Dcanesthesiamanualvo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spring 2009 Student Journal
Volume 8 Number 1 Spring 2009 The International Student Journal of Nurse Anesthesia TOPICS IN THIS ISSUE MS & ECT Cardioprotection of Volatile Agents Hyperthermic Chemotherapy Intubating LMA Pierre Robin Syndrome Alpha Thalassemia Latex Allergy & Spina Bifida Distorted Upper Airway Volunteerism – Honduras INTERNATIONAL STUDENT JOURNAL OF NURSE ANESTHESIA Vol. 8 No. 1 Spring 2009 Editor - in - Chief Ronald L. Van Nest, CRNA, JD Associate Editors Vicki C. Coopmans, CRNA, PhD Julie A. Pearson, CRNA, PhD EDITORIAL BOARD & SECTION EDITORS Pediatrics Janet A. Dewan, CRNA, MS Northeastern University Obstetrics Greg Nezat, CRNA, PhD Navy Nurse Corps Anesthesia Program Research & Capstone Joseph E. Pellegrini, CRNA, University of Maryland PhD Regional / Pain Christopher Oudekerk, CRNA, Uniformed Services Universi- DNP ty of the Health Sciences Cardiovascular Michele Gold, CRNA, PhD University of Southern Cali- fornia Thoracic/ Fluid Balance Lori Ann Winner, CRNA, MSN University of Pennsylvania Unique Patient Syndromes Kathleen R. Wren, CRNA, PhD Florida Hospital College of Health Sciences Equipment Carrie C. Bowman Dalley, Georgetown University CRNA, MS Pharmacology Maria Magro, CRNA, MS, University of Pennsylvania MSN Pathophysiology JoAnn Platko, CRNA, MSN University of Scranton Special Surgical Techniques Russell Lynn, CRNA, MSN University of Pennsylvania 1 Airway & Respiration Michael Rieker, CRNA, DNP Wake Forest University Baptist Medical Center ,Nurse Anesthesia Program, Univer- sity of North Carolina at Greensboro Neurology & Neurosurgery -
Authors Conducted an E-Mail Survey of Anesthesiologists in the US in 2010
Appendix 2: Reference 1 Methods: Authors conducted an e-mail survey of Anesthesiologists in the US in 2010. Results: “Five thousand anesthesiologists were solicited; 615 (12.3%) responses were received. Twenty-four percent of respondents had installed an AIMS, while 13% were either installing a system now or had selected one, and an additional 13% were actively searching. Larger anesthesiology groups with large case loads, urban settings, and government affiliated or academic institutions were more likely to have adopted AIMS. Initial cost was the most frequently cited AIMS barrier. The most commonly cited benefit was more accurate clinical documentation (79%), while unanticipated need for ongoing information technology support (49%) and difficult integration of AIMS with an existing EMR (61%) were the most commonly cited problems.” [Trentman TL, Mueller JT, Ruskin KJ, Noble BN, Doyle CA. Adoption of anesthesia information management systems by US anesthesiologists. J Clin Monit Comput 2011;25:129–35.] Reference 2 Joint Commission Report. 60 [Kohn L, Corrigan JM, Donaldson MS. To Err is Human: Building a Safer Health System. Report from the Committee on Quality of Health Care in America. Washington DC: The Joint Commission journal on quality improvement, 1999:227–34.] Reference 3 Excerpt: “The Department of Health and Human Services (DHHS) released two proposed regulations affecting HIT (www.healthit.hhs.gov). The first, a notice of proposed rule- making (NPRM), describes how hospitals, physicians, and other health care professionals can qualify for billions of dollars of extra Medicare and Medicaid payments through the meaningful use of electronic health records (EHRs). The second, an interim final regulation, describes the standards and certification criteria that those EHRs must meet for their users to collect the payments. -
Unesco – Eolss Sample Chapters
PHARMACOLOGY – Vol. II - Anesthetics - Amanda Baric and David Pescod. ANESTHETICS Amanda Baric and David Pescod. Department of Anesthesia and Perioperative medicine, The Northern Hospital, Melbourne, Australia. Keywords: Anesthesia, pharmacology, inhalational, neuromuscular blockade, induction agent, local anesthetic. Contents 1. Inhalation agents 1.1. Introduction 1.2. Pharmacokinetics and Pharmacodynamics 1.3. Specific Agents 1.3.1. Diethyl Ether (Ether) 1.3.2. Chloroform 1.3.3. Cyclopropane 1.3.4. Trichloroethylene 1.3.5. Halogenated Alkanes and Ethers 1.3.6. Nitrous Oxide. 1.3.7. Xenon 2. Neuromuscular blocking agents. 2.1. Introduction 2.2. Non-Depolarizing Muscle Relaxants 2.2.1. Tubocurarine (1935) 2.2.2. Metocurine (dimethyl tubocurarine chloride/bromide) 2.2.3. Alcuronium (1961) 2.2.4. Gallamine (1948) 2.2.5. Pancuronium (1968) 2.2.6. Vecuronium (1983) 2.2.7. Atracurium (1980s) 2.2.8. Cis-atracurium (1995) 2.2.9. Mivacurium (1993) 2.2.10. Rocuronium (1994) 2.2.11. SugammadexUNESCO (2003) – EOLSS 2.2.12. Rapacuronium 2.3. Reversal Drugs (Anticholinesterase) 2.4. DepolarizingSAMPLE Muscle Relaxants (Suxamethonium CHAPTERS or Succinylcholine) 3. Local anesthetics 3.1. Introduction 3.2. Pharmacokinetics and Pharmacodynamics 3.3. Toxicity 3.4. Specific Agents 3.4.1. Cocaine 3.4.2. Procaine 3.4.3 Chloroprocaine 3.4.4. Tetracaine (Amethocaine) ©Encyclopedia of Life Support Systems (EOLSS) PHARMACOLOGY – Vol. II - Anesthetics - Amanda Baric and David Pescod. 3.4.5. Lidocaine 3.4.6. Prilocaine 3.4.7. Mepivacaine 3.4.8. Bupivacaine 3.4.9. Ropivacaine 3.4.10. Eutectic Mixture of Local Anesthetics (EMLA) 4. Intravenous Induction Agents 4.1. -
Pharmacology – Inhalant Anesthetics
Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers. -
Northwest Arkansas Regional Ems Protocols
Regional Protocol PROTOCOL SECTION NORTHWEST ARKANSAS REGIONAL EMS PROTOCOLS 2019 REVISION 2019 a Regional Protocol PROTOCOL SECTION TABLE OF CONTENTS……………………………………………………………………………….b - e INTRODUCTORY STATEMENT………………......……………………………………………….........f PARTICIPATING AGENCIES………………………………………………………………………….…………..g 2019 DEPARTMENT MEDICAL DIRECTORS & SIGNATURE………………..…………………………........h SECTION ONE - PROTOCOLS GENERAL PROTOCOLS UNIVERSAL PATIENT CARE ................................................................................................................... 1 CHEMICAL EXPOSURE (HAZMAT) ......................................................................................................... 2 CHEMICAL SEDATION FOR VIOLENT PATIENT .................................................................................... 3 PAIN MANAGEMENT ............................................................................................................................... 4 SPINAL RESTRICTION ............................................................................................................................ 5 VASCULAR ACCESS ............................................................................................................................... 6 RESPIRATORY OXYGEN ADMINISTRATION……….…………………………………………………………..…………………..7 GENERAL AIRWAY MANAGEMENT………………….……………………………………..…………………….8 ADVANCED AIRWAY MANAGEMENT….……………………………………………………..…………………..9 PHARMACOLOGICAL ASSISTED INTUBATION (PAI)………………….……………………………………..10 ALLERGIC REACTION—ANAPHYLAXIS….……………………………………………………………………..11 -
A Comparison of Wilson Risk Sum Score and Combination of Modified Mallampati Classification, Hyomental Distance Ratio, Ratio Of
Jebmh.com Original Research Article A Comparison of Wilson Risk Sum Score and Combination of Modified Mallampati Classification, Hyomental Distance Ratio, Ratio of Height to Sternomental and Thyromental Distances for Predicting Difficult Laryngoscopy in Indian Population Deepak Kumar1, Saurabh Bhargava2, Ravindra Singh Sisodiya3, Deepak Tiwari4 1Department of Anaesthesia, National Institute of Medical Sciences and Research Centre, Jaipur, Rajasthan, India. 2, 4 Department of Emergency Medicine, National Institute of Medical Sciences and Research Centre, Jaipur, Rajasthan, India. 3Department of Anaesthesia, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India. ABSTRACT BACKGROUND A few patients of apparently normal appearance unexpectedly present with great Corresponding Author: difficulties during intubation which may lead to potentially serious consequences. Dr. Deepak Tiwari, Thus, we worked on this area with the aim to determine the ability to predict 109 Avar Faculty Block, Nims University, Shobha Nagar, difficult visualisation of larynx using the following preoperative airway predictors: Delhi-Jaipur Highway, MMC (Modified Mallampati Classification), RHSMD (Ratio of Height to Sternomental Jaipur - 302013, Distance), RHTMD (Ratio of Height to Thyromental) and HMDR (Hyomental Rajasthan, India. Distance Ratio) and comparison of these with WRSS (Wilson Risk Sum Score), in E-mail: [email protected] isolation and in combination. DOI: 10.18410/jebmh/2020/620 METHODS A double-blind, prospective study was carried out on 300, ASA grade I or II How to Cite This Article: patients posted for elective surgery in supine position under general anaesthesia. Kumar D, Bhargava S, Sisodiya RS, et al. A comparison of Wilson risk sum score Different parameters were recorded in pre-op period and Cormack-Lehane grading and combination of modified Mallampati and difficulty of intubation was recorded at the time of intubation. -
Zebrafish Behavioural Profiling Identifies GABA and Serotonin
ARTICLE https://doi.org/10.1038/s41467-019-11936-w OPEN Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation Matthew N. McCarroll1,11, Leo Gendelev1,11, Reid Kinser1, Jack Taylor 1, Giancarlo Bruni 2,3, Douglas Myers-Turnbull 1, Cole Helsell1, Amanda Carbajal4, Capria Rinaldi1, Hye Jin Kang5, Jung Ho Gong6, Jason K. Sello6, Susumu Tomita7, Randall T. Peterson2,10, Michael J. Keiser 1,8 & David Kokel1,9 1234567890():,; Anesthetics are generally associated with sedation, but some anesthetics can also increase brain and motor activity—a phenomenon known as paradoxical excitation. Previous studies have identified GABAA receptors as the primary targets of most anesthetic drugs, but how these compounds produce paradoxical excitation is poorly understood. To identify and understand such compounds, we applied a behavior-based drug profiling approach. Here, we show that a subset of central nervous system depressants cause paradoxical excitation in zebrafish. Using this behavior as a readout, we screened thousands of compounds and identified dozens of hits that caused paradoxical excitation. Many hit compounds modulated human GABAA receptors, while others appeared to modulate different neuronal targets, including the human serotonin-6 receptor. Ligands at these receptors generally decreased neuronal activity, but paradoxically increased activity in the caudal hindbrain. Together, these studies identify ligands, targets, and neurons affecting sedation and paradoxical excitation in vivo in zebrafish. 1 Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94143, USA. 2 Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA. -
Thyromental Distance Ratio in Predicting Difficult Intubation
THE EFFECTIVENESS OF EXTENDED MALLAMPATI TEST, HYOMENTAL DISTANCE RATIO AND NECK CIRCUMFERENCE – THYROMENTAL DISTANCE RATIO IN PREDICTING DIFFICULT INTUBATION BY EZIKE AMECHI CHUKWUDUM DEPARTMENT OF ANAESTHESIA UNIVERSITY OF CALABAR TEACHING HOSPITAL CALABAR, NIGERIA A DISSERTATION SUBMITTED TO NATIONAL POSTGRADUATE MEDICAL COLLEGE OF NIGERIA IN PARTIAL FULFILLMENT OF THE FINAL FELLOWSHIP OF THE MEDICAL COLLEGE IN ANAESTHESIA (FMCA) EXAMINATION REQUIREMENT MAY 2017 1 SUPERVISORS ATTESTATION We hereby affirm that we supervised this study carried out by Dr. Amechi Chukwudum Ezike titled EFFECTIVENESS OF EXTENDED MALLAMPATI SCORE, HYOMENTAL DISTANCE RATIO AND NECK CIRCUMFERENCE- THYROMENTAL DISTANCE RATIO IN PREDICTING DIFFICULT INTUBATION , in partial fulfillment for the requirement of the award of the Fellowship of the National Postgraduate Medical College of Nigeria. First Supervisor……………………………………………… Date…………………………….. Prof. Atim I. Eshiet (MBBCh, DA, FMCA, FICS, FWACS) Consultant Anaesthetist, University of Calabar Teaching Hospital, Calabar, Nigeria. Second Supervisor …………………………………… Date……………………………… DR. Iniabasi Udoh Ilori (MBBCh; DA; FWACS). Consultant Anaesthetist, University of Calabar Teaching Hospital, Calabar, Nigeria. 2 CERTIFICATION I affirm that this dissertation titled ‘Effectiveness Of Extended Mallampati Score, Hyomental Distance Ratio And Neck Circumference-Thyromental Distance Ratio In Predicting Difficult Intubation’ was carried out by Dr. Ezike Amechi Chukwudum and supervised by consultants in the Department of Anaesthesiology, University of Calabar Teaching Hospital. This is in partial fulfillment of the requirement for the award of the Fellowship of the National Postgraduate Medical College of Nigeria. …………………………………………… Date………………………. DR. OBOKO OKU (MBBCh; DA; FWACS). The Head, Department of Anaesthesiology, University of Calabar Teaching Hospital (UCTH), Calabar, Nigeria. 3 DECLARATION I hereby declare that this work is original unless otherwise stated. -
Pharmacokinetics and Pharmacology of Drugs Used in Children
Drug and Fluid Th erapy SECTION II Pharmacokinetics and Pharmacology of Drugs Used CHAPTER 6 in Children Charles J. Coté, Jerrold Lerman, Robert M. Ward, Ralph A. Lugo, and Nishan Goudsouzian Drug Distribution Propofol Protein Binding Ketamine Body Composition Etomidate Metabolism and Excretion Muscle Relaxants Hepatic Blood Flow Succinylcholine Renal Excretion Intermediate-Acting Nondepolarizing Relaxants Pharmacokinetic Principles and Calculations Atracurium First-Order Kinetics Cisatracurium Half-Life Vecuronium First-Order Single-Compartment Kinetics Rocuronium First-Order Multiple-Compartment Kinetics Clinical Implications When Using Short- and Zero-Order Kinetics Intermediate-Acting Relaxants Apparent Volume of Distribution Long-Acting Nondepolarizing Relaxants Repetitive Dosing and Drug Accumulation Pancuronium Steady State Antagonism of Muscle Relaxants Loading Dose General Principles Central Nervous System Effects Suggamadex The Drug Approval Process, the Package Insert, and Relaxants in Special Situations Drug Labeling Opioids Inhalation Anesthetic Agents Morphine Physicochemical Properties Meperidine Pharmacokinetics of Inhaled Anesthetics Hydromorphone Pharmacodynamics of Inhaled Anesthetics Oxycodone Clinical Effects Methadone Nitrous Oxide Fentanyl Environmental Impact Alfentanil Oxygen Sufentanil Intravenous Anesthetic Agents Remifentanil Barbiturates Butorphanol and Nalbuphine 89 A Practice of Anesthesia for Infants and Children Codeine Antiemetics Tramadol Metoclopramide Nonsteroidal Anti-infl ammatory Agents 5-Hydroxytryptamine -
Airway Assessment Authors: Dr Pierre Bradley Dr Gordon Chapman Dr Ben Crooke Dr Keith Greenland
Airway Assessment Authors: Dr Pierre Bradley Dr Gordon Chapman Dr Ben Crooke Dr Keith Greenland August 2016 Contents Part 1. Introduction 3 Part 2. The traditional approach to normal and difficult airway assessment 6 Part 3. The anatomical basis for airway assessment and management 36 Part 4. Airway device selection based on the two-curve theory and three-column assessment model 48 DISCLAIMER This document is provided as an educational resource by ANZCA and represents the views of the authors. Statements therein do not represent College policy unless supported by ANZCA professional documents. Professor David A Scott, President, ANZCA 2 Airway Assessment Part 1. Introduction This airway assessment resource has been produced for use by ANZCA Fellows and trainees to improve understanding and guide management of airway assessment and difficult airways. It is the first of an airway resource series and complements the Transition to CICO resource document (and ANZCA professional document PS61), which are available on the ANZCA website. There are four components to this resource: Part 1. Introduction. Part 2. The traditional approach to normal and difficult airway assessment. Part 3. The anatomical basis for airway assessment and management: i) The “two-curve” theory. ii) The “three-column” approach. Part 4. Airway device selection based on the two-curve theory and three-column assessment model. OVERVIEW The role of airway assessment is to identify potential problems with the maintenance of oxygenation and ventilation during airway management. It is the first step in formulating an appropriate airway plan, which should incorporate a staged approach to manage an unexpected difficult airway or the institution of emergency airway management. -
Short Thyromental Distance: a Predictor of Difficult Intubation Or An
Anesthesiology 2006; 104:1131–6 © 2006 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Short Thyromental Distance: A Predictor of Difficult Intubation or an Indicator for Small Blade Selection? Mukesh Tripathi, M.D., M.N.A.M.S.,* Mamta Pandey, M.D., P.G.D.H.H.M.† Background: Short thyromental distance (TMD; < 5 cm) has oropharyngeal structure,2 external anatomical airway been correlated with difficult direct laryngoscopic intubation in structures,3 and the size of the mandibular space.4 How- adult patients. The authors hypothesized that a smaller Macin- ever, some of these individual markers have been cri- tosh curved blade (No. 2 MCB) would improve the predicted 5 difficult laryngoscopy in short-TMD patients over that with a tiqued, and scoring systems including multiple variables 6,7 standard Macintosh curved blade (No. 3 MCB). have been proposed, with increased complexity of Methods: In a preliminary study of 11 consenting adults (7 assessment in clinical practice. Small thyromental dis- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/104/6/1131/361138/0000542-200606000-00006.pdf by guest on 28 September 2021 females and 4 males), American Society of Anesthesiologists tance (TMD) Յ 6 cm is a simple, clinically used param- < physical status I and TMD 5 cm, lateral neck radiographs were eter that has been shown to correlate with a difficult recorded during laryngoscopy with a No. 2 and No. 3 MCB in 8 sequential fashion. In a prospective clinical study, laryngo- laryngoscopy and tracheal intubation. However, some scopy and tracheal intubation were evaluated in 83 adult pa- have questioned whether a small TMD, in isolation, is a tients with TMD < 5cm by randomly assigning them to two reliable predictor of a difficult laryngoscopy.9–11 In fact, groups for the blade used at first intubation. -
Can Thyromental Distance Be Measured Accurately?
Journal of Clinical Monitoring and Computing https://doi.org/10.1007/s10877-017-0090-3 ORIGINAL RESEARCH Can thyromental distance be measured accurately? Bin Wang1 · Hui Peng2 · Weidong Yao1 · Ling Guo1 · Xiaoju Jin1 Received: 22 June 2017 / Accepted: 6 December 2017 © The Author(s) 2017. This article is an open access publication Abstract Using the thyromental distance (TMD) measured based on the ultrasonographic location of the thyroid cartilage prominence as the criterion, we investigated the accuracy of TMD measurement by surface landmark identification of the thyroid carti- lage prominence. Twenty-nine anesthetist resident volunteers were recruited, including 10 first-year residents, 9 second-year residents and 10 third-year residents. Each volunteer measured the other 28 volunteers’ TMD. Then, the thyroid cartilage prominence of each volunteer was identified by ultrasonography of the junction of the vocal cord and thyroid cartilage, and the TMD was measured precisely. The error of the TMD measurement was determined by the minimal detectable differ- ence (MDD) compared to the ultrasound measurement. A difference of greater than 5.4 mm between the TMD measured by volunteers and that based on ultrasound localization was defined as a measurement error. The measurement error rate of females’ TMD was significantly higher than that of males’ (50 vs 10%, P < 0.001). The error rates of anesthetist residents of first-year, second-year and third-year were 34, 27, and 31%, respectively, and were not significantly different. The error of TMD measurement by surface landmark identification is often, especially for women. More clinic experience don’t improve it. Keywords Airway management · Thyroid cartilage · Anatomic landmarks · Accuracy · Ultrasonography · Volunteers 1 Introduction in a normal adult [12–14], whereas others have considered cut-off points of 7.0 cm [7], 6.0 cm [15], 5.5 cm [16] and Managing a difficult airway remains a significant problem even 4 cm [10].