, bile duct, and intestine. The collected helminth parasites were put in the saline solution, then fixed in 70 % ethyl alcohol, counted, and recorded. Parasites were then washed in distilled water and stained in borax carmine (ADWIC company, Egypt). Differentiation was carried out in acidified alcohol (70 % ethyl alcohol and few drops of HCl) for few minutes this was followed by dehydration
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Food and Feeding Habits of Tilapia Zilli (Pisces: Cichlidae) in River Otamiri South-Eastern Nigeria
    Bioscience Discovery 3(2):146-148, June 2012 ISSN: 2229-3469 (Print) FOOD AND FEEDING HABITS OF TILAPIA ZILLI (PISCES: CICHLIDAE) IN RIVER OTAMIRI SOUTH-EASTERN NIGERIA Agbabiaka L. A. Department of Fisheries Technology, Federal Polytechnic Nekede, Owerri, Nigeria P.M.B. 1036, OWERRI, IMO STATE. NIGERIA [email protected] ABSTRACT Dietary habits of Tilapia zilli (Gervais, 1848) was studied in River Otamiri, Imo State, Nigeria. Fish specimens were procured from Artisanal fishermen every two weeks. Specimens were usually injected 4% formalin at the fishing station prior to laboratory analysis. A total of 97 specimens were analyzed for gut contents using Numerical and frequency of occurrence methods. Data collected showed that Tilapia zilli is an Omnivorous fish with dietary preference for Algae (71.05% and 59.52%), vegetative matter (10.52% and 50.00%), detritus (0% and 11.90%) and aquatic invertebrates larvae such as Chaoborus larvae (52.63% and 47.61%) and Chironomid larvae (31.58% and 21.43%) for juveniles and adult Tilapia respectively. Key words: Dietary habits, Tilapia zilli, River Otamiri, Omnivorous. INTRODUCTION MATERIALS AND METHODS Family Cichlidae comprising of Tilapia and River Otamiri lies between latitude 50 301 and 70 Hemichromis species are endemic to Nigeria, it is 301 North, and longitude 50 390 and 50 421 East. The widely distributed in Nigeria waters and second entire study area is about 20km representing the most abundant fish species at River Otamiri Southern part of the River along Obinze-Umuagwo (Agbabiaka, 2010). Various researchers have stretch in Imo State, Nigeria. Three sampling points investigated food and feeding habits of Cichlids and were located namely Obinze, Mgbirichi, and other commercially important fishes in Nigeria and Umuagwo which were about 7km intervals.
    [Show full text]
  • Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa
    Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa Mulugeta Wakjira Addis Ababa University June 2016 Cover photos: Lower Omo River at Omorate town about 50 km upstream of the delta (upper photo); Lake Turkana from Ethiopian side (lower photo). © Mulugeta Wakjira and Abebe Getahun Fish diversity, Community structure, Feeding ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa Mulugeta Wakjira A Thesis Submitted to the Department of Zoological Sciences, Addis Ababa University, Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Sciences) June 2016 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE PROGRAM This is to certify that the thesis prepared by Mulugeta Wakjira entitled, "Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa", and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Science) complies with the regulations of the university and meets the accepted standards with respect to originality and quality. Signed by the Examining Committee Examiner (external): Dr. Leo Nagelkerke Signature ____________ Date_________ Examiner (internal): Dr. Elias Dadebo Signature ____________ Date_________ Advisor: Dr. Abebe Getahun Signature ____________ Date__________ ____________________________________________________________ Chair of Department or Graduate Program Coordinator Abstract Ethiopia has a freshwater system in nine major drainage basins which fall into four ichthyofaunal provinces and one subprovince. Omo-Turkana Basin, spanning considerable geographic area in southwestern Ethiopia and northern Kenya, essentially consists of Omo River (also known as Omo-Gibe) and Lake Turkana.
    [Show full text]
  • Catalogue of Some Saltwater and Freshwater Fish Species of the Niger Delta Region of Nigeria
    Catalogue of Some Saltwater and Freshwater Fish Species of the Niger Delta Region of Nigeria Ekinadose Orose, Edafe Odioko and Okechukwu Kenneth Wokeh * Department of Animal and Environmental Biology, Hydrobiology and Fisheries Unit, University of Port Harcourt, PMB 5323, Port Harcourt, Rivers State, Nigeria. World Journal of Advanced Research and Reviews, 2021, 09(03), 056–084 Publication history: Received on 29 January 2021; revised on 27 February 2021; accepted on 01 March 2021 Article DOI: https://doi.org/10.30574/wjarr.2021.9.3.0075 Abstract The study was done to review some saltwater and freshwater fish species in the Niger Delta region of Nigeria. The Niger Delta is one of the most prominent regions in Nigeria, endowed with several water bodies that are distributed as freshwater like rivers, lakes, streams and creeks. These freshwater ecosystems in the region, are abundantly endowed with fish species such as Clarias gariepinus, Pila ovate, Labeo coubie, Synodontis budgetti and Synodontis eupterus. Apart from the freshwaters, the region also has vast marine ecosystem with abundance of fish species such as Elops lacerta, Mugil cephalus, Thais coronata, Periophthalmus papilio, Tympanotonus fuscatus, and Sardinella maderensis. Unfortunately, many of these fish species are endangered due to constant pollution in the Niger delta regional coastal environment. As a result, it is important to document some available freshwater and marine water fish species which will serve as a reference material for both academics and research institutions, should any of the fish species go into extinction. Keywords: Extinction, Coastal Waters, Marine Diversity, Niger Delta 1. Introduction Nigeria’s coastal waters fall within the Guinea Current Large Ecosystem (GCLME), a shared resource by all the coastal West African countries.
    [Show full text]
  • Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region
    Summary of Temperature Metrics for Aquatic Invasive Fish Species in the Prairie Region Theresa E. Mackey, Caleb T. Hasler, and Eva C. Enders Fisheries and Oceans Canada Ecosystems and Oceans Science Central and Arctic Region Freshwater Institute Winnipeg, MB R3T 2N6 2019 Canadian Technical Report of Fisheries and Aquatic Sciences 3308 1 Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts. Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique.
    [Show full text]
  • (Monogenea: Dactylogyridae) and a Redescription of D
    Journal of Helminthology (2018) 92, 228–243 doi:10.1017/S0022149X17000256 © Cambridge University Press 2017 Morphology and molecular characterization of Demidospermus spirophallus n. sp., D. prolixus n. sp. (Monogenea: Dactylogyridae) and a redescription of D. anus in siluriform catfish from Brazil L. Franceschini1*, A.C. Zago1, M.I. Müller1, C.J. Francisco1, R.M. Takemoto2 and R.J. da Silva1 1São Paulo State University (Unesp), Institute of Biosciences, Botucatu, Brazil, CEP 18618-689: 2State University of Maringá (UEM), Limnology, Ichthyology and Aquaculture Research Center (Nupélia), Maringá, Brazil, CEP 87020-900 (Received 29 September 2016; Accepted 26 February 2017; First published online 6 April 2017) Abstract The present study describes Demidospermus spirophallus n. sp. and Demidosper- mus prolixus n. sp. (Monogenea, Dactylogyridae) from the siluriform catfish Loricaria prolixa Isbrücker & Nijssen, 1978 (Siluriformes, Loricariidae) from the state of São Paulo, Brazil, supported by morphological and molecular data. In add- ition, notes on the circumscription of the genus with a redescription of Demisdospermus anus are presented. Demidospermus spirophallus n. sp. differed from other congeners mainly because of the morphology of the male copulatory organ (MCO), which exhibited 2½ counterclockwise rings, a tubular accessory piece with one bifurcated end and a weakly sclerotized vagina with sinistral open- ing. Demidospermus prolixus n. sp. presents a counterclockwise-coiled MCO with 1½ rings, an ovate base, a non-articulated groove-like accessory piece serving as an MCO guide, two different hook shapes, inconspicuous tegumental annulations, a non-sclerotized vagina with sinistral opening and the absence of eyes or acces- sory eyespots. The present study provides, for the first time, molecular character- ization data using the partial ribosomal gene (28S) of two new species of Demidospermus from Brazil (D.
    [Show full text]
  • Body Composition, Elemental Concentration and Morphometrics of Two Carnivorous Fishes in Rivers of Southern Punjab, Pakistan
    Body Composition, Elemental Concentration and Morphometrics of two Carnivorous fishes in Rivers of Southern Punjab, Pakistan. A thesis submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy in ZOOLOGY By Muhammad Yousaf (M. Sc. Zoology) Institute of Pure & Applied Biology (Zoology Division) Bahauddin Zakariya University, Multan “It Is He Who Has Made The Sea Subject, That Ye May Eat Thereof Flesh That Is Fresh And Tender. And That Ye May Extract There From Ornaments To Wear.” (26: 14) – THE HOLY QURAN STATEMENT AND DECLARATION The work submitted in this thesis under the title, “Body Composition, Elemental Concentration and Morphometrics of two Carnivorous fishes in River of Southern Punjab, Pakistan” is in fulfillment of the requirements for the degree of Doctor of Philosophy. I declare that this work is the result of my own investigations and has not already been accepted in substance for any degree, nor is it currently being submitted for any other degree. All authors works referred to in this thesis have been fully acknowledged. MUHAMMAD YOUSAF Dated ………………….... I certify that above statement is correct. Supervisor…………………...................... Prof. (R) Dr. Abdus Salam DEDICATED TO My Worthy Parents & All those who bring joy to my life I ACKNOWLEDGEMENTS I bow my head before ALMIGHTY ALLAH, the most merciful and the most beneficent who bestowed me with the ability to complete this work and the Holy Prophet Hazrat Muhammad (PBUH) who inspired me for the truth. I deem it an utmost pleasure to be able to express the heartiest gratitude and deep sense of devotion to my worthy supervisor Prof.
    [Show full text]
  • Nutritional Composition of Synodontis Nigrita and Tilapia Mariae from the Jamieson River, Sapele, Delta State, Nigeria
    BIOLOGIJA. 2019. Vol. 65. No. 2. P. 116–121 © Lietuvos mokslų akademija, 2019 Nutritional composition of Synodontis nigrita and Tilapia mariae from the Jamieson River, Sapele, Delta State, Nigeria Ijeoma Patience Oboh*, The proximate composition of fish is important for easy formu- lation of both animal and human diets. The study on the proxi- Oluwatosin Adesola Sanni, mate and mineral composition of captured Synodontis nigrita and Tilapia mariae was aimed at gaining knowledge of their con- Nkonyeasua Kingsley Egun sumption-associated benefits. Fish specimens were purchased on the bank of the river between February and April 2017 and Department of Animal transported to the laboratory where routine measurements, body and Environmental Biology, University of Benin, and biochemical analysis for moisture content, fat, ash, protein, P.M.B. 1154 Ugbowo, crude fibre, carbohydrate, sodium, potassium, calcium, and mag- Benin City, Edo State, Nigeria nesium were performed using the standard methods of AOAC. The result of the proximate composition ofSynodontis nigrita and Tilapia mariae showed moisture content of 79.00% and 78.87%, fat value of 3.43% and 0.67%, ash content of 6.22% and 6.68%, protein value of 7.09% and 8.84%, crude fibre value of 0.40% and 1.80%, carbohydrate content of 3.86% and 3.14%, respectively. The mineral composition of Synodontis nigrita and Tilapia mariae revealed sodium values of 32.90 mg/kg and 30.20 mg/kg, potas- sium values of 171.70 mg/kg and 175.60 mg/kg, calcium values of 13.50 mg/kg and 9.20 mg/kg, magnesium content of 15.00 mg/kg and 13.40 mg/kg, respectively.
    [Show full text]
  • Prevalence, Intensity and Pathological Lesions Associated with Helminth
    PREVALENCE, INTENSITY AND PATHOLOGICAL LESIONS ASSOCIATED WITH HELMINTH INFECTIONS IN FARMED / / AND WILD FISH IN UPPER TANA RIVER BASIN, KENYA CHARLES GICHOHlt MATHENGE (BVM, UON) A THESIS SUBMITTED TO THE UNIVERSITY OF NAIROBI IN PARTIAL FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE IN FISH SCIENCE University of NAIROBI Library 0416939 7 DEPARTMENT OF VETERINARY PATHOLOGY, MICROBIOLOGY AND PARASITOLOGY FACULTY OF VETERINARY MEDICINE UNIVERSITY OF NAIROBI 2010 11 DECLARATION This thesis is my original work and has not been presented for a degree in any other University. Signed ............ date: \ Charles Gichohi Mathenge This thesis has been submitted for examination with our approval as University Supervisors: Signed:........................................................ date: A P i 0 Dr. Mbuthia, P. G. (BVM, MSc, Dip. Path., PhD) date:...... Dr. Waruiru, R. M. (BVM, MSc, PhD) Signed: ...'. 7 ......... date:. /. 9 .... Prof. Ngatia, T. A. (BVM, MSc, Dip. PVM, PhD) Ill DEDICATION This work is dedicated to my mother Rachael Waruguru and my late father, Moses Wanjuki Mathenge. IV ACKNOWLEDGEMENTS I would like to express my sincere and deep gratitude to my supervisors Dr. Mbuthia P.G., Dr. Waruiru R.M. and Professor Ngatia T.A., for their invaluable advice, suggestions, guidance, moral support and encouragement throughout the study period. I am highly indebted to the Director, Department of Veterinary Services, Ministry of Livestock and Fisheries Development, for allowing me to go on study leave and the award of a scholarship to undertake this MSc programme. I also wish to acknowledge the Chairman, Department of Veterinary Pathology, Microbiology and Parasitology, Prof. Maingi E. N. for invaluable advice and facilitating the preliminary market study.
    [Show full text]
  • VACUITY COEFFICIENT and DIET in CLARIAS JAENSIS (BOULENGER, 1909) in the MBÔ FLOODPLAIN (CAMEROON) Tchouante Tzukam Christelle G
    Global Journal of Agricultural Research Vol.8, No.1, pp.26-37, March 2020 Published by ECRTD-UK Print ISSN: ISSN 2053-5805(Print), Online ISSN: ISSN 2053-5813(Online) VACUITY COEFFICIENT AND DIET IN CLARIAS JAENSIS (BOULENGER, 1909) IN THE MBÔ FLOODPLAIN (CAMEROON) Tchouante Tzukam christelle G. [1]*, Efole Ewoukem Thomas [1], Tagning Zebaze Pégis D. [1] and Tchoumboue [1] [1] University of Dschang; Faculty of Agronomy and Agricultural; Department of animal production ABSTRACT: The Diet of Clarias jaensis was studied in the floodplain of Mbô in Cameroon. In order to reduce over-exploitation through knowledge of the food habits, 230 fish caught by artisanal fishing methods were collected monthly between November 2016 and September 2017 in three sites (Menoua, Nkam and flooded ponds). The digestive tract dissection was made according to the standard method. The standard length and total weight of specimens ranged from 10.50 to 47.50 cm and between 9.99 and 1165.59 g respectively. Overall, 43 stomachs were empty with a general vacuity coefficient of 18.69%. It varied between 16.85 and 26.08%, respectively between the dry and rainy seasons, and then by 24.00; 11.43 and 26.00% respectively in the Menoua, Nkam and flooded ponds. The diet characterized on the basis of occurrence and numerical percentages, having varied from one season to another. Insect- dominated animal organic matter was significantly (p < 0.001) higher (73.54%) compared to plant matter (36.59%) and detritus (24.09%). The food spectrum of C. jaensis, with 9 items, showed that it was an omnivorous species with an insectivorous tendency.
    [Show full text]
  • Mitochondrial Phylogeny and Phylogeography of East African
    BMC Evolutionary Biology BioMed Central Research article Open Access Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis) Stephan Koblmüller1, Christian Sturmbauer1, Erik Verheyen2, Axel Meyer3 and Walter Salzburger*3 Address: 1Department of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010 Graz, Austria, 2Vertebrate Department, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium and 3Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78467 Konstanz, Germany Email: Stephan Koblmüller - [email protected]; Christian Sturmbauer - [email protected]; Erik Verheyen - [email protected]; Axel Meyer - [email protected]; Walter Salzburger* - walter.salzburger@uni- konstanz.de * Corresponding author Published: 19 June 2006 Received: 10 April 2006 Accepted: 19 June 2006 BMC Evolutionary Biology 2006, 6:49 doi:10.1186/1471-2148-6-49 This article is available from: http://www.biomedcentral.com/1471-2148/6/49 © 2006 Koblmüller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Squeaker catfishes (Pisces, Mochokidae, Synodontis) are widely distributed throughout Africa and inhabit a biogeographic range similar to that of the exceptionally diverse cichlid fishes, including the three East African Great Lakes and their surrounding rivers. Since squeaker catfishes also prefer the same types of habitats as many of the cichlid species, we hypothesized that the East African Synodontis species provide an excellent model group for comparative evolutionary and phylogeographic analyses.
    [Show full text]
  • Occurrence of Tetracampos Ciliotheca and Proteocephalus Glanduligerus in Clarias Gariepinus (Burchell, 1822) Collected from the Vaal Dam, South Africa
    Page 1 of 5 Original Research Occurrence of Tetracampos ciliotheca and Proteocephalus glanduligerus in Clarias gariepinus (Burchell, 1822) collected from the Vaal Dam, South Africa Authors: Cestodes are parasitic flatworms that live in the digestive tract of vertebrates as adults and 1 Grace Madanire-Moyo often in the liver, muscle, haemocoel, mesentery and brain of various animals as larval stages. Annemariè Avenant- Oldewage1 To identify the cestodes infecting Clarias gariepinus Burchell, 1822 (sharptooth catfish) in the Vaal Dam, a total of 45 host specimens were collected with the aid of gill nets between October Affiliations: 2011, January and April 2012. The fish were sacrificed and examined for cestode parasites. 1 Department of Zoology, Two adult cestodes, Tetracampos ciliotheca Wedl, 1861 (prevalence 86.7%, mean intensity = 15, University of Johannesburg, Kingsway Campus, n = 45) and Proteocephalus glanduligerus (Janicki, 1928) (prevalence 51.1%, mean intensity = 5, South Africa n = 45) were found in the intestines of the catfish. Both T. ciliotheca and P. glanduligerus are new locality records. There were statistically insignificant differences in the Correspondence to: infection of the male and female C. gariepinu. Fish with standard length ranging from Annemariè Avenant- Oldewage 40 cm – 54 cm (≥ 3 years) had the highest prevalence and mean intensity while those ranging from 10 cm – 24 cm (< 1 year) had the lowest prevalence and mean intensity for both Email: cestodes. The study highlights the importance of changing feeding habits of C. gariepinus [email protected] with age on the prevalence and mean intensity of the two gastrointestinal cestode parasites. Postal address: PO Box 524, Kingsway Campus 2006, South Africa Introduction Dates: Cestodes represent a highly specific group within Neodermata that is characterised by several Received: 14 Sept.
    [Show full text]