Las Flores Acústicas De Plantas Polinizadas Por Murciélagos

Total Page:16

File Type:pdf, Size:1020Kb

Las Flores Acústicas De Plantas Polinizadas Por Murciélagos Desde el Herbario CICY 8: 151–155 (06/Octubre/2016) Centro de Investigación Científica de Yucatán, A.C. http://www.cicy.mx/sitios/desde_herbario/ ISSN: 2395-8790 Las flores acústicas de plantas polinizadas por murciélagos KAERI YUKEI JIMÉNEZ DOMÍNGUEZ Herbario CICY, Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C. (CICY). Calle 43, No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México. [email protected] Las flores de muchas especies de plantas son visitadas y polinizadas por murciélagos que se alimentan de néctar. Para encontrar nuevas flores, los murciélagos se guían por su sofisticado sistema de ecolocación y su sentido del olfato. Existen excepcionales casos de plantas que han evolucionado flores con pétalos u hojas modificadas, las cuales reflejan intensamente los ultrasonidos emitidos por los murciélagos para facilitar su detección. Palabras clave: Acústica, ecolocalización, ecología, murciélagos, polinización. Las plantas presentan distintivas fragan- permite usar las firmas acústicas para la cias y llamativos colores florales, que fun- navegación y reconocer fuentes de ali- cionan como atrayentes a sus polinizado- mento de otros objetos (Yovel et al., res, como las abejas, aves y mariposas 2011). (Spaethe et al., 2001). Es menos conocido Se han registrado, en diferentes espe- el hecho de que las plantas también pre- cies de plantas, estructuras florales y ve- sentan estructuras especializadas que getativas reflectoras de ultrasonido. Estas atraen a otro importante grupo de polini- sofisticadas señales acústicas han evolu- zadores, que para orientarse y forrajear en cionado para diferentes propósitos, dos de busca de flores, utilizan principalmente la los cuales se expondrán a continuación: ecolocación: los murciélagos. Los murciélagos utilizan la ecoloca- Marcgravia evenia Krug & Urb. ción, produciendo con su lengua de mane- (Marcgraviaceae) ra rítmica, chasquidos agudos (ultrasoni- La planta trepadora que crece en las dos) durante su vuelo (Yovel et al., 2011). selvas de Cuba, Marcgravia evenia es una Cuando el sonido incide en un objeto só- especie rara, con una distribución irregu- lido, se forma un eco, el cual es reflejado lar debido a su baja abundancia, por lo o dispersado en diferentes direcciones de- que atraer a los murciélagos polinizadores pendiendo del tamaño y la geometría del desde largas distancias es crucial para su objeto (fenómeno conocido como refle- reproducción. Las especies de la familia xión). El eco que retorna del objeto, trans- Marcgraviaceae presentan polinización mite información al murciélago referente zoógama (por colibríes, murciélagos y a las características físicas (tamaño, mamíferos trepadores), la mayoría de las forma, textura, ángulo, profundidad, dis- especies despliegan adaptaciones a la qui- tancia, etc.), que le confieren una distin- ropterofília (polinización por murciéla- tiva y única “firma acústica”. La clasifica- gos) o pueden reproducirse por autogamia ción de los ecos es esencial para la vida (la flor se autopoliniza con su propio po- diaria de los murciélagos, por ejemplo, les len) (Dressler, 2000). En esta especie a Editor responsable: Ivón M. Ramírez Morillo 151 Desde el Herbario CICY 8: 151–155 (06/Octubre/2016) Centro de Investigación Científica de Yucatán, A.C. http://www.cicy.mx/sitios/desde_herbario/ ISSN: 2395-8790 Figura 1A. Inflorescencia de Marcgravia evenia. a) Hoja ecoacústica. b) Racimo umbeliforme de flores. c) Nectarios en forma de copa. B. Murciélago alimentándose de los nectarios y polinizando las flores de M. evenia. (Fotografías: A. Ralph Simon. B. Merlin D. Tuttle). diferencia de otras, las inflorescencias no “ideal” que devuelve los ecos de manera cuelgan en largos pedúnculos y necesitan potente, múltiples veces y con signos sobresalir de algún modo de la densa ve- acústicos fácilmente reconocibles e inva- getación que las rodea. Esto es logrado riables, y así los murciélagos ecoloca- por la hoja altamente ecoreflectiva aso- lizadores detectan las flores. ciada a las flores, que ayuda a los murcié- Posteriormente, registraron el tiempo lagos a encontrar eficientemente las flores que los murciélagos tardan en buscar una (Figura 1A) (Dressler, 2000; Schöner et al., 2015). Esta hoja especializada difiere fuente de alimento escondida dentro de un de las otras hojas del follaje en la forma y follaje artificial, presentándola sola, con en particular, en la profundidad (Simon et una hoja del follaje o con la hoja en forma al., 2011). cóncava, resultando una búsqueda por la Ralph Simon y colaboradores (2011) mitad del tiempo cuando los alimentado- analizaron las propiedades de reflexión res estaban acompañados de la hoja acús- acústica mediante la simulación de un so- tica especializada de M. evenia, que nar en forma de una cabeza de murcié- cuando estaba sin ella. lago, tanto de la hoja cóncava como de la Esta hoja acústica tiene beneficios para hoja del follaje, con fines comparativos. plantas y murciélagos. Por un lado, au- Para este experimento se fabricó una ca- menta la eficacia de la búsqueda de ali- beza de murciélago robótica, en la cual se montó un pequeño altavoz ultrasónico y mento de los murciélagos que se alimen- dos receptores. A través de la nariz, dis- tan de néctar, y visitan numerosas flores paró una serie de ultrasonidos en di- cada noche para satisfacer sus necesida- rección a cada una de las hojas y se graba- des energéticas. Por otro lado, los murcié- ron los ecos resultantes en las orejas elec- lagos al ser polinizadores con gran movi- trónicas del robot. lidad, pueden transportar polen a especí- A raíz del experimento, se demostró menes que están muy apartados, lo cual que una hoja normal, plana, solo refleja el resulta muy beneficioso para M. evenia. sonido una vez, cuando éste rebota sobre (Figura 1B) (Fleming et al., 2009; Simon ella, pero la que tiene forma cóncava ac- et al., 2011), promoviendo el flujo túa como un faro de propagación de ecos genético. Editor responsable: Ivón M. Ramírez Morillo 152 Desde el Herbario CICY 8: 151–155 (06/Octubre/2016) Centro de Investigación Científica de Yucatán, A.C. http://www.cicy.mx/sitios/desde_herbario/ ISSN: 2395-8790 Figura 2A. Pedúnculos largos de Mucuna holtonii, con inflorescencias al extremo. B. Murciélago inspeccionando a una flor madura de M. holtonii, con el pétalo ecoreflectivo en posición vertical. C. Murciélago presionando su hocico entre los pétalos laterales para acceder al néctar. D. El peso corporal del murciélago desata un mecanismo explosivo de abertura y liberación de los órganos reproductores de la flor, lanzando el polen sobre su cuerpo. (Fotografías: A-D. Merlin D. Tuttle). Mucuna holtonii (Kuntze) Moldenke abertura emana un ligero olor a ajo, una (Fabaceae) señal a larga distancia que atrae a los mur- Otra planta trepadora que presenta una ciélagos (Figura 2B). adaptación ecoacústica para los murciéla- Sin embargo, las flores son difíciles de gos es Mucuna holtonii. A diferencia de explotar pues el néctar está escondido y Marcgravia evenia, las inflorescencias de solo se puede acceder a él cuando los M. holtonii son más fáciles de detectar en murciélagos aterrizan en las flores y pre- la vegetación, ya que penden de largos pe- sionan sus hocicos entre los dos pétalos dúnculos quedando expuestas y accesibles laterales (Figura 2C). La presión ejercida para los murciélagos (Figura 2A) (von por el peso corporal sobre los pétalos late- Helversen y von Helversen, 1999). Antes rales y la quilla (se denomina así a los dos del evento de polinización, el pétalo pétalos inferiores soldados), activa el me- superior especializado que cierra la flor canismo de liberación de polen sobre el (denominado estandarte), se abre poco a cuerpo del murciélago (Figura 2D) (von poco en posición vertical y queda erguido Helversen y von Helversen, 2003). a modo de faro. Debajo, los dos pétalos Para coordinar este complejo compor- laterales se abren como unas alas, dejando tamiento, los murciélagos confían en las accesible el interior de la flor. De esta propiedades de guía del pétalo ecoreflec- Editor responsable: Ivón M. Ramírez Morillo 153 Desde el Herbario CICY 8: 151–155 (06/Octubre/2016) Centro de Investigación Científica de Yucatán, A.C. http://www.cicy.mx/sitios/desde_herbario/ ISSN: 2395-8790 tor de la flor, el cual recibe los ultrasoni- murciélago, es una adaptación totalmente dos del murciélago y rebota una señal lo- diferente que permite a la planta cooperar cal. La disposición del pétalo modificado con el murciélago usando señales de M. holtonii depende de si la flor ha acústicas. sido visitada para alimentarse o no; los murciélagos buscan preferentemente flo- Referencias res que no han sido explotadas, ricas en néctar, mientras viajan entre las flores. Dressler S. 2000. A new species of Después de que una flor ha sido visitada, Marcgravia (Marcgraviaceae) from los pétalos toman una diferente disposi- Amazonia with some notes on the ción, alterando la señal acústica que el Galeatae Group including a key. Will- murciélago recibe y así, dejándole saber denowia 30(2): 369-374. que el néctar de esa flor ha sido Fleming T.H., Geiselman C. y Kress consumido. W.J. 2009. The evolution of bat polli- Los hermanos von Helversen (1999) nation: a phylogenetic perspective. comprobaron que al remover tal pétalo o Annals of Botany 104: 1017-1043. modificar su eco, provocaba que la res- von Helversen D. y von Helversen O. pectiva flor fuera menos visitada que las 1999. Acoustic guide in bat-pollinated flores sin modificación en la misma inflo- flower. Nature 398:759–760. rescencia, lo cual demostró que los es- von Helversen D. y von Helversen O. pecializados pétalos de M. holtonii son 2003. Object recognition by echoloca- guías acústicas de para que los murciéla- tion: a nectar-feeding bat exploiting the gos consigan el néctar. Sin embargo, esta flowers of a rain forest vine. Journal estructura no tiene el alcance de las hojas Comparative Physiology A 189: 327- reflectantes de M.
Recommended publications
  • Rainforest Plant Developed 'Sonar Dish' to Attract Pollinating Bats
    Rainforest plant developed 'sonar dish' to attract pollinating bats How plants sound as well as how they look helps them to attract pollinators, a new study has found. Researchers discovered that a rainforest vine, pollinated by bats, has evolved dish-shaped leaves with such conspicuous echoes that nectar-feeding bats can find its flowers twice as fast by echolocation. Flowering inflorescence of Marcgravia evenia. (A) dish-shaped leaf, (B) ring of flowers most of them in the male phase with anthers shedding pollen, (C) cup-like nectaries. How plants sound as well as how they look helps them to attract pollinators, a new study by scientists at the University of Bristol, UK, and the Universities of Erlangen and Ulm, Germany has found. The researchers discovered that a rainforest vine, pollinated by bats, has evolved dish-shaped leaves with such conspicuous echoes that nectar-feeding bats can find its flowers twice as fast by echolocation. The study is published in Science. While it is well known that the bright colours of flowers serve to attract visually-guided pollinators such as bees and birds, little research has been done to see whether plants which rely on echolocating bats for pollination and seed dispersal have evolved analogous echo-acoustic signals. The Cuban rainforest vine Marcgravia evenia has developed a distinctively shaped concave leaf next to its flowers which, the researchers noticed, is reminiscent of a dish reflector. By analyzing the leaf's acoustic reflection properties, they found that it acts as an ideal echo beacon, sending back strong, multidirectional echoes with an easily recognizable, and unvarying acoustic signature -- perfect for making the flower obvious to echolocating bats.
    [Show full text]
  • Sensory and Cognitive Constraints and Opportunities in Bats
    Sensory and Cognitive Constraints and Opportunities in Bats by Jeneni Thiagavel A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Jeneni Thiagavel, 2019 i Sensory and Cognitive Constraints and Opportunities in Bats Doctor of Philosophy, 2019 Jeneni Thiagavel, Department of Ecology and Evolutionary Biology, University of Toronto Here I report on three comparative studies and one review chapter addressing the relationships between sensory reliance, neuroanatomy, skull morphology and body size, as they relate to diet and foraging in bats. In chapter two, I use morphological and echolocation data to test whether (i) mass-signal frequency allometry or (ii) emitter-limited (maximum gape) signal directionality better explain the negative relationship between size and peak frequency in bats. The results suggest that body mass and forearm length were important predictors of open space echolocation call peak frequency in ways that (i) reflect species- specific size differences, and (ii) suggest the influence of preferred foraging habitat. In chapter three, I test the predictions that the ancestral bat had (i) an auditory brain design capable of supporting early laryngeal echolocation, but (ii) eyes of insufficient absolute size to allow insect tracking at night. The results suggest that bats’ common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation. Further, we find that those with less sophisticated biosonar have relatively larger eyes than do sophisticated echolocators. ii In chapter four, I continue to explore apparent trade-offs between echolocation call design and vision in predatory bats.
    [Show full text]
  • Revista Nicaraguense De Biodiversidad
    ISSN 2413-337X REVISTA NICARAGUENSE DE BIODIVERSIDAD N° 18. ______________________________ Agosto 2017 Nouvelles Idées et Nouvelles Recherches. Nouveaux livres. Pierre Jolivet PUBLICACIÓN DEL MUSEO ENTOMOLÓGICO ASOCIACIÓN NICARAGÜENSE DE ENTOMOLOGÍA LEÓN - - - NICARAGUA REVISTA NICARAGUENSE DE BIODIVERSIDAD. No.18. 2017. La Revista Nicaragüense de Biodiversidad (ISSN 2413-337X) es una publicación que pretende apoyar a la divulgación de los trabajos realizados en Nicaragua en este tema. Todos los artículos que en ella se publican son sometidos a un sistema de doble arbitraje por especialistas en el tema. The Revista Nicaragüense de Biodiversidad (ISSN 2413-337X) is a journal created to help a better divulgation of the research in this field in Nicaragua. Two independent specialists referee all published papers. Consejo Editorial Jean Michel Maes Editor Museo Entomológico Nicaragua Milton Salazar Eric P. van den Berghe Herpetonica, Nicaragua ZAMORANO, Honduras Editor para Herpetología. Editor para Peces. Liliana Chavarria Arnulfo Medina ALAS, El Jaguar Nicaragua Editor para Aves. Editor para Mamíferos. Oliver Komar Estela Yamileth Aguilar ZAMORANO, Honduras Alvarez Editor para Ecología. ZAMORANO, Honduras Editor para Biotecnología. Indiana Coronado Missouri Botanical Garden/ Herbario HULE-UNAN León Editor para Botánica. _______________ Portada: Entimus imperialis (Forster) Brasil. (Curculionidae). (Foto: Ettore Balocchi). 2 REVISTA NICARAGUENSE DE BIODIVERSIDAD. No.18. 2017. Nouvelles Idées et Nouvelles Recherches. Pierre Jolivet* Resumen. Nada realmente nuevo en la web. Algunos detalles sobre las manipulaciones de sus huéspedes por parte de parásitos, el descubrimiento de una cucaracha saltarina en Sudáfrica, la influencia de los trips sobre la fecundación de las plantas del pasado, más detalles sobre los Heliconius, estas esplendidas mariposas americanas, nuevas discusiones sobre la coevolución, aun no borradas de los tratados evolucionistas.
    [Show full text]
  • Plant Attractants: Integrating Insights from Pollination and Seed Dispersal Ecology
    Evol Ecol DOI 10.1007/s10682-016-9870-3 Plant attractants: integrating insights from pollination and seed dispersal ecology 1 2 2 Kim Valenta • Omer Nevo • Carlos Martel • Colin A. Chapman1,3,4 Received: 29 February 2016 / Accepted: 22 October 2016 Ó Springer International Publishing Switzerland 2016 Abstract Reproduction in many angiosperms depends on attracting animals that provide pollination and seed dispersal services. Flowers and fleshy fruits present various features that can attract animal mutualists through visual, olfactory, acoustic, and tactile cues and signals, and some of these traits may result from selection exerted by pollinators and seed dispersers. Plant attractants can provide information regarding the presence, location, and quality of the reward. However, because of the different functional outcomes of pollination and seed dispersal, pollination systems are thought to be more highly specialized than seed dispersal systems. Despite these interesting parallels and contrasts, theoretical and empirical insights in the sensory ecology of pollination and seed dispersal are rarely considered together. Here, we review extant theory and data of sensory attractants from both pollination and seed dispersal systems. We discuss theoretical and empirical simi- larities and differences between pollination and seed dispersal and offer suggestions for ways in which insights from each field may benefit the other in future. Keywords Animal–plant interactions Á Communication Á Coevolution Á Foraging ecology Á Mutualism Á Sensory ecology & Kim Valenta [email protected] 1 Department of Anthropology, McGill University, Montreal, QC, Canada 2 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Helmholtzstr. 10-1, 89081 Ulm, Germany 3 McGill School of Environment, McGill University, Montreal, QC, Canada 4 Wildlife Conservation Society, Bronx, NY, USA 123 Evol Ecol Introduction For many plant species, particularly angiosperms, reproduction requires animals as polli- nators, seed dispersers, or both (Schaefer et al.
    [Show full text]
  • Holy Talking Plant! Flower Communicates with Bats
    Holy Talking Plant! Flower Communicates with Bats This photo montage shows the Cuban nectar feeding bat Monophyllus beside the vine that scientists discovers attracts bats by producing an "echo beacon" with a special leaf. That sonar-reflecting leaf stands upright above the ring of flowers. The cup-like structures that hold the nectar hang below. Just as some flowers use bright colors to attract insect pollinators, other plants may use sound to lure in nectar-eating bats. One rain-forest vine has a dish-shaped leaf located above a cluster of flowers that appears to help bats find them (and the plant's tasty nectar) by reflecting back the calls the flying mammals send out, new research indicates. While there is other evidence that plants use bats' sonar systems to attract them, this is the first time scientists have shown that a plant can produce an "echo beacon" that cuts through sonic clutter of reflected echoes, and that this signal can cut a bat's search time for food in half, according to the researchers, led by Ralph Simon, a research fellow at the University of Ulm in Germany. The vine, Marcgravia evenia, climbs trees in the rain forests of southeastern Cuba. Its flowers are suspended in a ring, above cuplike structures that hold sugary nectar intended to lure batty pollinators, whose necks and shoulders are powdered with pollen as they drink the nectar. The bats then carry the pollen between vines, fertilizing other flowers with it and helping the vine reproduce. Like a satellite dish, the reflector leaf is concave, and stands in an upright position above the ring of flowers.
    [Show full text]
  • Bioinspired Sonar Reflectors As Guiding Beacons for Autonomous Navigation
    Bioinspired sonar reflectors as guiding beacons for autonomous navigation Ralph Simona,1, Stefan Rupitschb, Markus Baumannb, Huan Wub, Herbert Peremansc, and Jan Steckeld,e aDepartment of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; bChair of Sensor Technology, Friedrich-Alexander University Erlangen-Nuremberg, 91052 Erlangen, Germany; cDepartment of Engineering Management, Faculty of Business and Economics, University of Antwerp, 2000 Antwerp, Belgium; dCoSys-Lab, Faculty of Applied Engineering, University of Antwerp, B-2020 Antwerpen; and eFlanders Make VZW, Non-Profit Strategic Research Institute, 3920 Lommel, Belgium Edited by John A. Rogers, Northwestern University, Evanston, IL, and approved December 6, 2019 (received for review June 8, 2019) Sonar sensors are universally applied in autonomous vehicles such difference between the acoustic impedances of air and solid ma- as robots and driverless cars as they are inexpensive, energy- terial precludes the use of such reflector designs as all sound waves efficient, and provide accurate range measurements; however, they would be reflected by the first layer. However, it turns out nature have some limitations. Their measurements can lead to ambiguous found a simple yet efficient solution to the problem of airborne estimates and echo clutter can hamper target detection. In nature, sonar landmarks. In tropical South and Central America, some echolocating bats experience similar problems when searching for 400 plant species chose a quite rare pollination system: They open food, especially if their food source is close to vegetation, as is the and produce nectar at night and lure glossophagine bats for pol- case for gleaning bats and nectar-feeding bats. However, nature has lination services.
    [Show full text]
  • A New Species of Marcgravia (Marcgraviaceae) from Amazonia with Some Notes on the Galeatae Group Including a Key
    Willdenowia 30 – 2000 369 STEFAN DRESSLER A new species of Marcgravia (Marcgraviaceae) from Amazonia with some notes on the Galeatae group including a key Abstract Dressler, S.: A new species of Marcgravia (Marcgraviaceae) from Amazonia with some notes on the Galeatae group including a key. – Willdenowia 30: 369-374. 2000. – ISSN 0511-9618. Marcgravia zonopunctata is described as a species new to science and illustrated. The species is remarkable for its hypophyllous glands arranged in bands on the lower leaf surface (not known before from Marcgravia), for its peculiar shape of the nectary bracts and for its inflorescences appearing on short-shoots (as far known). This is the first species of an unranked, obviously natural group within Marcgravia (Galeatae group) known to range in Amazonia and at low altitudes. Some features of this Galeatae group are discussed here (e.g. pollination, distribution, leaf anatomy) and a key to its species is given. During revisionary work on the genus Marcgravia a new species from the vicinity of Rio Vaupés in Amazonian Brazil and Colombia was detected. All gatherings known to me were collected in the late 1940s. This new species clearly belongs to a group which has its centre of diversity on the Greater Antilles and was named Marcgravia [unranked] Galeatae Wittm. (according to ICBN Art. 35.3 (Greuter & al. 2000) the delimitation proposed by Wittmack (1878) consists of valid but, since he gave no indication of the ranks involved, inoperative supraspecific names). This group is characterised by having a relatively long rachis thus still exposing the racemose nature of its inflo- rescences as opposed to the nearly umbelliformly contracted inflorescences in the remainder of the genus.
    [Show full text]
  • CALL of the BLOOM 133 For111 Feeds Ft111ctio11
    Bloom Some tropical }lowers rejlect sound so 11ectar-seeki11g {)(lts ca11 }ind them more easily. This flower's sh ape and exposed position cate r to a bat's ears. PLANT CHES CUJETE BAT GLOsso�fi::tA COMMISSAR/!)/ WfRAUfl/A GLADIOLIFLORA RANGE ALL MAP DATA TROPICOS Merlin Tuttle filleted this flower to document the bat's tongue siphoning nectar as the flower's anthers stamp its forehead with pollen. He photographed wild bats in temporary cages. rLANT WfRAUHIJl.GIADIOLIFLORA [lAT LONCl-fOPlffUA /;:/OBUS1A \ . .·' .. •," .. �. By Susan McGrath Photographs by Merlin D. Tuttle Nature's inventiveness knows no bounds. Consider the case of the nectar-drinking bat and Theincoming informationis processed fastand the night-flowering vine whose lives intertwine in continually, allowing bats to adjust their course the lowland tropical forests of Central America. in mid-flight as they streak through the air after Glossophaga commissarisi, a tiny, winged a mosquito or race among flowering trees. mammal with a body no bigger than your Most bats feed on insects, and they oftenuse thumb, flits among the flowers of Mucuna holto­ powerful, long-range calls, pumped out with nii, lapping nectar, much as hummingbirds and every upstroke of their wings. Nectar bats send bumblebees do. In exchange it pollinates the gentle but very sophisticated calls, which scien­ plant. In daylight flowers can flaunt their wares tists referto as frequencymodulated. Thesecalls with bright colors such as scarlet and fuchsia, trade distance fordetail. Most effectivewithin but at night, when even the brightest hues pale 12 feet, they reflectback pictures that convey to a moonlit silver, Mucuna flowers resort to precise information abouta target's size, shape, sound to catch the ear of nectar bats.
    [Show full text]
  • Bat Evolution, Ecology, and Conservation Bat Evolution, Ecology, and Conservation
    Rick A. Adams · Scott C. Pedersen Editors Bat Evolution, Ecology, and Conservation Bat Evolution, Ecology, and Conservation Rick A. Adams • Scott C. Pedersen Editors Bat Evolution, Ecology, and Conservation Editors Rick A. Adams Scott C. Pedersen School of Biological Sciences Department of Biology and Microbiology University of Northern Colorado South Dakota State University Greeley , CO , USA Brookings , SD , USA ISBN 978-1-4614-7396-1 ISBN 978-1-4614-7397-8 (eBook) DOI 10.1007/978-1-4614-7397-8 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013943698 © Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
    [Show full text]
  • Plant Lures Bats with Echoing Leaf
    Plant lures bats with echoing leaf Scientists discover a Cuban rainforest vine with leaves shaped to attract nectar-feeding bats Flowers use bright colours and striking patterns to attract pollinators that are guided by sight, such as bees and hummingbirds. So it makes sense that plant species pollinated by bats, which are guided by sound, should entice them in a similar way. Now scientists from the UK and Germany have proved the point for the first time. They have discovered a Cuban rainforest vine – Marcgravia evenia – that grows a dish-shaped leaf just above each flower, to send back conspicuous echoes to nectar-feeding bats. As a result, the bats find its flowers twice as fast by echolocation as they would otherwise. By analysing the leaf’s acoustic reflection properties, the researchers found that it acts as an ideal beacon, sending back strong, multidirectional echoes with an easily recognisable acoustic signature – perfect for making the flower obvious to echolocating bats. The scientists then trained nectar-feedingGlossophaga soricina bats to search for a single small feeder hidden within an artificial foliage background, varying the feeder’s position and measuring the time the bats took to find it. The feeder was presented on its own, or with a replica of either an ordinary foliage leaf or the distinctive dish-shaped leaf. Search times were longest for all bats when the feeder was presented on its own, and were very slightly shorter when a foliage leaf was added. However, a dish-shaped leaf placed above the feeder always reduced the bats’ search times – by around 50 per cent.
    [Show full text]
  • Copyrighted Material
    Index α-amy gene family, 119 acid rain, 228–32 allergens, 201, 206 α-ketoglutarate, 175 acidosis, 223 Allium cepa see onion ABA see abscisic acid actinomorphic flowers, 194, 302 allantoic acid, 54 ABA-binding/receptor proteins, 80–81 action potential, 161–2 allantoin, 54 ABC model, 195 action spectrum (pl. spectra), 87, 90–91, 170, allelopathy, 260, 302 ABCE model, 195–6, 214 192, 302 Alopecurus myosuroides see black grass ABI genes/ABI proteins, 106, 115 actin, 15, 35 alpine environment, 218, 237 Abies lasiocarpa see subalpine fir actin filament/microfilament, 15, 34–6, 212 alternation of generations, 5, 11–13, 94 abscisic acid, 26, 75, 79–81, 139, 163, 204 active transport (across membranes), 134–6, alternative intron splice sites, 70 antagonizes cytokinins, 79 139 alternative oxidase, 47 antagonizes GA, 79, 106, 115–16, 119 acyl carrier protein/ACP, 48–9 alternative poly-adenylation sites, 70 in control of cell division, 41 acyl transferase, 49 alternative transcription start sites, 70 inhibition of flowering, 80 adaptation, 124, 128–9, 162, 181–2, 187, 214, alternative translation start sites, 71 inhibition of germination, 116 235–59, 270–271 aluminium interaction with ethylene, 109 concept, 216, 235 hyperaccumulators, 255 involvement in abscission, 187 aequorin, 85 tolerance, 252–5 involvement in stomatal closure, 224 aeration, 130, 222 toxicity, 133, 230–232, 254 involvement in stress responses, 224–6, 238 aerenchyma, 130, 240–243, 302 Alzheimer’s disease, 255 modes of action/signalling pathways, 80, 225 Aesculus hippocastanum see horse
    [Show full text]
  • Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants
    Report Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants Graphical Abstract Authors Michael G. Scho¨ ner, Caroline R. Scho¨ ner, Ralph Simon, ..., Se´ bastien J. Puechmaille, Liaw Lin Ji, Gerald Kerth Correspondence [email protected] In Brief To maintain mutualisms, plants specifically appeal to their animal partners’ perception. Scho¨ ner et al. now show that Paleotropical carnivorous plants have reflective structures that are acoustically attractive for mutualistic bats. This phenomenon can similarly be found in a few Neotropical bat-pollinated flowers. Highlights d A carnivorous plant features an ultrasound reflector attractive for mutualistic bats d This reflector enables the bats to easily find and identify the plant’s pitchers d The bats fertilize these Paleotropical plants with feces in exchange for roosts d Such reflectors were convergently acquired in Neotropical bat-pollinated plants Scho¨ ner et al., 2015, Current Biology 25, 1–6 July 20, 2015 ª2015 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2015.05.054 Please cite this article in press as: Scho¨ ner et al., Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants, Current Biology (2015), http:// dx.doi.org/10.1016/j.cub.2015.05.054 Current Biology Report Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants Michael G. Scho¨ ner,1,4,* Caroline R. Scho¨ ner,1,4 Ralph Simon,2,4 T. Ulmar Grafe,3 Se´ bastien J. Puechmaille,1 Liaw Lin Ji,3 and Gerald Kerth1 1Zoological Institute and Museum, Ernst-Moritz-Arndt-Universita¨
    [Show full text]