Digital Geometry, a Survey

Total Page:16

File Type:pdf, Size:1020Kb

Digital Geometry, a Survey Digital Geometry, a Survey Li Chen David Coeurjolly University of the District of Columbia Université de Lyon, CNRS, LIRIS ABSTRACT used directly. This paper provides an overview of modern digital geometry Image processing and computer graphics are two main and topology through mathematical principles, algorithms, reasons why digital geometry was developed. First, a dig- and measurements. It also covers recent developments in the ital image is stored in a digital array, and the image must applications of digital geometry and topology including im- be processed using some geometric properties of this type age processing, computer vision, and data science. Recent of data|digital arrays. In computer graphics, the internal research strongly showed that digital geometry has made representation of the data is usually in the form of triangu- considerable contributions to modelings and algorithms in lation or meshes. However, when the image is displayed on image segmentation, algorithmic analysis, and BigData an- the screen, it must be digitized since the screen is a digital alytics. array. Two popular examples can provide explanations as to why digital geometry is necessary. First, most image process- Keywords ing and computer vision problems require extracting cer- Digital geometry, Digital topology, image processing tain objects from the image. This process is called image segmentation, and it usually involves separating meaningful objects from the background. Even though the boundary 1. INTRODUCTION TO DIGITAL GEOM- of an object appears to be a continuous curve, it is actually ETRY a sequence of digital points. Identification, measurement, Digital geometry is the study of the geometric properties and extraction are all related to digital geometry. In Fig. of digital and discrete objects stored in computer or elec- 1(a), the top image is the original, and the bottom image tronic formats. In general, digital geometry has two mean- is the digitized version where its boundary is a set of pixels ings: (1) Objects that are formed using digital or integer represented as small square-blocks. points, which is the more narrow definition; and (2) Objects Second, in computer graphics, we usually need to draw a that are computerized formations of geometric data, which line or set of lines in different colors on the screen. They are has a much bigger scope. We can view digital geometry as a drawn on 2D arrays, raster screens, instead of 2D Euclidean subcategory of discrete geometry that has a close relation- planes. This is not usually a perfect line at the pixel level ship with computerized applications. Digital geometry is since it is a digital line that requires a digital geometric highly related to computational geometry, which is more fo- algorithm such as the Bresenham algorithm to generate such cused on algorithm design for discrete objects in Euclidean a line (See Fig. 1(b)). space [26, 13]. A problem occurs when we articulate the curves or bound- However, digital geometry has its own set of problems and ary curves digitally. If we agree that a line or curve can be challenges including those involving distance measure and linked by pixels diagonally (with only one shared point at the formatting of digital objects, which are different than the corner of the two pixels), then blank pixels a and b are arXiv:1807.02222v1 [cs.DM] 6 Jul 2018 methods used with discrete objects. Digital geometry also also connected in Fig. 1(a). This is to say that the boundary has some advantages since the data can usually be sampled curve of the region cannot separate a plane into two discon- directly in its digital form. For instance, contrary to discrete nected areas. Therefore, digital geometry faces a new prob- geometry or computational geometry, digital geometry does lem that does not usually occur in continuous mathematics. not require a conversion process from digital sampling to This property is called the Jordan Curve theorem [23, 26]. discrete forms such as triangulation. Sampled data can be Digital geometry was first considered by A. Rosenfeld [39] J. Mylopoulos, and T. Pavlidis in the early 1970s [36]. In the 1980s, G. Herman and his associates studied digital sur- Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed faces [4]. D. Morgenthaler and Rosenfeld were the first to for profit or commercial advantage and that copies bear this notice and the full cita- define digital surfaces [35]. T. Kong and A. Roscoe con- tion on the first page. Copyrights for components of this work owned by others than ducted a deep investigation of the properties of digital sur- ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re- publish, to post on servers or to redistribute to lists, requires prior specific permission faces [27]. In the 1990s, the conference Vision Geometry and/or a fee. Request permissions from [email protected]. drew many researchers to this field. Many researchers wrote monographs for this special area, see [44, 23, 32] to name c 2018 ACM. ISBN 978-1-4503-2138-9. a few. In 2004, a comprehensive book on digital geometry DOI: 10.1145/1235 meaning that p has 26 neighbors (vertices in its neighbor- hood). For p, a is a directly adjacent point, and b and c are indirectly adjacent points. b is closer to p comparing the dis- tance between p and c. Therefore, there are a total of 3 types of adjacencies: 6-, 18-, and 26-adjacencies shown in Fig. 2. A path of digital points with α adjacency, α = 6; 18; 26, is called a α-connected path or α-path [35]. Note that in 2D, there are only two adjacencies: 4- and 8-adjacency. (a) (b) Figure 2: A point p and its 3D neighborhood Np. There are 6 direct adjacent points such as a, 18 pla- Figure 1: Digital Curves and Lines. nar diagonal adjacent points such as b (including a's), and 26 all adjacent points such as c (including a's and b's). was written by R. Klette and Rosenfeld [26]. There have been many remarkable developments including: Algorithms Digital surface was first mathematically defined by Mor- on 3D thinning, a digital Gauss-Bonnet theorem, and soft- genthaler and Rosenfeld (1981)[35]. They stated that a dig- ware systems for digital geometry DGtl[2]. Each year, many ital surface locally splits a neighborhood Fig. (2) into two conferences and events are held that directly relate to digital disconnected components where the thickness of the surface geometry. They can be found on the official digital geometry is 1. website (http://tc18.org). In the future, the following theoretical problems can be Definition 1. (Morgenthaler and Rosenfeld) Let α; β 2 studied and solved: (1) Homeomorphism between two solid f6; 18; 26g. A point p in S is an (α; β)-(simple) surface objects in 3D, (2) The digital Poincar´econjecture and re- point, and S(p) is p's neighborhood in S if lated constructive methods, and (3) Fast algorithms for per- (1) S(p) is an α-component, sistent analysis. Digital geometry is potentially a powerful (2) Np − S(p) has exactly two β-components and p is β- tool that can be applied in data science and BigData, which adjacent to both β-components, includes topological data processing using digital methods. (3) Each of the α-neighbors is β-adjacent to both β-components Digital geometry may also prove useful in the applications of Np − S(p). of the Graphical Processing Unit (GPU). GPU is currently We can see that there are a total of nine types of digi- embedded in many computer systems as a digital array form tal surfaces when we choose different αs and βs. Based on of image processing and computer graphics. Kong and Roscoe's research, most of these cases do not exist Digital geometry usually also contains digital methods for in terms of real world examples [27]. Chen and Zhang gave computational differential geometry in graphics. Due to the another definition mainly for (6,26)-surfaces, called parallel- length limitations, this article only focuses on image related move based surfaces [11]. The advantages of this type of approaches. Furthermore, we do not review computerized surface is that it can be extended to higher dimensions to de- tomography,a very sophisticated research area in digital ge- fine digital manifolds [11]. Let Σm be an m-dimensional grid ometry. Interested readers may refer to [24, 20]. space. A 0-cell is a point and 1-cell is a line-segment with two adjacent points. A 2-cell in (6,26)-surfaces is a square 2. DIGITAL SURFACES AND CLASSIFICA- with 4-points, etc. If we parallel move a 1-cell, we can get an- other 1-cell. In addition, these two 1-cells form a 2-cell. We TION say two 2-cells are 1-adjacent if they share a 1-cell. There- A digital curve can be viewed as a sequence of digital fore, we can define 1-connectedness (line-connectedness) as points such as the boundary of the connected region shown a path of 2-cells where each adjacent pair shares a 1-cell. in Fig. 1 (a). It can also be described mathematically as a path of vertices on a graph [23, 11]. However, defining a Definition 2. (Parallel-move Based) A connected subset digital surface is much more difficult. S of Σm is a digital surface if any point p 2 S is included in A main research topic in digital geometry is how to de- some 2-cell of S, and (1) Any two 2-cells are 1-connected in termine the digital surface or boundary of a solid object.
Recommended publications
  • An Algorithm for the Construction of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing
    An Algorithm for the Construction of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing Matthew Fisher Boris Springborn Peter Schroder¨ Alexander I. Bobenko Caltech TU Berlin Caltech TU Berlin Abstract The discrete Laplace-Beltrami operator plays a prominent role in many Digital Geometry Processing applications ranging from de- noising to parameterization, editing, and physical simulation. The standard discretization uses the cotangents of the angles in the im- mersed mesh which leads to a variety of numerical problems. We advocate the use of the intrinsic Laplace-Beltrami operator. It sat- isfies a local maximum principle, guaranteeing, e.g., that no flipped triangles can occur in parameterizations. It also leads to better con- ditioned linear systems. The intrinsic Laplace-Beltrami operator is based on an intrinsic Delaunay triangulation of the surface. We detail an incremental algorithm to construct such triangulations to- gether with an overlay structure which captures the relationship be- tween the extrinsic and intrinsic triangulations. Using a variety of example meshes we demonstrate the numerical benefits of the in- trinsic Laplace-Beltrami operator. Figure 1: Left: carrier of the (cat head) surface as defined by the original embedded mesh. Right: the intrinsic Delaunay triangu- 1 Introduction lation of the same carrier. Delaunay edges which appear in the original triangulation are shown in white. Some of the original 2 Delaunay triangulations of domains in R play an important role edges are not present anymore (these are shown in black). In their in many numerical computing applications because of the quality stead we see red edges which appear as the result of intrinsic flip- guarantees they make, such as: among all triangulations of the con- ping.
    [Show full text]
  • Geometry-Aware Topological Decompositions of Meshes
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Geometry-aware topological decompositions of meshes Permalink https://escholarship.org/uc/item/3vh0q7wn Author Chen, Jia Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Geometry-aware topological decompositions of meshes DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Jia Chen Dissertation Committee: Professor Gopi Meenakshisundaram, Chair Professor Aditi Majumder Professor Shuang Zhao 2019 Chapter3 c 2016 ACM New York, NY, USA Chapter3 c 2018 ACM New York, NY, USA All other materials c 2019 Jia Chen DEDICATION To my family \. a man who keeps company with glaciers comes to feel tolerably insignificant by and by." { Mark Twain, A Tramp Abroad ii TABLE OF CONTENTS Page LIST OF FIGURESv LIST OF TABLESx LIST OF ALGORITHMS xi ACKNOWLEDGMENTS xii CURRICULUM VITAE xiii ABSTRACT OF THE DISSERTATION xiv 1 Introduction1 1.1 Cycles of topological properties.........................2 1.2 Topological decompositions of meshes......................4 2 Definitions and Background7 2.1 Surfaces and their topological classification...................7 2.2 Primal graph and dual graph embedded on a surface.............8 2.3 Paths and cycles.................................9 2.4 Tunnel and handle cycles............................. 11 3 Iterative localization of handle and tunnel cycles 13 3.1 Related work................................... 14 3.2 Problem formulation............................... 15 3.3 Localizing handle and tunnel cycles....................... 16 3.3.1 Iterative tree-cotree algorithm...................... 16 3.3.2 Cycle tightening.............................. 20 3.3.3 Decoupling composite fundamental cycles...............
    [Show full text]
  • Digital Geometry Processing Mesh Basics
    Digital Geometry Processing Basics Mesh Basics: Definitions, Topology & Data Structures 1 © Alla Sheffer Standard Graph Definitions G = <V,E> V = vertices = {A,B,C,D,E,F,G,H,I,J,K,L} E = edges = {(A,B),(B,C),(C,D),(D,E),(E,F),(F,G), (G,H),(H,A),(A,J),(A,G),(B,J),(K,F), (C,L),(C,I),(D,I),(D,F),(F,I),(G,K), (J,L),(J,K),(K,L),(L,I)} Vertex degree (valence) = number of edges incident on vertex deg(J) = 4, deg(H) = 2 k-regular graph = graph whose vertices all have degree k Face: cycle of vertices/edges which cannot be shortened F = faces = {(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,L),(C,D,I), (D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)} © Alla Sheffer Page 1 Digital Geometry Processing Basics Connectivity Graph is connected if there is a path of edges connecting every two vertices Graph is k-connected if between every two vertices there are k edge-disjoint paths Graph G’=<V’,E’> is a subgraph of graph G=<V,E> if V’ is a subset of V and E’ is the subset of E incident on V’ Connected component of a graph: maximal connected subgraph Subset V’ of V is an independent set in G if the subgraph it induces does not contain any edges of E © Alla Sheffer Graph Embedding Graph is embedded in Rd if each vertex is assigned a position in Rd Embedding in R2 Embedding in R3 © Alla Sheffer Page 2 Digital Geometry Processing Basics Planar Graphs Planar Graph Plane Graph Planar graph: graph whose vertices and edges can Straight Line Plane Graph be embedded in R2 such that its edges do not intersect Every planar graph can be drawn as a straight-line plane graph ©
    [Show full text]
  • Evolution of the Graphical Processing Unit
    University of Nevada Reno Evolution of the Graphical Processing Unit A professional paper submitted in partial fulfillment of the requirements for the degree of Master of Science with a major in Computer Science by Thomas Scott Crow Dr. Frederick C. Harris, Jr., Advisor December 2004 Dedication To my wife Windee, thank you for all of your patience, intelligence and love. i Acknowledgements I would like to thank my advisor Dr. Harris for his patience and the help he has provided me. The field of Computer Science needs more individuals like Dr. Harris. I would like to thank Dr. Mensing for unknowingly giving me an excellent model of what a Man can be and for his confidence in my work. I am very grateful to Dr. Egbert and Dr. Mensing for agreeing to be committee members and for their valuable time. Thank you jeffs. ii Abstract In this paper we discuss some major contributions to the field of computer graphics that have led to the implementation of the modern graphical processing unit. We also compare the performance of matrix‐matrix multiplication on the GPU to the same computation on the CPU. Although the CPU performs better in this comparison, modern GPUs have a lot of potential since their rate of growth far exceeds that of the CPU. The history of the rate of growth of the GPU shows that the transistor count doubles every 6 months where that of the CPU is only every 18 months. There is currently much research going on regarding general purpose computing on GPUs and although there has been moderate success, there are several issues that keep the commodity GPU from expanding out from pure graphics computing with limited cache bandwidth being one.
    [Show full text]
  • Computer Graphics CMU 15-462/15-662 Scotty 3D Setup Recitation Today! Hunt Library Computer Lab 3:30-5Pm
    Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Scotty 3D setup recitation Today! Hunt Library Computer Lab 3:30-5pm CMU 15-462/662 Last time part 1: overview of geometry Many types of geometry in nature Geometry Demand sophisticated representations Two major categories: - IMPLICIT - “tests” if a point is in shape - EXPLICIT - directly “lists” points Lots of representations for both CMU 15-462/662 Last time part 2: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: “fans, not fins” Data structures for surfaces - polygon soup - halfedge mesh - storage cost vs. access time, etc. Today: next how do we manipulate geometry? twin - face edge - geometry processing / resampling Halfedge vertex CMU 15-462/662 Today: Geometry Processing & Queries Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals: - upsampling / downsampling / resampling / filtering ... - aliasing (reconstructed surface gives “false impression”) Also ask some basic questions about geometry: - What’s the closest point? Do two triangles intersect? Etc. Beyond pure geometry, these are basic building blocks for many algorithms in graphics (rendering, animation...) CMU 15-462/662 Digital Geometry Processing: Motivation 3D Scanning 3D Printing CMU 15-462/662 Geometry Processing Pipeline scan print process CMU 15-462/662 Geometry Processing Tasks reconstruction filtering remeshing parameterization compression shape analysis CMU 15-462/662 Geometry Processing: Reconstruction
    [Show full text]
  • Creating and Processing 3D Geometry
    Creating and processing 3D geometry Marie-Paule Cani [email protected] Cédric Gérot [email protected] Franck Hétroy [email protected] http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/ Context: computer graphics ● We want to represent objects – Real objects – Virtual/created objects ● Several ways for virtual object creation – Interactive by graphists – Automatic from real data ● 3D scanner, medical angiography, ... – Procedural (on the fly) ● Complex scenes, terrain, ... ● Different uses – Display, animation, ph ysical simulation, ... Course overview 1.Objects representations – Volume/surface, implicit/explicit, ... Real-time triangulation of implicit surfaces Course overview 1.Objects representations – Volume/surface, implicit/explicit, ... 2.Geometry processing – Simplify, smooth, ... Interactive multiresolution surface exploration Course overview 1.Objects representations – Volume/surface, implicit/explicit, ... 2.Geometry processing – Simplify, smooth, ... 3.Virtual object creation – Surface reconstruction, interactive modeling Shape modeling by sketching Planning (provisional) Part I – Geometry representations ● Lecture 1 – Oct 9th – FH – Introduction to the lectures; point sets, meshes, discrete geometry. ● Lecture 2 – Oct 16th – MPC – Parametric curves and surfaces; subdivision surfaces. ● Lecture 3 – Oct 23rd - MPC – Implicit surfaces. Planning (provisional) Part II – Geometry processing ● Lecture 4 – Nov 6th – FH – Discrete differential geometry; mesh smoothing and simplification (paper presentations).
    [Show full text]
  • Research on Shape Mapping of 3D Mesh Models Based on Hidden
    Research on Shape Mapping of 3D Mesh Models based on Hidden Markov Random Field and EM Algorithm WANG Yong1 WU Huai-yu2 1 (University of Chinese Academy of Sciences, Beijing 100049, China) 2 (Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China) Abstract How to establish the matching (or corresponding) between two different 3D shapes is a classical problem. This paper focused on the research on shape mapping of 3D mesh models, and proposed a shape mapping algorithm based on Hidden Markov Random Field and EM algorithm, as introducing a hidden state random variable associated with the adjacent blocks of shape matching when establishing HMRF. This algorithm provides a new theory and method to ensure the consistency of the edge data of adjacent blocks, and the experimental results show that the algorithm in this paper has a great improvement on the shape mapping of 3D mesh models. Keywords Shape Mapping, 3D Mesh Model, Hidden Markov Random Field, EM Algorithm 1 Introduction bending deformation, different sampling rate, and Digital geometry processing of 3D mesh models different parameterization methods. (a1'/a2', b1'/b2') has broad application prospects in the fields of are the transformed models of (a1/a2, b1/b2) by the industrial design, virtual reality, game entertainment, geometry processing framework of global Internet, digital museum, urban planning and so on[1]. perspective. It can be seen that the transformed However the surface of 3D mesh models is usually models are much similar in their poses and shapes. bent arbitrarily, lack of continuous parameters, and So the difficulty of establishing the automatic has complex characterized details, as is quite different matching between two different 3D shapes has been from the regular 2D image data with the uniform greatly reduced.
    [Show full text]
  • 1 1. Introduction Methods of Digital Topology Are Widely Used in Various
    1. Introduction Methods of digital topology are widely used in various image processing operations including topology- preserving thinning, skeletonization, simplification, border and surface tracing and region filling and growing. Usually, transformations of digital objects preserve topological properties. One of the ways to do this is to use simple points, edges and cliques: loosely speaking, a point or an edge of a digital object is called simple if it can be deleted from this object without altering topology. The detection of simple points, edges and cliques is extremely important in image thinning, where a digital image of an object gets reduced to its skeleton with the same topological features. The notion of a simple point was introduced by Rosenfeld [14]. Since then due to its importance, characterizations of simple points in two, three, and four dimensions and algorithms for their detection have been studied in the framework of digital topology by many researchers (see, e.g., [1, 5, 12-13]). Local characterizations of simple points in three dimensions and efficient detection algorithms are particularly essential in such areas as medical image processing [2, 7-8, 15], where the shape correctness is required on the one hand and the image acquisition process is sensitive to the errors produced by the image noise, geometric distortions in the images, subject motion, etc, on the other hand. It has to be noticed that in this paper we use an approach that was developed in [3]. Digital spaces and manifolds are defined axiomatically as specialization graphs with the structure defined by the construction of the nearest neighborhood of every point of the graph.
    [Show full text]
  • Computer Graphics CMU 15-462/15-662
    Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: “fans, not fns” Data structures for surfaces - polygon soup - halfedge mesh - storage cost vs. access time, etc. Today: next how do we manipulate geometry? twin - face edge - geometry processing / resampling Halfedge vertex CMU 15-462/662 Today: Geometry Processing Extend traditional digital signal processing (audio, video, etc.) to deal with geometric signals: - upsampling / downsampling / resampling / fltering ... - aliasing (reconstructed surface gives “false impression”) Beyond pure geometry, these are basic building blocks for many areas/algorithms in graphics (rendering, animation...) CMU 15-462/662 Digital Geometry Processing: Motivation 3D Scanning 3D Printing CMU 15-462/662 Geometry Processing Pipeline scan print process CMU 15-462/662 Geometry Processing Tasks reconstruction filtering remeshing parameterization compression shape analysis CMU 15-462/662 Geometry Processing: Reconstruction Given samples of geometry, reconstruct surface What are “samples”? Many possibilities: - points, points & normals, ... - image pairs / sets (multi-view stereo) - line density integrals (MRI/CT scans) How do you get a surface? Many techniques: - silhouette-based (visual hull) - Voronoi-based (e.g., power crust) - PDE-based (e.g., Poisson reconstruction) - Radon transform / isosurfacing (marching cubes) CMU 15-462/662 Geometry Processing: Upsampling Increase resolution
    [Show full text]
  • Topology Preserving Isosurface Extraction for Geometry Processing
    Topology Preserving Isosurface Extraction for Geometry Processing Gokul Varadhan1, Shankar Krishnan2, TVN Sriram1, and Dinesh Manocha1 1Department of Computer Science, University of North Carolina, Chapel Hill, U.S.A 2AT&T Labs - Research, Florham Park, New Jersey, U.S.A http://gamma.cs.unc.edu/recons ABSTRACT Marching Cubes (MC) [2] or any of its variants [3–5]. We We address the problem of computing a topology preserving refer to these isosurface extraction algorithms collectively as isosurface from a volumetric grid using Marching Cubes for MC-like algorithms. The output of an MC-like algorithm is geometry processing applications. We present a novel adap- an approximation – usually a polygonal approximation – of tive subdivision algorithm to generate a volumetric grid. the implicit surface. We refer to this step as reconstruction Our algorithm ensures that every grid cell satisfies certain of the implicit surface. sampling criteria. We show that these sampling criteria Compared to other surface representations (e.g. para- are sufficient to ensure that the isosurface extracted from metric surfaces), implicit surface representations are easy to the grid using Marching Cubes is topologically equivalent use to perform geometric operations like union, intersection, to the exact isosurface: both the exact isosurface and the difference, blending, and warping. Specifically, they map extracted isosurface have the same genus and connectivity. Boolean operations into simple minimum/maximum opera- We use our algorithm for accurate boundary evaluation of tions on the scalar fields of the primitives. Suppose we have Boolean combinations of polyhedra and low degree algebraic two primitives P1 and P2 with scalar fields f1 and f2.
    [Show full text]
  • Geometry Processing Algorithms
    Geometry Processing Algorithms CSCS468468 http: //cs468.stfdd/tanford.edu/ Mirela Ben Chen Objective • Theory and algorithms for efficient analysis and manipulation of complex 3D models • Hands-on experience 2 Requirements Prerequisites: - Experience with C++ programming - Background in geometry or computational geometry helpful, but not necessary. Grade (3 units): - Programming exercises - OpenMesh intro (10%) - Surface smoothing (20%) - Simplification (20%) - Parameterization (25%) - Remeshing (25%) Use OpenMesh API Sign up to Piazza! 3 References • Book “Polygon Mesh Processing” by Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, Bruno Levy • Eurographics 2008 course notes “Geometric Modeling Based on Polygonal Meshes” by Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez, Bruno Levy, Stephan Bischoff, Christian Rössl • More links on web site 4 What is Geometry Processing About? • Acquiring • Analyzing • Manipulating 5 Applications Medical E-Commerce Simulation Engineering Culture Games & Movies Architecture Architecture Creating Reverse Engineering 6 A Geometry Processing Pipeline Low Level Algorithms 7 A Geometry Processing Pipeline 8 A Geometry Processing Pipeline High Level Algorithms Deformation and editing Extracting shape structure 9 Acquiring 33DD Geometry RSRange Scanners 10 Acquiring 33DD Geometry RSRange Scanners 11 Acquiring 33DD Geometry Tomography Simplification 20,000 8,000 2,000 Demo Applications Multi-resolution hierarchies for – efficient geometry processing – level-of-detail (()LOD) renderin g 14 Size-Quality
    [Show full text]
  • Challenges & Opportunities for 3D Graphics on the PC
    ChallengesChallenges && OpportunitiesOpportunities forfor 3D3D GraphicsGraphics onon thethe PCPC Neil Trevett, VP Marketing 3Dlabs President, Web3D Consortium www.3dlabs.com © Copyright 3Dlabs, 1999 - Page 1 - PROPRIETARY & CONFIDENTIAL Topics Graphics Challenges on the PC Platform • What is going to be the killer 3D application? - No-one cares about 3D other than workstations applications and gamers - What is going to change that - on the PC and on the Web? • Geometry processing performance - How to push to the next level of performance i.e. >40M polygons/sec - CPUs are not fast enough - we need geometry acceleration ... - … but high-end volumes are too small to warrant specialized chip development • PC system bandwidth - passing data to the graphics engine - Front side bus bandwidth is a fundamental barrier to polygon performance today - What are the possible hardware and software solutions? • Graphics memory architecture - On-board texture management is an unbounded problem and a difficult software problem - UMA memory is cheap - but lacks high performance - Has the time come for memory management in graphics chips? © Copyright 3Dlabs, 1999 - Page 2 3Dlabs Industrial-strength boards for design professionals • The pioneer in bringing professional-class 3D to the PC - The first 3D chip on the PC: the GLINT 300SX in 1994 - First integrated 3D setup chip: the GLINT Delta in 1996 - First integrated geometry and lighting chip: the GLINT Gamma in 1997 • Have been shipping professional 3D for over 15 years - Licensed IRIS GL from SGI before
    [Show full text]