Edinburgh Research Explorer Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights Citation for published version: Rogers, K & Zheng, Y 2016, 'Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights', Chemsuschem, vol. 9, DOI:10.1002/cssc.201600144, pp. 1750- 1772. <http://onlinelibrary.wiley.com/doi/10.1002/cssc.201600144/abstract> Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Chemsuschem General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact
[email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 DOI:10.1002/cssc.201600144 Reviews Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments:AReview and New Insights Kyle A. Rogers[a] and Ying Zheng*[a, b] ChemSusChem 2016, 9,1750 –1772 1750 2016 The Authors. PublishedbyWiley-VCH Verlag GmbH &Co. KGaA, Weinheim Reviews Research development of processes for refiningbio-oils is be- ing acombination of oxophilicity and an active metal phase comingincreasingly popular.One issue that these processes appear to be the most beneficial for selectivedeoxygenation possess is their high requirement for H2 gas.