On the Division of Space with Minimum Partitional Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phase Behavior of a Family of Truncated Hard Cubes Anjan P
THE JOURNAL OF CHEMICAL PHYSICS 142, 054904 (2015) Phase behavior of a family of truncated hard cubes Anjan P. Gantapara,1,a) Joost de Graaf,2 René van Roij,3 and Marjolein Dijkstra1,b) 1Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands 2Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany 3Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands (Received 8 December 2014; accepted 5 January 2015; published online 5 February 2015; corrected 9 February 2015) In continuation of our work in Gantapara et al., [Phys. Rev. Lett. 111, 015501 (2013)], we inves- tigate here the thermodynamic phase behavior of a family of truncated hard cubes, for which the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We used Monte Carlo simulations and free-energy calculations to establish the full phase diagram. This phase diagram exhibits a remarkable richness in crystal and mesophase structures, depending sensitively on the precise particle shape. In addition, we examined in detail the nature of the plastic crystal (rotator) phases that appear for intermediate densities and levels of truncation. Our results allow us to probe the relation between phase behavior and building-block shape and to further the understanding of rotator phases. Furthermore, the phase diagram presented here should prove instrumental for guiding future experimental studies on similarly shaped nanoparticles and the creation of new materials. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906753] I. INTRODUCTION pressures, i.e., at densities below close packing. -
Smooth & Fractal Polyhedra Ergun Akleman, Paul Edmundson And
Smooth & Fractal Polyhedra Ergun Akleman, Paul Edmundson and Ozan Ozener Visualization Sciences Program, Department of Architecture, 216 Langford Center, College Station, Texas 77843-3137, USA. email: [email protected]. Abstract In this paper, we present a new class of semi-regular polyhedra. All the faces of these polyhedra are bounded by smooth (quadratic B-spline) curves and the face boundaries are C1 discontinues every- where. These semi-regular polyhedral shapes are limit surfaces of a simple vertex truncation subdivision scheme. We obtain an approximation of these smooth fractal polyhedra by iteratively applying a new vertex truncation scheme to an initial manifold mesh. Our vertex truncation scheme is based on Chaikin’s construction. If the initial manifold mesh is a polyhedra only with planar faces and 3-valence vertices, in each iteration we construct polyhedral meshes in which all faces are planar and every vertex is 3-valence, 1 Introduction One of the most exciting aspects of shape modeling and sculpting is the development of new algorithms and methods to create unusual, interesting and aesthetically pleasing shapes. Recent advances in computer graphics, shape modeling and mathematics help the imagination of contemporary mathematicians, artists and architects to design new and unusual 3D forms [11]. In this paper, we present such a unusual class of semi-regular polyhedra that are contradictorily interesting, i.e. they are smooth but yet C1 discontinuous. To create these shapes we apply a polyhedral truncation algorithm based on Chaikin’s scheme to any initial manifold mesh. Figure 1 shows two shapes that are created by using our approach. -
Archimedean Solids
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat). -
Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces Pablo F. Damasceno1*, Michael Engel2*, Sharon C. Glotzer1,2,3† 1Applied Physics Program, 2Department of Chemical Engineering, and 3Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. * These authors contributed equally. † Corresponding author: [email protected] Dec 1, 2011 arXiv: 1109.1323v2 ACS Nano DOI: 10.1021/nn204012y ABSTRACT Polyhedra and their arrangements have intrigued humankind since the ancient Greeks and are today important motifs in condensed matter, with application to many classes of liquids and solids. Yet, little is known about the thermodynamically stable phases of polyhedrally-shaped building blocks, such as faceted nanoparticles and colloids. Although hard particles are known to organize due to entropy alone, and some unusual phases are reported in the literature, the role of entropic forces in connection with polyhedral shape is not well understood. Here, we study thermodynamic self-assembly of a family of truncated tetrahedra and report several atomic crystal isostructures, including diamond, β-tin, and high- pressure lithium, as the polyhedron shape varies from tetrahedral to octahedral. We compare our findings with the densest packings of the truncated tetrahedron family obtained by numerical compression and report a new space filling polyhedron, which has been overlooked in previous searches. Interestingly, the self-assembled structures differ from the densest packings. We show that the self-assembled crystal structures can be understood as a tendency for polyhedra to maximize face-to-face alignment, which can be generalized as directional entropic forces. -
A Tourist Guide to the RCSR
A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle. -
The Crystal Forms of Diamond and Their Significance
THE CRYSTAL FORMS OF DIAMOND AND THEIR SIGNIFICANCE BY SIR C. V. RAMAN AND S. RAMASESHAN (From the Department of Physics, Indian Institute of Science, Bangalore) Received for publication, June 4, 1946 CONTENTS 1. Introductory Statement. 2. General Descriptive Characters. 3~ Some Theoretical Considerations. 4. Geometric Preliminaries. 5. The Configuration of the Edges. 6. The Crystal Symmetry of Diamond. 7. Classification of the Crystal Forros. 8. The Haidinger Diamond. 9. The Triangular Twins. 10. Some Descriptive Notes. 11. The Allo- tropic Modifications of Diamond. 12. Summary. References. Plates. 1. ~NTRODUCTORY STATEMENT THE" crystallography of diamond presents problems of peculiar interest and difficulty. The material as found is usually in the form of complete crystals bounded on all sides by their natural faces, but strangely enough, these faces generally exhibit a marked curvature. The diamonds found in the State of Panna in Central India, for example, are invariably of this kind. Other diamondsJas for example a group of specimens recently acquired for our studies ffom Hyderabad (Deccan)--show both plane and curved faces in combination. Even those diamonds which at first sight seem to resemble the standard forms of geometric crystallography, such as the rhombic dodeca- hedron or the octahedron, are found on scrutiny to exhibit features which preclude such an identification. This is the case, for example, witb. the South African diamonds presented to us for the purpose of these studŸ by the De Beers Mining Corporation of Kimberley. From these facts it is evident that the crystallography of diamond stands in a class by itself apart from that of other substances and needs to be approached from a distinctive stand- point. -
Icosahedral Polyhedra from 6 Lattice and Danzer's ABCK Tiling
Icosahedral Polyhedra from 퐷6 lattice and Danzer’s ABCK tiling Abeer Al-Siyabi, a Nazife Ozdes Koca, a* and Mehmet Kocab aDepartment of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud, 123 Muscat, Sultanate of Oman, bDepartment of Physics, Cukurova University, Adana, Turkey, retired, *Correspondence e-mail: [email protected] ABSTRACT It is well known that the point group of the root lattice 퐷6 admits the icosahedral group as a maximal subgroup. The generators of the icosahedral group 퐻3 , its roots and weights are determined in terms of those of 퐷6 . Platonic and Archimedean solids possessing icosahedral symmetry have been obtained by projections of the sets of lattice vectors of 퐷6 determined by a pair of integers (푚1, 푚2 ) in most cases, either both even or both odd. Vertices of the Danzer’s ABCK tetrahedra are determined as the fundamental weights of 퐻3 and it is shown that the inflation of the tiles can be obtained as projections of the lattice vectors characterized by the pair of integers which are linear combinations of the integers (푚1, 푚2 ) with coefficients from Fibonacci sequence. Tiling procedure both for the ABCK tetrahedral and the < 퐴퐵퐶퐾 > octahedral tilings in 3D space with icosahedral symmetry 퐻3 and those related transformations in 6D space with 퐷6 symmetry are specified by determining the rotations and translations in 3D and the corresponding group elements in 퐷6 .The tetrahedron K constitutes the fundamental region of the icosahedral group and generates the rhombic triacontahedron upon the group action. Properties of “K-polyhedron”, “B-polyhedron” and “C-polyhedron” generated by the icosahedral group have been discussed. -
Bridges Conference Proceedings Guidelines Word
Bridges 2019 Conference Proceedings Helixation Rinus Roelofs Lansinkweg 28, Hengelo, the Netherlands; [email protected] Abstract In the list of names of the regular and semi-regular polyhedra we find many names that refer to a process. Examples are ‘truncated’ cube and ‘stellated’ dodecahedron. And Luca Pacioli named some of his polyhedral objects ‘elevations’. This kind of name-giving makes it easier to understand these polyhedra. We can imagine the model as a result of a transformation. And nowadays we are able to visualize this process by using the technique of animation. Here I will to introduce ‘helixation’ as a process to get a better understanding of the Poinsot polyhedra. In this paper I will limit myself to uniform polyhedra. Introduction Most of the Archimedean solids can be derived by cutting away parts of a Platonic solid. This operation , with which we can generate most of the semi-regular solids, is called truncation. Figure 1: Truncation of the cube. We can truncate the vertices of a polyhedron until the original faces of the polyhedron become regular again. In Figure 1 this process is shown starting with a cube. In the third object in the row, the vertices are truncated in such a way that the square faces of the cube are transformed to regular octagons. The resulting object is the Archimedean solid, the truncated cube. We can continue the process until we reach the fifth object in the row, which again is an Archimedean solid, the cuboctahedron. The whole process or can be represented as an animation. Also elevation and stellation can be described as processes. -
Dodecahedron
Dodecahedron Figure 1 Regular Dodecahedron vertex labeling using “120 Polyhedron” vertex labels. COPYRIGHT 2007, Robert W. Gray Page 1 of 9 Encyclopedia Polyhedra: Last Revision: July 8, 2007 DODECAHEDRON Topology: Vertices = 20 Edges = 30 Faces = 12 pentagons Lengths: 15+ ϕ = 1.618 033 989 2 EL ≡ Edge length of regular Dodecahedron. 43ϕ + FA = EL 1.538 841 769 EL ≡ Face altitude. 2 ϕ DFV = EL ≅ 0.850 650 808 EL 5 15+ 20 ϕ DFE = EL ≅ 0.688 190 960 EL 10 3 DVV = ϕ EL ≅ 1.401 258 538 EL 2 1 DVE = ϕ 2 EL ≅ 1.309 016 994 EL 2 711+ ϕ DVF = EL ≅ 1.113 516 364 EL 20 COPYRIGHT 2007, Robert W. Gray Page 2 of 9 Encyclopedia Polyhedra: Last Revision: July 8, 2007 DODECAHEDRON Areas: 15+ 20 ϕ 2 2 Area of one pentagonal face = EL ≅ 1.720 477 401 EL 4 2 2 Total face area = 31520+ ϕ EL ≅ 20.645 728 807 EL Volume: 47+ ϕ 3 3 Cubic measure volume equation = EL ≅ 7.663 118 961 EL 2 38( + 14ϕ) 3 3 Synergetics' Tetra-volume equation = EL ≅ 65.023 720 585 EL 2 Angles: Face Angles: All face angles are 108°. Sum of face angles = 6480° Central Angles: ⎛⎞35− All central angles are = 2arcsin ⎜⎟ ≅ 41.810 314 896° ⎜⎟6 ⎝⎠ Dihedral Angles: ⎛⎞2 ϕ 2 All dihedral angles are = 2arcsin ⎜⎟ ≅ 116.565 051 177° ⎝⎠43ϕ + COPYRIGHT 2007, Robert W. Gray Page 3 of 9 Encyclopedia Polyhedra: Last Revision: July 8, 2007 DODECAHEDRON Additional Angle Information: Note that Central Angle(Dodecahedron) + Dihedral Angle(Icosahedron) = 180° Central Angle(Icosahedron) + Dihedral Angle(Dodecahedron) = 180° which is the case for dual polyhedra. -
Are Your Polyhedra the Same As My Polyhedra?
Are Your Polyhedra the Same as My Polyhedra? Branko Gr¨unbaum 1 Introduction “Polyhedron” means different things to different people. There is very little in common between the meaning of the word in topology and in geometry. But even if we confine attention to geometry of the 3-dimensional Euclidean space – as we shall do from now on – “polyhedron” can mean either a solid (as in “Platonic solids”, convex polyhedron, and other contexts), or a surface (such as the polyhedral models constructed from cardboard using “nets”, which were introduced by Albrecht D¨urer [17] in 1525, or, in a more mod- ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of points (“vertices”) and line-segments (“edges”) organized in a suitable way into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”, diagrams of which have been presented first by Luca Pacioli [44] in 1498 and attributed to Leonardo da Vinci). The last alternative is the least usual one – but it is close to what seems to be the most useful approach to the theory of general polyhedra. Indeed, it does not restrict faces to be planar, and it makes possible to retrieve the other characterizations in circumstances in which they reasonably apply: If the faces of a “surface” polyhedron are sim- ple polygons, in most cases the polyhedron is unambiguously determined by the boundary circuits of the faces. And if the polyhedron itself is without selfintersections, then the “solid” can be found from the faces. These reasons, as well as some others, seem to warrant the choice of our approach. -
Arxiv:2105.14305V1 [Cs.CG] 29 May 2021
Efficient Folding Algorithms for Regular Polyhedra ∗ Tonan Kamata1 Akira Kadoguchi2 Takashi Horiyama3 Ryuhei Uehara1 1 School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan fkamata,[email protected] 2 Intelligent Vision & Image Systems (IVIS), Tokyo, Japan [email protected] 3 Faculty of Information Science and Technology, Hokkaido University, Hokkaido, Japan [email protected] Abstract We investigate the folding problem that asks if a polygon P can be folded to a polyhedron Q for given P and Q. Recently, an efficient algorithm for this problem has been developed when Q is a box. We extend this idea to regular polyhedra, also known as Platonic solids. The basic idea of our algorithms is common, which is called stamping. However, the computational complexities of them are different depending on their geometric properties. We developed four algorithms for the problem as follows. (1) An algorithm for a regular tetrahedron, which can be extended to a tetramonohedron. (2) An algorithm for a regular hexahedron (or a cube), which is much efficient than the previously known one. (3) An algorithm for a general deltahedron, which contains the cases that Q is a regular octahedron or a regular icosahedron. (4) An algorithm for a regular dodecahedron. Combining these algorithms, we can conclude that the folding problem can be solved pseudo-polynomial time when Q is a regular polyhedron and other related solid. Keywords: Computational origami folding problem pseudo-polynomial time algorithm regular poly- hedron (Platonic solids) stamping 1 Introduction In 1525, the German painter Albrecht D¨urerpublished his masterwork on geometry [5], whose title translates as \On Teaching Measurement with a Compass and Straightedge for lines, planes, and whole bodies." In the book, he presented each polyhedron by drawing a net, which is an unfolding of the surface of the polyhedron to a planar layout without overlapping by cutting along its edges. -
Rhombic Dodecahedron
Rhombic Dodecahedron Figure 1 Rhombic Dodecahedron. Vertex labels as used for the corresponding vertices of the 120 Polyhedron. COPYRIGHT 2007, Robert W. Gray Page 1 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON Figure 2 Cube (blue) and Octahedron (green) define rhombic Dodecahedron. Figure 3 “Long” (green) and “short” (blue) face diagonals. COPYRIGHT 2007, Robert W. Gray Page 2 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON Topology: Vertices = 14 Edges = 24 Faces = 12 diamonds Lengths: EL ≡ Edge length of rhombic Dodecahedron. 22 FDL ≡ Long face diagonal = EL ≅ 1.632 993 162 EL 3 1 FDS ≡ Short face diagonal = FDL ≅ 0.707 106 781 FDL 2 2 FDS = EL ≅ 1.154 700 538 EL 3 DFVL ≡ Vertex at the end of a long face diagonal 1 2 = FDL = EL ≅ 0.816 496 581 EL 2 3 DFVS ≡ Vertex at the end of a short face diagonal 1 = FDL ≅ 0.353 553 391 FDL 22 1 = EL ≅ 0.577 350 269 EL 3 COPYRIGHT 2007, Robert W. Gray Page 3 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON 3 DFE = FDL ≅ 0.306 186 218 FDL 42 1 = EL 2 1 DVVL = FDL ≅ 0.707 106 781 FDL 2 2 = EL ≅ 1.154 700 538 EL 3 3 DVVS = FDL ≅ 0.612 372 4 FDL 22 = EL 11 DVE = FDL ≅ 0.586 301 970 FDL 42 11 = EL ≅ 0.957 427 108 EL 23 1 DVF = FDL 2 2 = EL ≅ 0.816 496 581 EL 3 COPYRIGHT 2007, Robert W. Gray Page 4 of 14 Encyclopedia Polyhedra: Last Revision: September 5, 2007 RHOMBIC DODECAHEDRON Areas: 2 2 1 Area of one diamond face = FDL ≅ 0.353 553 391 FDL 22 22 2 2 = EL ≅ 0.942 809 042 EL 3 2 2 Total face area = 32 FDL ≅ 4.242 640 687 FDL 2 2 = 82 EL ≅ 4.242 640 687 EL Volume: 16 3 3 Cubic measure volume equation = EL ≅ 3.079 201 436 EL 33 3 Synergetics' Tetra-volume equation = 6 FDL Angles: Face Angles: ⎛⎞2 2arcsin θS ≡ Face angle at short vertex = ⎜⎟ ≅ 109.471 220 634° ⎝⎠3 ⎛⎞22 θ ≡ Face angle at long vertex = arcsin ≅ 70.528 779 366° L ⎜⎟ ⎝⎠3 Sum of face angles = 4320° Central Angles: ⎛⎞1 All central angles are = arccos ≅ 54.735 610 317° ⎜⎟ ⎝⎠3 Dihedral Angles: All dihedral angles are = 120° COPYRIGHT 2007, Robert W.