Comparison of Phytosterol Intake from FFQ with Repeated 24-H Dietary Recalls of the Adventist Health Study-2 Calibration Sub-Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Organic Matter Composition Related to Methane Ebullitive Flux of an Urban Coastal Lagoon, Southeastern Brazil
Quim. Nova, Vol. 42, No. 6, 619-627, 2019 http://dx.doi.org/10.21577/0100-4042.20170373 ORGANIC MATTER COMPOSITION RELATED TO METHANE EBULLITIVE FLUX OF AN URBAN COASTAL LAGOON, SOUTHEASTERN BRAZIL Alessandra da Fonseca Vianaa,*, , Marco Aurélio dos Santosa, Marcelo Corrêa Bernardesb and Marcelo Amorima aInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, 21941-450 Rio de Janeiro – RJ, Brasil b Departamento de Geoquímica, Universidade Federal Fluminense, 24020-141 Niterói – RJ, Brasil Artigo Recebido em 25/04/2019; aceito em 04/06/2019; publicado na web em 26/06/2019 In 2016, Brazil emitted 18.25 Tg of methane. Some of these emissions occur through continental aquatic ecosystems, locations of fate and accumulation of organic and inorganic matter. Thus, the aim of this study is to evaluate the origin of organic matter in Rodrigo de Freitas Lagoon, an eutrophic, coastal and chocked lagoon in Rio de Janeiro, Brazil, through the determination of n-alkanes and sterols compounds in the upper two centimeters of sediment and compare these data with methane ebullitive flux. The concentrations of n-alkanes varied between 2.43 and 25.82 µg g-1. C29 was predominant compound in most sites, but also with important petrogenic source evidenced by the occurrence of Unresolved Complex Misture. The total concentration of sterols ranged from 2.76 to 56.01 µg g-1. β-sitostanol was the most abundant compound and coprostanol was the most relevant at the sites under -2 -1 -2 -1 influence of domestic effluents. 4CH ebullitive flux averaged 199 mg m d in the dry period and 9.3 mg m d during the wet season. -
Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol
insects Article Changes in Honey Bee Head Proteome in Response to Dietary 24-Methylenecholesterol Priyadarshini Chakrabarti * and Ramesh R. Sagili * Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected] (P.C.); [email protected] (R.R.S.); Tel.: +1-541-737-0628 (P.C.); Tel.: +1-541-737-5460 (R.R.S.) Received: 27 August 2020; Accepted: 27 October 2020; Published: 29 October 2020 Simple Summary: Phytosterols are important micronutrients that are essential for production of insect molting hormones and cellular membrane integrity. Past research has shown that the key phytosterol that honey bees need is 24-methylenecholesterol. This phytosterol improves honey bee longevity and sustains brood production. Hence, it is important to understand how 24-methylenecholesterol can shape honey bee physiology by altering protein profiles of vital honey bee tissues. Nurse bees secrete glandular secretions (brood food) using hypopharyngeal and mandibular glands in their head regions. Further, it has been shown that this sterol is selectively accumulated in nurse bee heads. Thus, it is imperative to examine the protein profiles of nurse bee heads, in response to dietary 24-methylenecholesterol manipulation. In this study, groups of newly emerged nurse bees were fed with varying concentrations of dietary 24-methylenecholesterol, while the control groups received no sterol. We found that dietary sterol manipulation altered the protein profiles in nurse bee heads, with important nutritional marker proteins being upregulated in high dietary sterol groups. The important proteins identified in this study may serve as vital markers of nutritional stress related to sterols in honey bees, paving the way for future research on bee nutrition. -
Biennial Review of 40 CFR Part 503 As Required Under the Clean Water Act Section 405(D)(2)(C)
United States Office of Water EPA-822R18003 Environmental Protection Agency Office of Science and Technology June 2019 4304T Biennial Review of 40 CFR Part 503 As Required Under the Clean Water Act Section 405(d)(2)(C) Biosolids Biennial Review Reporting Period 2016–2017 EPA-822R18003 Biennial Review of 40 CFR Part 503 As Required Under the Clean Water Act Section 405(d)(2)(C) Biosolids Biennial Review Reporting Period 2016–2017 U.S. Environmental Protection Agency Office of Water Office of Science and Technology Washington, D.C. June 2019 Biosolids Biennial Review Reporting Period 2016–2017 NOTICE This document has been reviewed in accordance with U.S. EPA policy and approved for publication. The report was prepared with the support of RTI International under the direction and review of the Office of Science and Technology. This document is not a regulation and does not change or substitute for statutory provisions and the EPA regulations. Thus, this document does not impose legally binding requirements on the EPA, states, tribes, or the regulated community. While the EPA has made every effort to ensure the accuracy of the discussion in this document, the obligations of the regulated community are determined by statutes, regulations, or other legally binding requirements. In the event of a conflict between the discussion in this document and any statute or regulation, this document would not be controlling. Mention of trade names or commercial products does not constitute endorsement or recommendation for their use. This document can be downloaded from the EPA’s website at http://www.epa.gov/biosolids. -
Chemical and Microbiological Water Quality of Subsurface Agricultural
In cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Lenawee Conservation District Chemical and Microbiological Water Quality of Subsurface Agricultural Drains during a Field Trial of Liquid Dairy Manure Effluent Application Rate and Varying Tillage Practices, Upper Tiffin Watershed, Southeastern Michigan By Sheridan Kidd Haack and Joseph W. Duris Open-File Report 2008–1189 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Haack, S.K., and Duris, Joseph W., 2008, Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan: U.S. Geological Survey Open-File Report 2008– 1189, 38 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted -
Effect of Phytosterol Structure on Thermal Polymerization of Heated Soybean Oil
1068 Eur. J. Lipid Sci. Technol. 2008, 110, 1068–1077 Research Paper Effect of phytosterol structure on thermal polymerization of heated soybean oil Jill Kristine Winkler and Kathleen Warner U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, USA* This study determined the effect of phytosterol structure, including the degree of unsaturation and the presence of an ethylidene group in the side chain, on the thermal polymerization of heated soybean oil. Indigenous tocopherols and phytosterols were removed from soybean oil by molecular distillation. Pure phytosterols were added back to the stripped soybean oil at concentrations of 0.5, 1.0, and 5 mg/g oil (0.05, 0.1, and 0.5 wt-%). These oils were heated at 180 7C over a period of 8 h, and triacylglycerol dimers and polymers, fatty acid composition, and residual phytosterol content were determined. None of the phytosterols prevented triacylglycerol dimer and polymer formation when used at 0.5 mg/g; however, phytosterols with two or more double bonds, regardless of the presence of an ethylidene group in the side chain, provided slight protection when added at 1 mg/g. Ergosterol addition at 5 mg/g reduced polymer formation by 16–20% compared to the control oil, but at this level none of the other phytosterols provided protection of any practical significance. Thus, under the conditions used for this heating study, the degree of phytosterol unsaturation was more important for its anti-polymerization activity than the presence of an ethylidene group. Keywords: Ethylidene side chain / Fucosterol / Phytosterols / Thermal polymerization / Vegetable oils Received: April 7, 2008; accepted: June 9, 2008 DOI 10.1002/ejlt.200800089 1 Introduction monly used to reduce the PUFA in these oils, thereby increasing the oil stability for frying. -
(12) United States Patent (10) Patent No.: US 7,906,710 B2 Karunanandaa Et Al
US00790671 OB2 (12) United States Patent (10) Patent No.: US 7,906,710 B2 Karunanandaa et al. (45) Date of Patent: *Mar. 15, 2011 (54) TRANSGENIC PLANTS CONTAINING FOREIGN PATENT DOCUMENTS ALTERED LEVELS OF STEROD EP 0486290 11, 1991 COMPOUNDS EP O480730 4f1992 JP O9121863 5, 1997 WO WO93,021.87 2, 1993 (75) Inventors: Balasulojini Karunanandaa, St. Louis, WO WO97/032O2 1, 1997 MO (US); Martha Post-Beittenmiller, WO WO97/34003 9, 1997 St. Louis, MO (US); Mylavarapu WO WO 98.45457 10, 1998 Venkatramesh, St. Louis, MO (US); WO WO99,04622 2, 1999 Ganesh M. Kishore, St. Louis, MO WO WOOOf 61771 10, 2000 (US); Gregory M. Thorne, St. Louis, WO WOO1/31027 3, 2001 MO (US); John R. LeDeaux, St. Louis, MO (US) OTHER PUBLICATIONS Bach et al., “Cloning of cDNAS or genes encoding enzymes of sterol (73) Assignee: Monsanto Company, St. Louis,MO biosynthesis from plants and other eukaryotes: heterologous expres (US) sion and complementation analysis of mutations for functional char acterization.” Progress in Lipid Research, 36(2/3): 197-226, 1997. (*) Notice: Subject to any disclaimer, the term of this Bak et al., “Cloning and expression in Escherichia coli of the patent is extended or adjusted under 35 obtusifoliol 14-alpha-demethylase of Sorghum bicolor (L.) Moench, U.S.C. 154(b) by 0 days. a cytochrome P450 orthologous to the sterol 14-alpha-demethylases This patent is Subject to a terminal dis (CYP51) from fungi and mammals.” Plant Journal, 11(2):191-201, claimer. 1997. Bak et al., “Cloning and expression in Escherichia coli of the obtusifoliol 14-alpha-demethylase of Sorghum bicolor (L.) Moench, (21) Appl. -
Mechanisms of Growth Inhibition of Phytomonas Serpens by the Alkaloids Tomatine and Tomatidine
48 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(1): 48-55, February 2015 Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine Jorge Mansur Medina1/+, Juliany Cola Fernandes Rodrigues2,3,4,5, Otacilio C Moreira6, Geórgia Atella1, Wanderley de Souza2,3,4, Hector Barrabin1 1Instituto de Bioquímica Médica Leopoldo de Meis 2Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil 5Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brasil 3Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brasil 4Instituto Nacional de Metrolo- gia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brasil 6Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. -
Phytosterols As Tracers of Terrestrial and Wetland Carbon to Ten Thousand Islands, Florida, USA
Phytosterols as tracers of terrestrial and wetland carbon to Ten Thousand Islands, Florida, USA: Implications for trophic resource use in the eastern oyster, Crassostrea virginica Derek J. Detweiler1, Ludovic Hermabessiere2, Patricia K. Goodman3, Aswani K. Volety1, Philippe Soudant2, Ai Ning Loh1 1 Center for Marine Science, University of North Carolina Wilmington 2 Laboratoire des Sciences de l’Environnement Marin, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale 3 Department of Marine and Ecological Sciences & Vester Field Station, Florida Gulf Coast University Background PRE-1900’s WATER FLOW Historic Flow Current Flow CERP Flow (U.S. Dept. Interior) Faka Union Canal (Everglades Foundation) CERP = Comprehensive Everglades Restoration Plan Rationale • The eastern oyster (Crassostrea virginica) • Distributed along Atlantic and Gulf coasts • Ecosystem service providers • Shoreline protection and stabilization • Water quality improvement • Substrate for mangrove propagation • “Canary in the coal mine” Condition indices for C. virginica in TTI oysters Loh et al. (2017) Volety et al. (2014) Rationale • Assessing oyster diet using phytosterols • Biochemicals in primary producers originating from C30 precursor • Well-preserved in estuarine environments • Determine organic matter sources – source specificity • Sterol proportions and configuration provides insight to community assemblages (uconn.edu) (sfsu.edu) (sms.si.edu) Bianchi and Canuel (2011) Objectives What is the pre-restoration impact on source contributions of terrestrial and aquatic organic matter as well as its quality and use as trophic resource? 1. Identify types and sources of sterols from POM, BMA, and oyster tissue. 2. Determine possible food source contributors to TTI. 3. Correlate biomarkers with food source quality. 4. Assess impact of altered freshwater discharge on C. -
Granny Smith
www.nature.com/scientificreports OPEN Ethylene –dependent and –independent superfcial scald resistance mechanisms in ‘Granny Received: 19 March 2018 Accepted: 17 July 2018 Smith’ apple fruit Published: xx xx xxxx Evangelos Karagiannis1, Michail Michailidis1, Georgia Tanou1,2, Martina Samiotaki3, Katerina Karamanoli4, Evangelia Avramidou5, Ioannis Ganopoulos6, Panagiotis Madesis7 & Athanassios Molassiotis 1 Superfcial scald is a major physiological disorder of apple fruit (Malus domestica Borkh.) characterized by skin browning following cold storage; however, knowledge regarding the downstream processes that modulate scald phenomenon is unclear. To gain insight into the mechanisms underlying scald resistance, ‘Granny Smith’ apples after harvest were treated with diphenylamine (DPA) or 1-methylcyclopropene (1-MCP), then cold stored (0 °C for 3 months) and subsequently were ripened at room temperature (20 °C for 8 days). Phenotypic and physiological data indicated that both chemical treatments induced scald resistance while 1-MCP inhibited the ethylene-dependent ripening. A combination of multi-omic analysis in apple skin tissue enabled characterization of potential genes, proteins and metabolites that were regulated by DPA and 1-MCP at pro-symptomatic and scald- symptomatic period. Specifcally, we characterized strata of scald resistance responses, among which we focus on selected pathways including dehydroabietic acid biosynthesis and UDP-D-glucose regulation. Through this approach, we revealed scald-associated transcriptional, proteomic and metabolic signatures and identifed pathways modulated by the common or distinct functions of DPA and 1-MCP. Also, evidence is presented supporting that cytosine methylation-based epigenetic regulation is involved in scald resistance. Results allow a greater comprehension of the ethylene– dependent and –independent metabolic events controlling scald resistance. -
Generalized Host-Plant Feeding Can Hide Sterol-Specialized Foraging
Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee-plant interactions Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez To cite this version: Maryse Vanderplanck, Pierre-Laurent Zerck, Georges Lognay, Denis Michez. Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee-plant interactions. Ecology and Evolution, Wiley Open Access, 2019, 00 (1), pp.1 - 13. 10.1002/ece3.5868. hal-02480030 HAL Id: hal-02480030 https://hal.archives-ouvertes.fr/hal-02480030 Submitted on 14 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received: 20 August 2019 | Revised: 24 September 2019 | Accepted: 3 November 2019 DOI: 10.1002/ece3.5868 ORIGINAL RESEARCH Generalized host-plant feeding can hide sterol-specialized foraging behaviors in bee–plant interactions Maryse Vanderplanck1,2 | Pierre-Laurent Zerck1 | Georges Lognay3 | Denis Michez1 1Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Abstract Belgium Host-plant selection is a key factor driving the ecology and evolution of insects. 2 Evo-Eco-Paleo - UMR 8198, CNRS, While the majority of phytophagous insects is highly host specific, generalist behav- University of Lille, Lille, France 3Laboratory of Analytical Chemistry, ior is quite widespread among bees and presumably involves physiological adapta- Gembloux Agro-Bio Tech, University of tions that remain largely unexplored. -
82299391.Pdf
Biochimica et Biophysica Acta 1798 (2010) 1144–1152 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Influence of the nature of the sterol on the behavior of palmitic acid/sterol mixtures and their derived liposomes Zhong-Kai Cui a, Guillaume Bastiat a, Chester Jin a, Amir Keyvanloo b, Michel Lafleur a,⁎ a Department of Chemistry, Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, Québec, Canada H3C 3J7 b Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 article info abstract Article history: The phase behavior of mixtures formed with palmitic acid (PA) and one of the following sterols Received 4 November 2009 (dihydrocholesterol, ergosterol, 7-dehydrocholesterol, stigmasterol and stigmastanol), in a PA/sterol molar Received in revised form 18 December 2009 ratio of 3/7, has been characterized by IR and 2H NMR spectroscopy at different pH. Our study shows that it is Accepted 4 February 2010 possible to form liquid-ordered (lo) lamellar phases with these binary non-phospholipid mixtures. The Available online 12 February 2010 characterization of alkyl chain dynamics of PA in these systems revealed the large ordering effect of the Keywords: sterols. It was possible to extrude these systems, using standard extrusion techniques, to form large Palmitic acid unilamellar vesicles (LUVs), except in the case of ergosterol-containing mixture. The resulting LUVs Sterol displayed a very limited passive permeability consistent with the high sterol concentration. In addition, the Liquid-ordered phase stability of these PA/sterol self-assembled bilayers was also found to be pH-sensitive, therefore, potentially Liposome useful as nanovectors. -
Beta-Sitosterol [BSS] and Betasitosterol Glucoside [BSSG] As an Adjuvant in the Treatment of Pulmonary Tuberculosis Patients.” TB Weekly (4 Mar 1996)
Saw Palmetto (Serenoa repens) and One of Its Constituent Sterols -Sitosterol [83-46-5] Review of Toxicological Literature Prepared for Errol Zeiger, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Raymond Tice, Ph.D. Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709 November 1997 EXECUTIVE SUMMARY The nomination of saw palmetto and -sitosterol for testing is based on the potential for human exposure and the limited amount of toxicity and carcinogenicity data. Saw palmetto (Serenoa repens), a member of the palm family Arecaceae, is native to the West Indies and the Atlantic Coast of North America, from South Carolina to Florida. The plant may grow to a height of 20 feet (6.10 m), with leaves up to 3 feet (0.914 m) across. The berries are fleshy, about 0.75 inch (1.9 cm) in diameter, and blue-black in color. Saw palmetto berries contain sterols and lipids, including relatively high concentrations of free and bound sitosterols. The following chemicals have been identified in the berries: anthranilic acid, capric acid, caproic acid, caprylic acid, - carotene, ferulic acid, mannitol, -sitosterol, -sitosterol-D-glucoside, linoleic acid, myristic acid, oleic acid, palmitic acid, 1-monolaurin and 1-monomyristin. A number of other common plants (e.g., basil, corn, soybean) also contain -sitosterol. Saw palmetto extract has become the sixth best-selling herbal dietary supplement in the United States. In Europe, several pharmaceutical companies sell saw palmetto-based over-the-counter (OTC) drugs for treating benign prostatic hyperplasia (BPH).