Wine Chemistry Composition of Wine

Total Page:16

File Type:pdf, Size:1020Kb

Wine Chemistry Composition of Wine 2/25/2014 Chemistry of Juice & Wine We will begin with the composition of must/grape juice and then cover the Wine Chemistry composition of wine. Constituents are covered in highest to lowest Wine 3 concentrations. Introduction to Enology 2/25/2014 1 4 Tonight: Exam # 1 Old English Money vs. US Use Scantron and #2 Pencil Leave one empty seat between you and your 2 farthings = 1 halfpenny neighbor. 2 halfpence = 1 penny (1d) 3 pence = 1 thruppence (3d) All backpacks, bags, and notebooks on floor. 6 pence = 1 sixpence (a 'tanner') 12 pence = 1 shilling (a bob) OR 100 pennies = 1 Dollar You will have 20 minutes to complete the test. 2 shillings = 1 florin ( a 'two bob bit') When your finished hand in your test face down 2 shillings and 6 pence = 1 half crown by section and wait quietly at your desk or 5 shillings = 1 Crown 20 shillings = 1 Pound outside the classroom. Write name on both Scantron & Test 2 5 Tonight's Lecture Metric System Wine chemistry The preferred method of measurement world Juice composition wide (except for the US, Burma & Liberia) Acid and sugar adjustments Look over handout and get comfortable with Wine composition converting US to Metric & vice versa. Units change by factors of 10 Use the handout on conversions of a website to help you out. 3 6 Wine Chemistry 1 2/25/2014 Metric Units Composition of Must Water, 70 to 80%, the sweeter the grapes, the lower the % of water. Most important role is as a solution in which all other reactions take place. Sugars, 15 to 35%, they are about 90% of the soluble solids or extract in the juice. 7 10 Some definitions: Soluble: A substance that can be dissolved, sugar being dissolved in water is an example. Insoluble substances do not dissolve, an example would be mixing sand into water. Precipitate: A substance that comes out of solution in a liquid and reverts to its solid form. Suspended Solids: Solids suspended in the solution that have not settled. 8 11 Sugars (carbohydrates) Metric System The primary sugars are glucose and fructose in about equal amounts. These sugars are both Winey laboratories use the metric system. hexoses (6 carbons) have the same formula European made wine equipment use metric C6H12O6 but different structures. units. Most problems occur when converting between US system and metric system. NASA lost $125,000,000 Mars spacecraft to due incorrect conversion. 9 12 Wine Chemistry 2 2/25/2014 Molecules Containing Carbon Unfermentable sugars Remember from our chemistry review that the Yeast do not have the ability to consume corners of the hexagon represent carbon atoms. ferment every type of sugar. Very small amounts of residual sugar remain in all dry wines due to unfermentable sugars Carbon atoms that are present (mostly pentoses). are at the comers of the hexagon 13 16 Molecules Containing Carbon Measuring Sugars Sugars can be measured directly in the lab Remember from our chemistry review that the through analysis. This is how low levels of corners of the hexagon represent carbon atoms. sugar in finished wines are measured. An oxygen atom Sugars make up a very large percentage of the makes up one juice before fermentation so it is much easier comer of the to measure the sugar by density. hexagon 14 17 Sugars Measuring Sugars Sucrose (table sugar) is a molecule that combines one Degrees Brix (sometimes called balling) is molecule of glucose and one how sugar is represented as a density molecule of fructose. It is measurement. present in native American 1 degree Brix (B) = (% by weight) = 1 gram grape varieties like Concord of sugar per 100 grams solution (water & up to about 25%. Not a lot sugar combined). in Vinifera. Yeast can ferment sucrose. 15 18 Wine Chemistry 3 2/25/2014 Example ~ Brix Standard Specific Gravity Specific gravity is useful when buying or To make a 20 ºBrix solution for calibrating a refractometer mix: selling bulk wine. 20 Grams of sugar Wine is usually sold by the gallon, however 80 Grams of water (80 ml) the amount of gallons will increase or decrease based on a wines temperature. 100 Grams total solution weight So when selling wine it is best to determine the amount of gallons by weight which is constant. 19 22 Other Units for Measuring Sugars Specific Gravity The specific gravity of water in U.S. units is Units of sugar measurement are different # outside of the United States. 8.328 /Gallon, so if the net weight of the wine on the truck is 42,360# then how many gallons Baumé , this method is popular in Europe are there on the truck? Brix = Baumé x 0.55 # Weight (SG x 8.328 /Gallon ) = Gallons Baume is an convenient method because the degrees Baumé approximates what the So # alcohol will be if the juice is fermented dry. 42,360# (0.990 x 8.328 /Gallon ) = 5,138 Gal. 13.5ºBauméferments to about 13.5%Alcohol Why was the specific gravity < 1.0? 20 23 Other Units for Measuring Sugars Methods of Sugar Measurement In brewing specific gravity is the preferred Refractometers: Easy to use and usually method of measuring sugar. more accurate than hydrometers. The changing density of a liquid changes the Using specific gravity sugar expressed as refraction (bending of light passing through density in grams/ml, water by definition has a it) measures dissolved solids. SG of 1.000 1° Brix = SG of 1.004 20° Brix = SG of 1.083 21 24 Wine Chemistry 4 2/25/2014 Methods of Sugar Measurement Methods of Sugar Measurement Hydrometers: Not quite as easy to use but Refractometers Cont. relatively cheap, measures the weight of a Problems: Expensive, delicate instruments, solution by displacement. Can be used alcohol affects refraction, so they cannot be during fermentation but the lower density of used during fermentation. Temperature also alcohol effects the Brix reading. affects refraction so it must be temperature Will read negative at the end of fermentation compensated. because alcohol has lower density than water. 25 28 Optical Refractometer Methods of Sugar Measurement Most hydrometers are calibrated to 60 F or 20 C (68F), so they need to be temperature compensated. The more accurate, the more expensive and delicate. Several hydrometers with different ranges give better accuracy. 26 29 Methods of Sugar Measurement Digital Refractometers Recently portable digital refractometers have Hydrometers can also give false readings by the become more affordable and more popular. presence of suspended solids or gas bubbles. Some hydrometers have internal thermometers Water resistant, for compensation. not waterproof! Using clarified juice reduces error from suspended solids. Spinning the hydrometer dislodges bubbles. 27 30 Wine Chemistry 5 2/25/2014 Hydrometers Adjusting Sugar The sugar left in the wine after fermentation is called the Residual Sugar or RS When adding sucrose the Brix or RS can be added by gm/L to the desired level. To add 0.5 grams/Liter to 60 gallons of wine: 60 Gal x 3.78 L/Gal =228 Liters 228 Liters x 0.5 Grams/Liter = 114 grams 31 34 Methods of Sugar Measurement Adjusting sugar with sweet wine or juice Digital Density To sweeten a must or wine with sweet juice or Meters More wine is simple algebra by using the principle that accurate and easy to the sum of the concentration times volume of each use, they are wine being blended will be equal the concentration definitely worth the times volume of the final wine. investment for commercial wineries. 32 35 Adjusting Sugar Example To adjust 10,000 Gallons of dry wine 0.1% RS Illegal to add to wines in CA. except for to 0.4% RS how much juice at 10% RS do you sparkling wine dosage, but it can be added as add? grape juice or grape juice concentrate. Let X = Gallons of sweet wine to add With homemade wines and wines made outside of California, sucrose (table sugar) (10,000 + X) .4% = {(10,000) (.1%)} + X(10%) can be used for adjusting the sugar level 4000 + .4X = 1000 + 10X before or after fermentation. 3000 = 9.6X Adding sugar does not increase ripeness 312.5 = X (flavor). 33 36 Wine Chemistry 6 2/25/2014 Titratable Acidity TA Acids Present in Juice TA is determined by titration with a base to Juice and wine are dilute acid solutions. The an endpoint of pH 8.2 (phenolphthalein) it is acidic nature of wine has a profound affect then expressed as grams/100ml or on the sensory qualities of wine, microbial grams/liter (g/L) of tartaric acid. stability, color, protein (heat) stability, and Example 8.9 g/L = 0.89g/100ml tartrate (cold) stability. In France TA is expressed as grams of sulfuric acid/Liter g/L tartaric acid X 0.65 = g/L sulfuric acid. 37 40 Principal Acids in Juice Titration Malic acid Tartaric acid Citric acid When performing a the endpoint of 8.2 COO- + H+ pH is just as the solution turns pink. | The endpoint can be difficult to see in COO- + H+ COO- + H+ CH2 | | | red wines. HCH HC-OH HO-C-COO- + H+ | | | HO-CH HC-OH CH2 | | | COO- + H+ COO- + H+ COO- + H+ Disassociated Carboxylic acid groups Before At Endpoint Too Far! 38 41 Principal Acids in Juice Acids Tartaric and malic make up over 90% of grape You can add tartaric, malic, citric, or lactic. For most adjustments tartaric acid is used juice acid. Tartaric acid is rarely found in other because it disassociates best (lowers the pH fruits. Other acids are: lactic, is present in more/gram) and is microbially stable.
Recommended publications
  • Concepts in Wine Chemistry
    THIRD EDITION Concepts IN Wine Chemistry YAIR MARGALIT, Ph.D. The Wine Appreciation Guild San Francisco Contents Introduction ix I. Must and Wine Composition 1 A. General Background 3 B. Sugars 5 C. Acids 11 D. Alcohols 22 E. Aldehydes and Ketones 30 F. Esters 32 G. Nitrogen Compounds 34 H. Phenols 43 I. Inorganic Constituents 52 References 55 n. Fermentation 61 A. General View 63 B. Chemistry of Fermentation 64 C. Factors Affecting Fermentation 68 D. Stuck Fermentation 77 E. Heat of Fermentation 84 F. Malolactic Fermentation 89 G. Carbonic Maceration 98 References 99 v III. Phenolic Compounds 105 A. Wine Phenolic Background 107 B. Tannins 120 C. Red Wine Color 123 D. Extraction of Phenolic Compounds from Grapes 139 References 143 IV. Aroma and Flavor 149 A. Taste 151 B. Floral Aroma 179 C. Vegetative Aroma 189 D. Fruity Aroma 194 E. Bitterness and Astringency 195 F. Specific Flavors 201 References 214 V. Oxidation and Wine Aging 223 A. General Aspects of Wine Oxidation 225 B. Phenolic Oxidation 227 C. Browning of White Wines 232 D. Wine Aging 238 References 253 VI. Oak Products 257 A. Cooperage 259 B. Barrel Aging 274 C. Cork 291 References 305 vi VH. Sulfur Dioxide 313 A. Sulfur-Dioxide as Food Products Preservative 315 B. Sulfur-Dioxide Uses in Wine 326 References 337 Vm. Cellar Processes 341 A. Fining 343 B. Stabilization 352 C. Acidity Adjustment 364 D. Wine Preservatives 372 References 382 IX. Wine Faults 387 A. Chemical Faults 389 B. Microbiological Faults 395 C. Summary ofFaults 402 References 409 X.
    [Show full text]
  • Download Abstracts
    JUNE 17–20, 2019 Napa Valley Marriott Hotel Technical Abstracts Napa, California USA 70 YEARS th NATIONAL Science: A Platform 70 for Progress CONFERENCE ASEV AMERICAN SOCIETY FOR ENOLOGY AND VITICULTURE 70 Technical Abstracts YEARS Oral Presentation Abstracts Wednesday, June 19 Enology—Phenolic Extraction ......................................................................................................................48–50 Viticulture—Impact of Red Blotch on Grape and Wine Composition ............................................ 51–54 Science: A Platform A Platform Science: Progress for Enology—Microbiology of Wine .................................................................................................................. 54–56 Viticulture—Managing Pests and Weeds ..................................................................................................57–59 Enology—Wine Chemistry: Oxidations and Aging .................................................................................59-61 Viticulture—Fruit Composition and Yield ..................................................................................................61-63 Thursday, June 20 Enology—Wine Macromolecules ........................................................................................................................ 64 Viticulture—Crop Load Management .........................................................................................................65-66 Enology—Wine Stability ................................................................................................................................
    [Show full text]
  • Phenolic Compounds As Markers of Wine Quality and Authenticity
    foods Review Phenolic Compounds as Markers of Wine Quality and Authenticity Vakare˙ Merkyte˙ 1,2 , Edoardo Longo 1,2,* , Giulia Windisch 1,2 and Emanuele Boselli 1,2 1 Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bozen-Bolzano, Italy; [email protected] (V.M.); [email protected] (G.W.); [email protected] (E.B.) 2 Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy * Correspondence: [email protected]; Tel.: +39-0471-017691 Received: 29 October 2020; Accepted: 28 November 2020; Published: 1 December 2020 Abstract: Targeted and untargeted determinations are being currently applied to different classes of natural phenolics to develop an integrated approach aimed at ensuring compliance to regulatory prescriptions related to specific quality parameters of wine production. The regulations are particularly severe for wine and include various aspects of the viticulture practices and winemaking techniques. Nevertheless, the use of phenolic profiles for quality control is still fragmented and incomplete, even if they are a promising tool for quality evaluation. Only a few methods have been already validated and widely applied, and an integrated approach is in fact still missing because of the complex dependence of the chemical profile of wine on many viticultural and enological factors, which have not been clarified yet. For example, there is a lack of studies about the phenolic composition in relation to the wine authenticity of white and especially rosé wines. This review is a bibliographic account on the approaches based on phenolic species that have been developed for the evaluation of wine quality and frauds, from the grape varieties (of V.
    [Show full text]
  • Copyrighted Material
    1 Water and Ethanol 1.1 Introduction From a macroscopic perspective, wine is a mildly acidic hydroethanolic solution. As shown in Table 1.1, water and ethanol represent ~97% w/w of dry table wines. Ethanol is the major bioactive compound in wine and its presence renders wine and other alcoholic beverages inhospitable to microbial pathogens. Understanding the physiochemical properties of wine will first require a review of the basic properties of water and water–ethanol mixtures. More thorough discussions of the unique properties of water, including those specific to the food chemistry, can be found elsewhere [1]. 1.2 Chemical and physical properties of water Water is a hydride of oxygen, but has unique properties compared to other hydrides of elements nearby on the periodic table, as shown in Table 1.2. For example, the boiling point of water (100 °C) is far above that of hydrides of adjacent elements on the periodic table: HF (19.5 °C), H2S (–60 °C), and NH3 (–33 °C). Thus, water exists as a liquid at room temperature, while the other hydrides exist as gases. Similarly, water also has a higher heat of vaporization, heat capacity, and freezing point than would be expected as compared to nearby hydrides. The unique properties of water are largely due to its ability to engage in intermolecular hydrogen (H) bond- ing, which results in stronger molecule‐to‐molecule interactions than in related compounds. ●● Oxygen is more electronegativeCOPYRIGHTED than hydrogen and an O–H MATERIALbond is more polarized than N–H or S–H. ●● The geometry and symmetry of an H2O molecule allows for four concurrent H bonds per water molecule.
    [Show full text]
  • Ab-Initio Calculation of the Rates of the Reactions Between Volatile Organic Compounds in Wine and Cations for Mass Spectrometry
    Scuola di Dottorato in Fisica, Astrofisica e Fisica Applicata Dipartimento di Fisica Corso di Dottorato in Fisica, Astrofisica e Fisica Applicata Ciclo XXXIII Ab-initio Calculation of the Rates of the Reactions between Volatile Organic Compounds in Wine and Cations for Mass Spectrometry Settore Scientifico Disciplinare FIS/03 Supervisore: Prof. Nicola Manini Co-supervisore: Dr. Franco Biasioli Co-supervisore: Prof. Paolo Piseri Coordinatore: Prof. Matteo Paris Tesi di Dottorato di: Manjeet Kumar Anno Accademico 2019-2020 External Referees: Jonathan Beauchamp Giorgio Benedek Commission of the final examination: External Members: Saskia Van Ruth Luca Cappellin Internal Member: Nicola Manini Final examination: Date 18-12-2020 Università degli Studi di Milano, Dipartimento di Fisica, Milano, Italy Dedicated to my parents Cover illustration: Volatile Organic Compounds responsible for producing cork-taint in a bottle of wine. MIUR subjects: FIS/03, FIS/07, CHIM/01, CHIM/10 PACS: 82.20.Pm, 33.15.Ms, 31.15.Ar Abstract Wine is a complex mixture housing many aroma and flavor compounds giving it a unique texture and bouquet. These volatile organic compounds (VOCs), if present near the sensory threshold limits, may contribute positively to wine quality; however, excessive amounts can detract from quality, and are considered as a fault in wine. It is believed that nearly 10% of the world’s wine is affected from various types of faults. The most common and potent wine taint is 2,4,6-trichloroanisole (2,4,6-TCA), com- monly known as cork-taint molecule resulting from the cork stopper of wine bottles. 2,4,6- TCA produces intense ’musty’, ’mouldy’ ’earthy’ smelling in wine.
    [Show full text]
  • Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods
    Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Edited by Remedios Castro-Mejías and Enrique Durán-Guerrero Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Editors Remedios Castro-Mej´ıas Enrique Dur´an-Guerrero MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin • • • • • • • • • Editors Remedios Castro-Mej´ıas Enrique Duran-Guerrero´ Analytical Chemistry Analytical Chemistry Universidad de Cadiz´ Department Puerto Real University of Cadiz Spain Puerto Real Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: www.mdpi.com/journal/foods/special issues/Recent Developments Identification Genuine Odor- Taste-Active Compounds Foods). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-1668-4 (Hbk) ISBN 978-3-0365-1667-7 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Anthocyanin and Phenolic Acids Contents Influence the Color
    ORIGINAL RESEARCH published: 18 June 2021 doi: 10.3389/fnut.2021.691784 Anthocyanin and Phenolic Acids Contents Influence the Color Stability and Antioxidant Capacity of Wine Treated With Mannoprotein Xiao-feng Yue 1†, Si-si Jing 1†, Xiao-fan Ni 1†, Ke-kun Zhang 1, Yu-lin Fang 1,2,3, Zhen-wen Zhang 1,2,3* and Yan-lun Ju 1* 1 College of Enology, Northwest A&F University, Xianyang, China, 2 Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China, 3 Heyang Viti-Viniculture Station, Northwest A&F University, Xianyang, China Wine is consumed by humans worldwide, but the functional components are lost and the color changes during its production. Here, we studied the effects of mannoprotein (MP) addition (0, 0.1, and 0.3 g/L) upon crushing and storage. We measured anthocyanins, phenolic acids profiles, color characteristics, and antioxidant activities of wine. The results showed that the addition of MP before fermentation significantly increased the Edited by: Daniel Cozzolino, total phenolic content (TPC), total anthocyanin content, total tannin content (TTC), University of Queensland, Australia total flavonoid content, and total flavanol content in wine, whereas the addition Reviewed by: of MP during storage had the opposite effect. The addition of MP before alcohol Uroš M. Gašic,´ University of Belgrade, Serbia fermentation significantly increased the amount of individual anthocyanins and individual Kin Weng Kong, phenolic acids, maintained the color, and increased the antioxidant capacity of wine. In University of Malaya, Malaysia addition, the addition of 0.3 g/L MP during storage increased the content of individual *Correspondence: phenolic acids and TPC of wine.
    [Show full text]
  • Glossary of Terms
    Glossary of Terms Acceptable Daily Intake or Allowed Daily Intake (ADI) → Dose- Response Relationship/Curve Allergen The allergen is a material which triggers an allergic reaction. Allopathy The term allopathy was created by Christian Friedrich Samuel Hahnemann (1755– 1843) (from the Greek prefix άλλος, állos, “other”, “different” and the suffix πάϑος, páthos, “suffering”) in order to distinguish his technique (homeopathy) from the traditional medicine of his age. Today, allopathy means a medicine based on the principles of modern pharmacology. Anaphylactic shock Anaphylaxis (or an anaphylactic shock) is a whole-body, rapidly developing aller- gic reaction, which may lead to lethal respiratory and circulatory failure. Antibody Antibodies are proteins produced by the immune system to neutralize exogenous (external) substances. Chromatography, chromatogram Chromatography is the common name of different techniques used to separate mix- tures of compounds. HPLC stands for high-performance liquid chromatography. A chromatogram is the pattern of separated substances obtained by chromatography. Colloidal sol A colloidal sol is a suspension of very small solid particles in a continuous liquid medium. Colloidal sols are quite stable and show the Tyndall effect (light scatter- ing by particles in a colloid). They can be quite stable. Examples include blood, pigmented ink, and paint. Colloidal sols can change their viscosity quickly if they © Springer International Publishing Switzerland 2014 311 L. Kovács et al., 100 Chemical Myths, DOI 10.1007/978-3-319-08419-0 312 Glossary of Terms are thixotropic. Examples include quicksand and paint, both of which become more fluid under pressure. Concentrations: parts per notations In British/American practice, the parts-per notation is a set of pseudo-units to de- scribe concentrations smaller than thousandths: 1 ppm (parts per million, 10−6 parts) One out of 1 million, e.g.
    [Show full text]
  • Analytical Methods in Wineries: Is It Time to Change?
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Lincoln Institutional Repository Publisher: TAYLOR & FRANCIS INC, 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA Subject Category: Food Science & Technology; Nutrition & Dietetics Website: http://www.informaworld.com/smpp/content~db=all?content=10.1081/FRI-200051897 ISSN: 8755-9129 Analytical Methods in Wineries: Is It Time to Change? M. D. LUQUE DE CASTRO,1 J. GONZÁLEZ-RODRÍGUEZ,2 AND P. PÉREZ-JUAN3 1Department of Analytical Chemistry, Campus of Rabanales, Córdoba, Spain 2Southampton Oceanography Centre, George Deacon Division, Waterfront Campus, European Way, Southampton, United Kingdom 3LIEC, Polígono Industrial, Manzaranes Ciudad Real, Spain A review of the methods for the most common parameters determined in wine—namely, ethanol, sulfur dioxide, reducing sugars, polyphenols, organic acids, total and volatile acidity, iron, soluble solids, pH, and color—reported in the last 10 years is presented here. The definition of the given parameter, official and usual methods in wineries appear at the beginning of each section, followed by the methods reported in the last decade divided into discontinuous and continuous methods, the latter also are grouped in nonchromatographic and chromatographic methods because of the typical characteristics of each subgroup. A critical comparison between continuous and discontinuous methods for the given parameter ends each section. Tables summarizing the features of the methods and a conclusions section may help users to select the most appropriate method and also to know the state-of-the-art of analytical methods in this area. Keywords Parameters, Official methods, Usual methods, Non chromatographic methods, Chromatographic methods Wine is a product with a very complex composition.
    [Show full text]
  • Steven Shapin. the Tastes of Wine
    n.s., 51 (3/2012), anno LII wineworld. new essays on wine, taste, philosophy and aesthetics advisory editor Nicola Perullo wineworld Nicola Perullo, Wineworld: Tasting, making, drinking, being 3 Steven Shapin, The tastes of wine: Towards a cultural history 49 Cain Todd, Expression and objectivity in the case of wine: Defending the aesthetic terroir of tastes and smells 95 Ole Martin Skilleås, Douglas Burnham, Patterns of attention: “Project” and the phenomenology of aesthetic perception 117 Kevin Sweeney, Structure in wine 137 Giampaolo Gravina, A matter of taste. The semi-serious musings of a wine taster on the contentious prospects of professional tasting 149 Gabriele Tomasi, On wines as works of art 155 Andrea Borghini, On being the same wine 175 varia Felice Cimatti, Quel dolore che non deve sapersi. Il linguaggio e il problema dell’esperienza estetica 193 recensioni Marcella Tarozzi Goldsmith, Il problema della percezione nella filosofia di Nietzsche, di Tiziana Andina 215 Emanuele Crescimanno, La scrittura delle immagini. Letteratura e cultura visuale, di Michele Cometa 221 Steven Shapin THE TASTES OF WINE: TOWARDS A CULTURAL HISTORY Abstract How have people talked about the organoleptic characteristics of wines? How and why have descriptive and evaluative vocabularies changed over time? The essay shows that these vocabularies have shifted from the spare to the elaborate, from medical im- plications to aesthetic analyses, from a leading concern with “goodness” (authenticity, soundness) to interest in the analytic description of component flavors and odors. The causes of these changes are various: one involves the importance, and eventual disap- pearance, of a traditional physiological framework for appreciating the powers and qualities of different sorts of aliment, including wines; another concerns the develop- ment of chemical sciences concerned with flavor components; and still another flows from changing social and economic circumstances in which wine was consumed and the functions served by languages of connoisseurship.
    [Show full text]
  • Simultaneous Analysis of Sugars and Organic Acids in Wine and Grape Juices T by HPLC: Method Validation and Characterization of Products from Northeast Brazil
    Journal of Food Composition and Analysis 66 (2018) 160–167 Contents lists available at ScienceDirect Journal of Food Composition and Analysis journal homepage: www.elsevier.com/locate/jfca Original research article Simultaneous analysis of sugars and organic acids in wine and grape juices T by HPLC: Method validation and characterization of products from northeast Brazil Emanuela Monteiro Coelhoa, Carla Valéria da Silva Padilhaa, Gabriela Aquino Miskinisa, Antônio Gomes Barroso de Sáa, Giuliano Elias Pereirab, Luciana Cavalcanti de Azevêdoa, ⁎ Marcos dos Santos Limaa, a Instituto Federal do Sertão Pernambucano, Departamento de Tecnologia em Alimentos, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, CEP 56314-520, Petrolina, PE, Brazil b Empresa Brasileira de Pesquisa Agropecuária – Embrapa Semiárido/Uva e Vinho, Rodovia BR 428, Km 152, CP 23, CEP 56302-970 Petrolina, PE, Brazil ARTICLE INFO ABSTRACT Keywords: Organic acids and sugars are related to the chemical balance of wines and grape juices, besides exerting a strong Food analysis influence on the taste balance and sensorial acceptance by consumers. The aim of this study was to validate a Food composition method for the simultaneous determination of sugars and organic acids in wines and grape juices by high- Vitis labrusca L performance liquid chromatography (HPLC) with refractive index detection (RID) and diode array detection Beverage analysis (DAD) and to characterize commercial products from northeast Brazil. The method provided values for linearity Wine − (R > 0.9982), precision (CV% < 1.4), recovery (76–106%) and limits of detection (0.003–0.044 g L 1) and Grape juice fi – −1 Sparkling wine quanti cation (0.008 0.199 g L ) which are considered acceptable for application in the characterization of Sugars these types of matrices.
    [Show full text]
  • Analytical Methods and Procedures in the Small Winery Laboratory
    Appendix A Analytical Methods and Procedures in the Small Winery Laboratory 1. Acetaldehyde Determination 2. Agar Slant Preparation 3. Alcohol Determination by Distillation 4. Alcohol Determination by Salleron-DuJardin Ebulliometer 5. Balling Determination 6. Brix Determination by Hydrometer '7. Brix Determination by Refractometer 8. Carbon Dioxide Determination by Piercing Device 9. Copper and Iron Determination by Spectrophotometry 10. Differential Stain Procedure 11. Extract Determination by Hydrometer 12. Extract Determination by Nomograph-Dessert Wines 13. Extract Determination by Nomograph-Table Wines 14. Gram Stain Procedure 15. Light Transmission (Color Intensity) by Spectrophotometry 16. Malo-Lactic Fermentation Determination by Paper Chromatography 17. Microscopy 18. Organoleptic Analysis 19. Oxygen Determination 20. pH Determination 21. Plating Procedure 22. Sulfur Dioxide-Free 23. Sulfur Dioxide-Total 24. Total Acidity Determination by Titration 25. Total Acidity Determination by Titration-pH Meter 26. Viable Microorganisms in Bottled Wines-Millipore Method 27. Viable Yeasts in Bottled Wines-Rapid Method of Detection 28. Volatile Acidity Determination by Cash Volatile Acid Apparatus Courtesy of Champagne News and Information Bureau 311 312 COMMERCIAL WINEMAKING 1. ACETALDEHYDE DETERMINATION When analyzing wines for total acetaldehyde content, a small percentage (3-4% in wines containing 20% ethanol and less than 1% in table wine containing 12% ethanol) is bound as acetal. This is not recovered in the usual procedures. The procedure given below is that of Jaulmes and Ham­ elle as tested by Guymon and Wright and is an official method of the AOAC. Modifications to consider the acetal concentration can be made. The air oxidative changes taking place during the alkaline titration step are pre­ vented by addition of a chelating agent (EDTA) to bind copper present.
    [Show full text]