Procedural Sedation Procedural Sedation

Total Page:16

File Type:pdf, Size:1020Kb

Procedural Sedation Procedural Sedation Procedural Sedation Procedural Sedation Procedural Sedation • Lecture content: – Review: • Australian and New Zealand College of Anaesthetist (ANZCA) Guidelines on Sedation and/or Analgesia for Diagnostic and Interventional Medical, Dental or Surgical Procedures – Review: • Emergency Department – Paediatric Procedural Sedation Policy and Procedure – Discuss: a practical approach to procedural sedation – Discuss: case scenarios ANZCA Procedural Sedation Guidelines • Applied to diagnostic and interventional procedures • Not relevant to situations where sedation is used for longer term management of patients such as intensive care units or for acute psychiatrically disturbed patients ANZCA Procedural Sedation • Definition: Procedural sedation implies the patient is in a state of drug- induced tolerance of painful diagnostic or interventional procedures – Conscious sedation • Patient responds purposefully to verbal commands or light tactile stimulation. Unconsciousness unlikely. – Deeper sedation • Loss of consciousness with response to only painful stimuli. Similar risks to general anaesthesia. – Analgesia • Reduction of pain perception. Drugs may act locally or centrally (depression of pain in central nervous system). • (General anaesthesia) – Absence of purposeful response to any stimulus, loss of protective airways reflexes, depression of respiration and disturbance of circulatory reflexes ANZCA Procedural Sedation • Aim – Enhance patient comfort whilst facilitating completion of the planned procedure • Risks – Transition from complete consciousness through the various depths of sedation to general anaesthesia is a continuum – Margin for safety of the drugs used varies greatly between patients – Must be prepared to manage • Loss of airway protective reflexes and patency • Respiratory depression • Cardiovascular depression • Drug reactions (including anaphylaxis) • Possibility that a deeper sedation or anaesthesia may be required to complete the procedure ANZCA Procedural Sedation • Patient preparation – Consent (benefits and risks of the procedure and of the procedural sedation) • Patient assessment – History • Past history of General Anaesthesia (GA) • Family history of complications of GA • Teeth (loose teeth, caps, crowns, dentures) • Exercise tolerance • Fasting status – Examination • Vital signs: blood pressure, pulse rate, oxygen saturation, respiratory rate • Airway (Mallampati score, mouth opening, thyromental distance, neck mobility) • Cardiorespiratory (breath sounds and heart sounds) – Investigations • Dependent on the procedure and patient factors ANZCA Procedural Sedation • Staffing – Minimum 3 trained staff – (except when conscious sedation with low dose oral sedation or inhaled sedation such as Nitrous Oxide or Methoxyflurane • 1. Credentialed medical practitioner administering sedation • 2. The proceduralist • 3./4. Additional staff member to provide assistance to either the practitioner administering the sedation and/or the proceduralist – To have 4 persons present for procedural sedation (that is, an assistant to each medical practitioner) is recommended if assistance is likely to be required for the majority of the case (for example, an emergency case or a complex case) – (More information about staffing is in the course booklet) ANZCA Procedural Sedation • Facilities and Equipment – Adequate room to perform resuscitation – Adequate lighting – Suction – Oxygen – Self-inflating bag – Advanced airway equipment • Guedel, laryngeal mask, laryngoscope, endotracheal tube – Resuscitation drugs and fluids • Adrenaline, amioderone, normal saline, (atropine) – Pulse oximetry – Blood pressure monitor – Defibrillator – Emergency call procedure – Capnography ANZCA Procedural Sedation • Technique and Monitoring – Venous access • This may not be practical in some patients receiving non- intravenous sedation (eg. children, intellectually disabled patients) – Start low and go slow with drug dosing – Continuous oximetry – Regular blood pressure and pulse rate – Consider need for capnography depending on the depth of sedation or patient factors ANZCA Procedural Sedation • Oxygenation – Pre-oxygenate all patients where possible – Continuous oxygen supply throughout the procedure – If hypoxaemia is detected (patient appearance or pulse oximetry), staff should devote their whole attention to correcting the situation, which may include ceasing the procedure ANZCA Procedural Sedation • Medications – Routes of administration: • Oral, intra-nasal, rectal, subcutaneous, intravenous or inhaled – Common intravenous drugs • Benzodiazepines (amnesia) – midazolam • Opioids (analgesia) – Fentanyl » Synergism between these drugs may result in loss of consciousness in some patient • Anaesthetic agents – Propofol » Higher risk of unintentional loss of consciousness ANZCA Procedural Sedation • Recovery – Appropriately trained staff in an properly equipped area – Ability to safely transfer a patient who has received procedural sedation to another area if recovery is not to take place in the area in which the procedure took place – Discharge from recovery is reliant on an authorised practitioner – Discharge to the care of an adult with clear post discharge advice (eg no driving for 24 hours, analgesia, legal implications etc) ANZCA Procedural Sedation • Other considerations – Clear documentation – Audit of outcomes Paediatric Procedural Sedation in the Emergency Department • Indications: relief of pain and suffering for procedures on the paediatric population who are deemed suitable to have sedation in the emergency department – Examples • Suturing • Intravenous cannula insertion • Removal of foreign bodies • Minor fracture manipulation/moulding of plaster • Burns dressing • Wound debridement • Other painful procedures Paediatric Procedural Sedation in the Emergency Department • Drugs of choice – Nitrous Oxide or – Ketamine This talk will focus on the use of ketamine Ketamine primarily antagonises N-methyl-D-aspartate receptors resulting in: - dissociative trance-like cataleptic state - profound analgesia and amnesia - retain protective reflexes, spontaneous respiration and cardiopulmonary stability Paediatric Procedural Sedation in the Emergency Department • Ketamine – Side Effects • Increase pulse rate and blood pressure • Hyper salivation • Increased muscle tone • Emergence reactions (including hallucinations and vivid dreams) – Contraindications: • Age < 1 • Previous adverse reaction • Head injury in LOC, altered conscious state or vomiting • Active respiratory tract infection • Pyschosis, ADHD • Unstable epilepsy • Fasting < 4 hours solids, < 2 hours clear fluids • Systemic disease limiting daily activity Paediatric Procedural Sedation in the Emergency Department • Staffing – As per ANZCA Procedural Sedation guidelines • 3 personnel – The proceduralist – The credentialed medical practitioner providing sedation – The assistant (to both) • Equipment – As per ANZCA Procedural Sedation guidelines – Have atropine available for hypersecretions Paediatric Procedural Sedation in the Emergency Department • Procedure – Ensure adequate facilities and equipment – Parental informed consent – Assess fasting status – Continuous oximetry and ECG – Pre-oxygenate – Drug dosing – Recovery – Discharge: Parental Information Sheet Paediatric Procedural Sedation in the Emergency Department • Ketamine Dose – IV injection • 1mg/kg initially – effect in 30 seconds, lasting 5-10 minutes • 0.5mg/kg subsequent dose if required at 10 minutes – IM injection • 4mg/kg – effect in 3-4 min, lasting 12-25 min Practical Approach to Procedural Sedation Key questions: • What is the patient fasting status? • Is the procedure time critical? Practical Approach to Procedural Sedation • Is the case elective or an emergency? – If the case is elective, the risk of aspiration is low if the patient is fasted. If the patient is not fasted, delay the procedure until the patient satisfies fasting guidelines. – If the case is an emergency, balance the risk of aspiration vs the timing of the procedure • Don’t forget the options of regional anaesthesia, nerve blocks or local anaesthetic infiltration! Practical Approach to Procedural Sedation • Emergency Procedures – If the patient is fasted… • Consider proceeding after history, examination and review of investigations – If the patient is not fasted… • Is there a threat to life or limb if the procedure is delayed? – If yes, you need to balance the risk of the sedation vs the risk aspiration » Consider rapid sequence induction and endotracheal tube placement to protect airway from aspiration – If no, you can consider delaying the procedure until adequately fasted » Consider delayed gastric emptying secondary to pain or medication (analgesia) Procedural Sedation - Cases • Case Scenarios – 1. The adult female presenting for elective gastroscopy to assess for chronic epigastric pain – 2. The adult male presenting after dislocation of his shoulder while wrestling – 3. The distressed and crying child who has broken their arm and requires a plaster Procedural Sedation – Case 1 • Gastroscopy Procedural Sedation – Case 1 • The adult female presenting for elective gastroscopy to assess for chronic epigastric pain - Minimally invasive procedure appropriately done under sedation - Must be fasted - History, Examination, Investigations - Considerations: - Awake with local anaesthetic mouth spray - Conscious sedation with opioids and midazolam - Deeper sedation with the use of propofol Procedural Sedation – Case 2 Shoulder dislocation (Australian Rules
Recommended publications
  • Spring 2009 Student Journal
    Volume 8 Number 1 Spring 2009 The International Student Journal of Nurse Anesthesia TOPICS IN THIS ISSUE MS & ECT Cardioprotection of Volatile Agents Hyperthermic Chemotherapy Intubating LMA Pierre Robin Syndrome Alpha Thalassemia Latex Allergy & Spina Bifida Distorted Upper Airway Volunteerism – Honduras INTERNATIONAL STUDENT JOURNAL OF NURSE ANESTHESIA Vol. 8 No. 1 Spring 2009 Editor - in - Chief Ronald L. Van Nest, CRNA, JD Associate Editors Vicki C. Coopmans, CRNA, PhD Julie A. Pearson, CRNA, PhD EDITORIAL BOARD & SECTION EDITORS Pediatrics Janet A. Dewan, CRNA, MS Northeastern University Obstetrics Greg Nezat, CRNA, PhD Navy Nurse Corps Anesthesia Program Research & Capstone Joseph E. Pellegrini, CRNA, University of Maryland PhD Regional / Pain Christopher Oudekerk, CRNA, Uniformed Services Universi- DNP ty of the Health Sciences Cardiovascular Michele Gold, CRNA, PhD University of Southern Cali- fornia Thoracic/ Fluid Balance Lori Ann Winner, CRNA, MSN University of Pennsylvania Unique Patient Syndromes Kathleen R. Wren, CRNA, PhD Florida Hospital College of Health Sciences Equipment Carrie C. Bowman Dalley, Georgetown University CRNA, MS Pharmacology Maria Magro, CRNA, MS, University of Pennsylvania MSN Pathophysiology JoAnn Platko, CRNA, MSN University of Scranton Special Surgical Techniques Russell Lynn, CRNA, MSN University of Pennsylvania 1 Airway & Respiration Michael Rieker, CRNA, DNP Wake Forest University Baptist Medical Center ,Nurse Anesthesia Program, Univer- sity of North Carolina at Greensboro Neurology & Neurosurgery
    [Show full text]
  • Authors Conducted an E-Mail Survey of Anesthesiologists in the US in 2010
    Appendix 2: Reference 1 Methods: Authors conducted an e-mail survey of Anesthesiologists in the US in 2010. Results: “Five thousand anesthesiologists were solicited; 615 (12.3%) responses were received. Twenty-four percent of respondents had installed an AIMS, while 13% were either installing a system now or had selected one, and an additional 13% were actively searching. Larger anesthesiology groups with large case loads, urban settings, and government affiliated or academic institutions were more likely to have adopted AIMS. Initial cost was the most frequently cited AIMS barrier. The most commonly cited benefit was more accurate clinical documentation (79%), while unanticipated need for ongoing information technology support (49%) and difficult integration of AIMS with an existing EMR (61%) were the most commonly cited problems.” [Trentman TL, Mueller JT, Ruskin KJ, Noble BN, Doyle CA. Adoption of anesthesia information management systems by US anesthesiologists. J Clin Monit Comput 2011;25:129–35.] Reference 2 Joint Commission Report. 60 [Kohn L, Corrigan JM, Donaldson MS. To Err is Human: Building a Safer Health System. Report from the Committee on Quality of Health Care in America. Washington DC: The Joint Commission journal on quality improvement, 1999:227–34.] Reference 3 Excerpt: “The Department of Health and Human Services (DHHS) released two proposed regulations affecting HIT (www.healthit.hhs.gov). The first, a notice of proposed rule- making (NPRM), describes how hospitals, physicians, and other health care professionals can qualify for billions of dollars of extra Medicare and Medicaid payments through the meaningful use of electronic health records (EHRs). The second, an interim final regulation, describes the standards and certification criteria that those EHRs must meet for their users to collect the payments.
    [Show full text]
  • Northwest Arkansas Regional Ems Protocols
    Regional Protocol PROTOCOL SECTION NORTHWEST ARKANSAS REGIONAL EMS PROTOCOLS 2019 REVISION 2019 a Regional Protocol PROTOCOL SECTION TABLE OF CONTENTS……………………………………………………………………………….b - e INTRODUCTORY STATEMENT………………......……………………………………………….........f PARTICIPATING AGENCIES………………………………………………………………………….…………..g 2019 DEPARTMENT MEDICAL DIRECTORS & SIGNATURE………………..…………………………........h SECTION ONE - PROTOCOLS GENERAL PROTOCOLS UNIVERSAL PATIENT CARE ................................................................................................................... 1 CHEMICAL EXPOSURE (HAZMAT) ......................................................................................................... 2 CHEMICAL SEDATION FOR VIOLENT PATIENT .................................................................................... 3 PAIN MANAGEMENT ............................................................................................................................... 4 SPINAL RESTRICTION ............................................................................................................................ 5 VASCULAR ACCESS ............................................................................................................................... 6 RESPIRATORY OXYGEN ADMINISTRATION……….…………………………………………………………..…………………..7 GENERAL AIRWAY MANAGEMENT………………….……………………………………..…………………….8 ADVANCED AIRWAY MANAGEMENT….……………………………………………………..…………………..9 PHARMACOLOGICAL ASSISTED INTUBATION (PAI)………………….……………………………………..10 ALLERGIC REACTION—ANAPHYLAXIS….……………………………………………………………………..11
    [Show full text]
  • A Comparison of Wilson Risk Sum Score and Combination of Modified Mallampati Classification, Hyomental Distance Ratio, Ratio Of
    Jebmh.com Original Research Article A Comparison of Wilson Risk Sum Score and Combination of Modified Mallampati Classification, Hyomental Distance Ratio, Ratio of Height to Sternomental and Thyromental Distances for Predicting Difficult Laryngoscopy in Indian Population Deepak Kumar1, Saurabh Bhargava2, Ravindra Singh Sisodiya3, Deepak Tiwari4 1Department of Anaesthesia, National Institute of Medical Sciences and Research Centre, Jaipur, Rajasthan, India. 2, 4 Department of Emergency Medicine, National Institute of Medical Sciences and Research Centre, Jaipur, Rajasthan, India. 3Department of Anaesthesia, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India. ABSTRACT BACKGROUND A few patients of apparently normal appearance unexpectedly present with great Corresponding Author: difficulties during intubation which may lead to potentially serious consequences. Dr. Deepak Tiwari, Thus, we worked on this area with the aim to determine the ability to predict 109 Avar Faculty Block, Nims University, Shobha Nagar, difficult visualisation of larynx using the following preoperative airway predictors: Delhi-Jaipur Highway, MMC (Modified Mallampati Classification), RHSMD (Ratio of Height to Sternomental Jaipur - 302013, Distance), RHTMD (Ratio of Height to Thyromental) and HMDR (Hyomental Rajasthan, India. Distance Ratio) and comparison of these with WRSS (Wilson Risk Sum Score), in E-mail: [email protected] isolation and in combination. DOI: 10.18410/jebmh/2020/620 METHODS A double-blind, prospective study was carried out on 300, ASA grade I or II How to Cite This Article: patients posted for elective surgery in supine position under general anaesthesia. Kumar D, Bhargava S, Sisodiya RS, et al. A comparison of Wilson risk sum score Different parameters were recorded in pre-op period and Cormack-Lehane grading and combination of modified Mallampati and difficulty of intubation was recorded at the time of intubation.
    [Show full text]
  • Thyromental Distance Ratio in Predicting Difficult Intubation
    THE EFFECTIVENESS OF EXTENDED MALLAMPATI TEST, HYOMENTAL DISTANCE RATIO AND NECK CIRCUMFERENCE – THYROMENTAL DISTANCE RATIO IN PREDICTING DIFFICULT INTUBATION BY EZIKE AMECHI CHUKWUDUM DEPARTMENT OF ANAESTHESIA UNIVERSITY OF CALABAR TEACHING HOSPITAL CALABAR, NIGERIA A DISSERTATION SUBMITTED TO NATIONAL POSTGRADUATE MEDICAL COLLEGE OF NIGERIA IN PARTIAL FULFILLMENT OF THE FINAL FELLOWSHIP OF THE MEDICAL COLLEGE IN ANAESTHESIA (FMCA) EXAMINATION REQUIREMENT MAY 2017 1 SUPERVISORS ATTESTATION We hereby affirm that we supervised this study carried out by Dr. Amechi Chukwudum Ezike titled EFFECTIVENESS OF EXTENDED MALLAMPATI SCORE, HYOMENTAL DISTANCE RATIO AND NECK CIRCUMFERENCE- THYROMENTAL DISTANCE RATIO IN PREDICTING DIFFICULT INTUBATION , in partial fulfillment for the requirement of the award of the Fellowship of the National Postgraduate Medical College of Nigeria. First Supervisor……………………………………………… Date…………………………….. Prof. Atim I. Eshiet (MBBCh, DA, FMCA, FICS, FWACS) Consultant Anaesthetist, University of Calabar Teaching Hospital, Calabar, Nigeria. Second Supervisor …………………………………… Date……………………………… DR. Iniabasi Udoh Ilori (MBBCh; DA; FWACS). Consultant Anaesthetist, University of Calabar Teaching Hospital, Calabar, Nigeria. 2 CERTIFICATION I affirm that this dissertation titled ‘Effectiveness Of Extended Mallampati Score, Hyomental Distance Ratio And Neck Circumference-Thyromental Distance Ratio In Predicting Difficult Intubation’ was carried out by Dr. Ezike Amechi Chukwudum and supervised by consultants in the Department of Anaesthesiology, University of Calabar Teaching Hospital. This is in partial fulfillment of the requirement for the award of the Fellowship of the National Postgraduate Medical College of Nigeria. …………………………………………… Date………………………. DR. OBOKO OKU (MBBCh; DA; FWACS). The Head, Department of Anaesthesiology, University of Calabar Teaching Hospital (UCTH), Calabar, Nigeria. 3 DECLARATION I hereby declare that this work is original unless otherwise stated.
    [Show full text]
  • Dcanesthesiamanualvo
    ii Any or all parts of this manual may be reproduced, provided the parts reproduced are free- not for sale. For commercial purposes, no part of this manual may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher. The intent of this manual is to be freely used, copied, and distributed in Developing Countries for the teaching and promotion of basic anesthesia knowledge/skills. The purpose of this manual is to provide developing countries with a copyright free basic anesthesia manual. This manual can be freely copied and translated into a native language for the promotion of basic anesthesia knowledge/skills. Contributors with credited pictures and illustrations have graciously given permission for their material to be used for this specific purpose. The author and publishers of this manual cannot accept liability from the use of this manual or errors in translation. It is up to each translator to ensure that the translation is correct. Knowledge about the art and science of anesthesia continues to change. It is up to each anesthesia provider to continue to learn and upgrade their knowledge. This manual only contains basic knowledge and is not a replacement for more comprehensive anesthesia information. iii “Every prudent man acts out of knowledge.” Proverbs 13:15 Soli Deo Gloria iv Acknowledgements This project would not have been possible without the help of many. The World Health Organization and Michael B. Dobson MD kindly gave permission to utilize illustrations from the publication Anaesthesia at the District Hospital, WHO, Geneva, 2000 for two earlier editions, published in Afghanistan and Cambodia.
    [Show full text]
  • Airway Assessment Authors: Dr Pierre Bradley Dr Gordon Chapman Dr Ben Crooke Dr Keith Greenland
    Airway Assessment Authors: Dr Pierre Bradley Dr Gordon Chapman Dr Ben Crooke Dr Keith Greenland August 2016 Contents Part 1. Introduction 3 Part 2. The traditional approach to normal and difficult airway assessment 6 Part 3. The anatomical basis for airway assessment and management 36 Part 4. Airway device selection based on the two-curve theory and three-column assessment model 48 DISCLAIMER This document is provided as an educational resource by ANZCA and represents the views of the authors. Statements therein do not represent College policy unless supported by ANZCA professional documents. Professor David A Scott, President, ANZCA 2 Airway Assessment Part 1. Introduction This airway assessment resource has been produced for use by ANZCA Fellows and trainees to improve understanding and guide management of airway assessment and difficult airways. It is the first of an airway resource series and complements the Transition to CICO resource document (and ANZCA professional document PS61), which are available on the ANZCA website. There are four components to this resource: Part 1. Introduction. Part 2. The traditional approach to normal and difficult airway assessment. Part 3. The anatomical basis for airway assessment and management: i) The “two-curve” theory. ii) The “three-column” approach. Part 4. Airway device selection based on the two-curve theory and three-column assessment model. OVERVIEW The role of airway assessment is to identify potential problems with the maintenance of oxygenation and ventilation during airway management. It is the first step in formulating an appropriate airway plan, which should incorporate a staged approach to manage an unexpected difficult airway or the institution of emergency airway management.
    [Show full text]
  • Short Thyromental Distance: a Predictor of Difficult Intubation Or An
    Anesthesiology 2006; 104:1131–6 © 2006 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Short Thyromental Distance: A Predictor of Difficult Intubation or an Indicator for Small Blade Selection? Mukesh Tripathi, M.D., M.N.A.M.S.,* Mamta Pandey, M.D., P.G.D.H.H.M.† Background: Short thyromental distance (TMD; < 5 cm) has oropharyngeal structure,2 external anatomical airway been correlated with difficult direct laryngoscopic intubation in structures,3 and the size of the mandibular space.4 How- adult patients. The authors hypothesized that a smaller Macin- ever, some of these individual markers have been cri- tosh curved blade (No. 2 MCB) would improve the predicted 5 difficult laryngoscopy in short-TMD patients over that with a tiqued, and scoring systems including multiple variables 6,7 standard Macintosh curved blade (No. 3 MCB). have been proposed, with increased complexity of Methods: In a preliminary study of 11 consenting adults (7 assessment in clinical practice. Small thyromental dis- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/104/6/1131/361138/0000542-200606000-00006.pdf by guest on 28 September 2021 females and 4 males), American Society of Anesthesiologists tance (TMD) Յ 6 cm is a simple, clinically used param- < physical status I and TMD 5 cm, lateral neck radiographs were eter that has been shown to correlate with a difficult recorded during laryngoscopy with a No. 2 and No. 3 MCB in 8 sequential fashion. In a prospective clinical study, laryngo- laryngoscopy and tracheal intubation. However, some scopy and tracheal intubation were evaluated in 83 adult pa- have questioned whether a small TMD, in isolation, is a tients with TMD < 5cm by randomly assigning them to two reliable predictor of a difficult laryngoscopy.9–11 In fact, groups for the blade used at first intubation.
    [Show full text]
  • Can Thyromental Distance Be Measured Accurately?
    Journal of Clinical Monitoring and Computing https://doi.org/10.1007/s10877-017-0090-3 ORIGINAL RESEARCH Can thyromental distance be measured accurately? Bin Wang1 · Hui Peng2 · Weidong Yao1 · Ling Guo1 · Xiaoju Jin1 Received: 22 June 2017 / Accepted: 6 December 2017 © The Author(s) 2017. This article is an open access publication Abstract Using the thyromental distance (TMD) measured based on the ultrasonographic location of the thyroid cartilage prominence as the criterion, we investigated the accuracy of TMD measurement by surface landmark identification of the thyroid carti- lage prominence. Twenty-nine anesthetist resident volunteers were recruited, including 10 first-year residents, 9 second-year residents and 10 third-year residents. Each volunteer measured the other 28 volunteers’ TMD. Then, the thyroid cartilage prominence of each volunteer was identified by ultrasonography of the junction of the vocal cord and thyroid cartilage, and the TMD was measured precisely. The error of the TMD measurement was determined by the minimal detectable differ- ence (MDD) compared to the ultrasound measurement. A difference of greater than 5.4 mm between the TMD measured by volunteers and that based on ultrasound localization was defined as a measurement error. The measurement error rate of females’ TMD was significantly higher than that of males’ (50 vs 10%, P < 0.001). The error rates of anesthetist residents of first-year, second-year and third-year were 34, 27, and 31%, respectively, and were not significantly different. The error of TMD measurement by surface landmark identification is often, especially for women. More clinic experience don’t improve it. Keywords Airway management · Thyroid cartilage · Anatomic landmarks · Accuracy · Ultrasonography · Volunteers 1 Introduction in a normal adult [12–14], whereas others have considered cut-off points of 7.0 cm [7], 6.0 cm [15], 5.5 cm [16] and Managing a difficult airway remains a significant problem even 4 cm [10].
    [Show full text]
  • Pharmacological Agents for Procedural Sedation and Analgesia in the Emergency Department
    The Royal College of Emergency Medicine Best Practice Guideline Pharmacological Agents for Procedural Sedation and Analgesia in the Emergency Department May 2016 Summary of recommendations 1. Every Emergency Department should have a procedural sedation policy that is regularly reviewed, and audited 2. The procedural sedation policy should provide guidelines for pharmacological agents that are routinely used in the Department 3. A pro-forma should be used for procedural sedation and analgesia (PSA) as a checklist and as an auditable record of the procedure 4. Adverse events should be reported using the SIVA reporting tool Scope This document provides guidelines for the use of common pharmacological agents in sedation in the Emergency Department in the UK. It provides guidelines for the use of these agents for adults and children (excluding neonates). This guideline only applies to pharmacological agents used in sedation in the Emergency Department and is not intended to be used in any other setting. It does not set standards for safe sedation, these are set out in the “Safe Sedation of Adults in the Emergency Department” guideline developed by the Royal College of Anaesthetists and the College of Emergency Medicine in November 2012 (1) and NICE Clinical Guideline 112 “Sedation in children and young people” (2). This guideline is intended to be used as an adjunct to these guidelines. It does not provide guidance for anaesthesia. A pro-forma template has been developed for use as a checklist, for formal recording, for monitoring and for the purposes of audit (Appendix 1). Reason for development There are currently no recommended guidelines for the use of pharmacological agents in procedural sedation and anecdotally, practice varies widely.
    [Show full text]
  • James Mitchell's Anaesthetics Notes
    James Mitchell’s Anaesthetics Notes August 2001 Section 1: Physiology Section 2: Pharmacology A. Cellular A. General B. Respiratory 1. Pharmacodynamics 1. Anatomy 2. Pharmacokinetics 2. Control 3. Pharmacokinetics of 3. Mechanics inhalational agents 4. Ventilation 4. Variability in response 5. Diffusion 5. Pharmaceutics 6. V/Q matching B. Specific 7. Gas transport 1. Sedatives 8. Circulation 2. Opioids 9. Tests 3. Pain 10. Applied physiology 4. NSAIDs C. Cardiovascular 5. Intravenous anaesthetics 1. Structure and function 6. Inhalational anaesthetics 2. Electrical properties 7. Relaxants 3. Cardiac output 8. Anticholinesterases 4. Peripheral vasculature 9. Anticholinergics 5. Control 10. Local anaesthetics 6. Regional circulations 11. Autonomic nervous system 7. Applied physiology 12. Adrenoceptor blockers 8. Measurement 13. Antihypertensives D. Renal 14. Antidysrhythmics E. Fluids and Electrolytes 15. Antiemetics F. Acid-Base 16. Histamine & serotonin G. Nervous system 17. Diuretics H. Muscle 18. Coagulation I. Liver 19. Obstetrics J. Haematology 20. Endocrine K. Nutrition & Metabolism 21. Gastrointestinal L. Thermoregulation 22. Intravenous fluids M. Immunology 23. Poisoning & Antimicrobials N. Endocrine 24. New developments O. Maternal 25. Psychotropics P. Fetal & Neonatal C. Statistics Q. Gastrointestinal R. Physics and Measurement Section 3: Practice of Anaesthesia A. Anaesthesia E. Obstetrics & Gynaecology 1. Assessment 1. Labour and delivery 2. Drug reactions 2. Gynaecology 3. Fluids F. Paediatrics 4. Complications G. Anatomy 5. Inherited Conditions 1. Thorax 6. Pain 2. Abdomen and pelvis 7. Miscellaneous 3. Lower Limb B. Equipment 4. Back 1. Measurement 5. Upper Limb 2. Monitoring 6. Head 3. Physics 7. Neck 4. Vaporizers & gas delivery 8. Miscellaneous 5. Miscellaneous H. Regional C. Medicine I.
    [Show full text]
  • Review Course Lectures
    Review Course Lectures presented at the 2010 Annual Meeting of the International Anesthesia Research Society Honolulu, Hawaii March 20-23, 2010 IARS 2009 REVIEW COURSE LECTURES The material included in the publication has not undergone peer review or review by the Editorial Board of Anesthesia and Analgesia for this publication. Any of the material in this publication may have been transmitted by the author to IARS in various forms of electronic medium. IARS has used its best efforts to receive and format electronic submissions for this publication but has not reviewed each abstract for the purpose of textual error correction and is not liable in any way for any formatting, textual, or grammatical error or inaccuracy. ©2010 International Anesthesia Research Society 2 ©International Anesthesia Research Society. Unauthorized Use Prohibited. IARS 2009 REVIEW COURSE LECTURES Table of Contents Ultrasound Guided Regional Anesthesia in Infants, Neuroanesthesia for the Occasional Children and Adolescents Neuroanesthesiologist Santhanam Suresh, MD FAAP .................1 Adrian W. Gelb ............................36 Vice Chairman, Department of Pediatric Anesthesi- Professor & Vice Chair ology, Children’s Memorial Hospital Department of Anesthesia & Perioperative Care Prof. of Anesthesiology & Pediatrics, Northwestern University of California San Francisco University’s Feinberg School of Medicine, Chicago, IL Perioperative Control Of Hypertension: When Does Neuromuscular Blockers and their Reversal in 2010 It Adversely Affect Perioperative Outcome? François Donati, PhD, MD.....................6 John W. Sear, MA, PhD, FFARCS, FANZCA .......39 Professor, Departement of Anesthesiology Nuffield Department of Anesthetics, Université de montréal University of Oxford, John Radcliffe Hospital Montréal, Québec, Canada Oxford, United Kingdom Anaphylactic and Anaphylactoid Perioperative Approach to Patients with Reactions in the Surgical Patient Respiratory Disease: Is There a Role \Jerrold H.
    [Show full text]